Dr Graham Stewart

Head of Microbial and Cellular Sciences

Qualifications: PhD

Email:
Phone: Work: 01483 68 6423
Room no: 32 AX 01

Office hours

By appointment

Further information

Research Interests

Mycobacterium tuberculosis

Tuberculosis (TB) is one of the most important infectious diseases of mankind, claiming 33,000 lives every week. One third of the world’s population carry an asymptomatic persistent infection with a 10% risk of progression to active disease. Of the 9 million new cases of tuberculosis every year, more than half a million are caused by strains of Mycobacterium tuberculosis that have acquired multidrug-resistance. BCG is currently the only vaccine used against TB and while it is successful in protecting against disease in children, it is ineffective against adult pulmonary TB.  Improvement in diagnosis, drugs and vaccines for tuberculosis will be needed to control this epidemic. 

To form a rational platform upon which to develop novel drugs and vaccines we are working to understand the molecular basis of how M. tuberculosis is able to establish infection and generate disease.

Research approach

High-throughput functional genomic studies of M.tuberculosis and its host cells by our lab and others have revealed that virulence is controlled by complex multifactorial interactions between thousands of bacterial and host components. From these interaction networks emerge the properties that characterise the pathogenesis of TB. Systems Biology provides a strategy to explore this complexity, integrating experimental analysis and computational tools to develop predictive models that will facilitate effective drug and vaccine development strategies based on a higher level of biological understanding.

 

We are identifying and studying molecular interaction networks associated with the pathogenesis features below:

 

Mycobacterial inhibition of phagosome maturation  

The success of M.tuberculosis as a pathogen relies on its ability to grow inside host macrophages. Multiple factors are involved in intracellular survival but a key feature is the ability of M. tuberculosis to arrest the normal process of phagosome maturation, blocking acidification of the intracellular compartment and fusion with lysosomes.

 Mycobacterial control of host cell death  

Evidence suggests that M.tuberculosis is able to control the fate of its host cell. Early in infection it is able to inhibit apoptosis to preserve its replicative niche but later it has the capacity to induce an inflammatory form of cell death.

Mycobacterial metabolism in host cells/tissues

The features of M.tuberculosis metabolism during infection are poorly understood. The bacterium exists in many and diverse sites in the host and understanding the variety and nature of metabolic processes utilised in these environments will be essential to novel drug discovery.

The mycobacterial stress response

Pathogenic mycobacteria must endure a variety of other hostile environments during infection. The bacteria counter these harsh conditions with specific and general stress responses that remodel the physiology, biochemistry and structure of the cell.  These mechanisms are an essential component of pathogenicity.

 

Financial support for our research is provided by The Wellcome Trust, the BBSRC and the European Commission.

Research Collaborations

 

Main internal collaborators:

Johnjoe McFadden link

Andrzej Kierzek link

Mike Bushell link

Publications

Brodin P, Poquet Y, Levillain F, Peguillet I, Larrouy-Maumus G, Gilleron M, Christophe T, Fenistein D, Ewann F, Jang J, Jang M-S, Rauzier J, Carralot J-P, Shrimpton R, Genovesio A, Asensio JAG, Puzo G, Martin C, Brosch R, Stewart GR, Gicquel B and Neyrolles O. (2010) High content phenotypic cell-based visual screen identifies Mycobacterium tuberculosis acyltrehalose-containing glycolipids involved in phagosome remodelling. Plos Pathogens In Press

Estorninho M, Smith H, Thole J, Harders-Westerveen J, Kierzek A, Butler RE, Neyrolles O and Stewart GR. (2010) ClgR regulation of chaperone and protease systems is essential for Mycobacterium tuberculosis parasitism of the macrophage. Microbiology In Press EPUB.

Butler RE, Cihlarova V and Stewart GR. (2010) Effective generation of reactive oxygen species in the mycobacterial phagosome requires K+ efflux from the bacterium. Cellular Microbiology 12(8),1186-93.

