Radiation and Environmental Protection MSc

To learn more about Surrey and what we offer, sign up to a webinar.

Why Surrey?

Established in 1972, Surrey's MSc in Radiation and Environmental Protection is one of the UK’s longest running programmes in the field of nuclear science and its applications.

The programme is taught by a combination of world-leading nuclear physics academics and leading experts from the UK’s radiological protection and nuclear industries.

Programme overview

Our programme will give you a thorough grounding in the radiation and environmental protection aspects of nuclear physics.

This includes in-depth knowledge of radiation protection and showing you how the technical and organisational procedures of the discipline