Beste D, Espasa M, B. Bonde, C. Kierzek AM, Stewart GR and McFadden J. (2009) The genetic requirements for fast and slow growth in mycobacteria. PlosOne 4, E5349

Wilkinson KA, Newton SM, Stewart GR, Martineau AR, Sullivan SM, Herrmann J-L, Neyrolles O, Young DB, Wilkinson RJ (2009) Genetic determination of the effect of post-translational modification on the innate immune response to the 19kDa lipoprotein of Mycobacterium tuberculosis. BMC Microbiology 9:93.

Henao-Tamayo M, Junqueira-Kipnis AP, Ordway D, Gonzales-Juarrero M, Stewart GR, Young DB, Wilkinson RJ, Basaraba RJ, Orme IM. (2007) A mutant of Mycobacterium tuberculosis lacking the 19-kDa lipoprotein Rv3763 is highly attenuated in vivo but retains potent vaccinogenic properties. Vaccine 25(41):7153-9.

Beste D, Hooper T, Stewart GR, Bonde B, Avignone-Rossa C, Bushell M, Wheeler PR, Klamt S, Kierzek AM, and McFadden JJ. (2007) GSMN-TB: a web-based genome scale network model of Mycobacterium tuberculosis metabolism. Genome Biology. 8(5):R89.

Newton SM, Smith RJ, Wilkinson KA, Garton NJ, Staples KJ, Ziegler-Heitbrock L, Stewart GR, Wain JR, Nicol MP, Martineau AR, Al-Obaidi A, Shafi J, Levin M, Rajakumar K, Andrew PW, Barer MR, Wilkinson RJ. (2006). A deletion defining a common Asian lineage of Mycobacterium tuberculosis associates with immune subversion. Proceedings of the National Academy of Science 103, 15594-98.

Humphreys I.R., Stewart G.R., Turner D.J., Patel J., Karamanou D., Snelgrove R.J., Young D.B. (2006). A role for dendritic cells in the dissemination of mycobacterial infection. Microbes and Infection. 8(5),1339-46.

Pitarque S., Herrmann J-L., Duteyrat J-L, Jackson M., Stewart G.R., Lecointe F., Payré B., Schwartz O., Young D.B., Marchal G., Lagrange P.H., Puzo G., Gicquel B., Nigou J. and Neyrolles O. (2005) Deciphering the molecular bases of Mycobacterium tuberculosis binding to DC-SIGN reveals an underestimated complexity. Biochemical Journal 392, 615-24.

Stewart G.R., Patel J., Robertson B.D., Rae A. and Young D.B. (2005). Mycobacterial mutants with defective control of phagosomal acidification. PLoS Pathogens 1, 269-78.

Stewart G.R., Wilkinson K.A., Wain J.R., Sullivan S.M., Newton S.M., Patel J., Neyrolles O., Pool K.L., Young D.B. and Wilkinson R.J. (2005) The effects of deletion or overexpression of the 19 kDa lipoprotein (Rv3763) on the innate response to Mycobacterium tuberculosis. Infection and Immunity 73(10), 6831-7.

Murphy H.N., Stewart G.R., Mischenko V., Apt A., Harris R., McAlister M.S.B., Driscoll P.C., Young D.B., and Robertson B.D. (2005) The OtsAB pathway is essential for trehalose biosynthesis in Mycobacterium tuberculosis. Journal of Biological Chemistry 280(15), 14524-9.

Wilkinson K.A., Stewart G.R., Newton S.M., Vordermeier H.M., Wain J.R., Murphy H.N., Horner K., Young D.B. and Wilkinson R.J. (2005) Infection biology of a novel alpha-crystallin of Mycobacterium tuberculosis: Acr2. Journal of Immunology 174(7), 4237-43.

Blokpoel M.C.J., Murphy H.N., O’Toole R., Wiles S., Stewart G.R., Young D.B. and Robertson B.D. (2005) Tetracycline-inducible gene regulation in mycobacteria. Nucleic Acids Research 33(2), e22 (7 pages)

Stewart G.R., Newton S., Wilkinson K.A., Murphy H.N., Robertson B.D., Wilkinson R.J. and Young D.B. (2005) The stress responsive chaperone alpha-crystallin 2 is required for pathogenesis of Mycobacterium tuberculosis. Molecular Microbiology 55(4), 1127-37.

Ciaramella A., Cavone A., Santucci M.B., Bocchino M., Galati D., Martino A., Auricchio G., Stewart G.R., Neyrolles O., Young D.B., Colizzi V. and Fraziano M. (2004) 19-kDa lipoprotein induces inflammatory apoptosis in the course of Mycobacterium tuberculosis infection. Journal of Infectious Diseases. 190, 1167-76.

Stewart G.R. and Young D.B. (2004) Heat shock proteins and the host-pathogen interaction during bacterial infection. Current Opinion in Immunology. 16, 506-10.

Stewart G.R. Robertson B.D. and Young D.B. (2004) Analysis of the function of mycobacterial DnaJ proteins by overexpression and microarray profiling. Tuberculosis 84(3-4), 180-7.

Papatheodorou I., Sergot M., Randall M, Stewart G.R. and Robertson B.D. (2004). Visualisation of microarray results to assist interpretation. Tuberculosis. 84(3-4), 275-81.

Taylor G.M., Stewart G.R, Cooke M., Ladva S. and Young D.B. (2003). Koch’s Bacillus – a look at the first isolate of Mycobacterium tuberculosis from a modern perspective. Microbiology 149, 3213-3220.

Stewart G.R, Robertson B.D. and Young D.B. (2003). Tuberculosis: A problem with persistence. Nature Reviews Microbiology 1, 97-105.

Stewart G.R., Stabler R., Mangan J., Hinds J., Laing K.G., Butcher P.D. and Young D.B.. (2002). The heat shock response of Mycobacterium tuberculosis: linking gene expression, immunology and pathogenesis. Comparative and Functional Genomics 3, 348-351.

Stewart G.R. Wernisch L., Stabler R., Hinds J., Mangan J., Young D.B. and Butcher P. (2002). Dissection of the heat shock response of Mycobacterium tuberculosis using mutants and microarrays. Microbiology 148, 3129-3138.

Young D.B. and Stewart G.R. (2002). Tuberculosis Vaccines. British Medical Bulletin 62, 73-86.

Bhatt A., Stewart G.R. and Kieser T. (2002). Transposition of Tn4560 of Streptomyces fradiae in Mycobacterium smegmatis. FEMS Microbiology Letters. 206, 241-246.

Stewart G.R., Snewin V.A., O Gaora P., Tormay P., Goyal M., Brown I.B. and Young D.B. (2001). Overexpression of heat shock proteins reduces survival of Mycobacterium tuberculosis in the chronic phase of infection. Nature Medicine 7, 732-737.

Dussurget O., Stewart G., Neyrolles O., Pescher P., Young D. and Marchal G. (2001). Role of Mycobacterium tuberculosis copper-zinc superoxide dismutase. Infection and Immunity 69, 529-533.

Stewart G.R., Perry R.N. and Wright D.J. (2001). Occurrence of dopamine in Panagrellus redivivus and Meloidogyne incognita. Nematology 3, 843-858.

Yeremeev V.Y., Stewart G.R., Neyrolles N., Skrabal K., Avdienko V.G., Apt A. and Young D.B. (2000). Deletion of the 19kDa antigen does not alter the protective efficacy of BCG. Tubercle and Lung Disease 80, 243-247.

Stewart G.R., Ehrt S., Riley L., Dale J., and McFadden J. (2000). Deletion of the putative antioxidant NoxR1 does not alter the virulence of Mycobacterium tuberculosis H37Rv. Tubercle and Lung Disease 80, 237-242.


Stewart G.R., Boussinesq M., Coulson T., Elson L., Nutman T., and Bradley J.E. (1999). Onchocerciasis modulates the immune response to mycobacterial antigens. Clinical and Experimental Immunology 117, 517-523.


Bradley J.E., Stewart G.R., Atogho B., and Boussinesq M. (1998). A cocktail of recombinant Onchocerca volvulus antigens for serological diagnosis can effectively predict the endemicity of onchocerciasis infection. American Journal of Tropical Medicine and Hygiene 59, 877-82.


Stewart, G.R.
, Zhu, Y.H., Parredes, W., Tree, T.M., Guderian, R., and Bradley, J.E. (1997). Novel cuticular collagen Ovcol-1 of Onchocerca volvulus is preferentially recognized by immunoglobulin G3 from putatively immune individuals. Infection and Immunity 65, 164-170.


Bradley, J.E., Elson, L., Tree, T.M., Stewart, G., Guderian, R., Calvopina, M., Paredes, W., Araujo, E., and Nutman, T.B. (1995). Resistance to Onchocerca volvulus - differential cellular and humoral responses to a recombinant antigen, ovmbp20/11. Journal of Infectious Diseases 172, 831-837.


Stewart, G.R., Elson, L., Araujo, E., Guderian, R., Nutman, T.B., and Bradley, J.E. (1995). Isotype-specific characterization of antibody responses to Onchocerca volvulus in putatively immune individuals. Parasite Immunology 17, 371-380.


Stewart, G.R.
, Perry, R.N., and Wright, D.J. (1994). Immunocytochemical studies on the occurrence of gamma-aminobutyric acid in the nervous system of the nematodes Panagrellus redivivus, Meloidogyne incognita and Globodera rostochiensis. Fundamental And Applied Nematology 17, 433-439.


Stewart, G.R.
, Perry, R.N., and Wright, D.J. (1993). Studies on the amphid specific glycoprotein gp32 in different life- cycle stages of Meloidogyne species. Parasitology 107, 573-578.


Stewart, G.R., Perry, R.N., Alexander, J., and Wright, D.J. (1993). A glycoprotein specific to the amphids of Meloidogyne species. Parasitology 106, 405-412.

Book Chapters

Stewart G.R. Papatheodorou I. and Young D.B. (2005) The stress response. In Mycobacterial Molecular Microbiology. T. Parrish (Horizon Scientific Press Ltd).

Snewin V., Stewart G. and Young D. (2000). Genetic Strategies for Vaccine Development. In Molecular Genetics of Mycobacteria. G.F. Hatfull and W.R. Jacobs, Jr. eds. (ASM Press, Washington , D.C.)


Stewart G.R.
and McFadden J. (1999). Recombination. In Mycobacteria: Molecular Biology and Virulence. C. Ratledge and Dale J, eds. (Blackwell Science).

Teaching

 

Graduate

BMS1010 Microbiology: Microbes and health 

BMS1007 Practical cell and molecular biology

BMS2029 Cellular Microbiology

BMS3050 Pathogenesis of bacterial and protozoal disease

 

Postgraduate

MSc Medical Microbiology

Module 4 (MMIM018) Microbial genetics and molecular biology

Module 6 (MMIM020) Immunology and pathogenesis of infectious disease

Departmental Duties

 

Infection and Immunity Research Theme Leader link

Director MSc Medical Microbiology Programmes (part-time programme link, full-time programme link)

Faculty Biological Safety Officer

Page Owner: bss3gs
Page Created: Tuesday 9 June 2009 15:47:05 by t00345
Last Modified: Friday 22 March 2013 09:36:16 by ha0009
Assembly date: Tue Mar 26 22:33:03 GMT 2013
Content ID: 6223
Revision: 25
Community: 1196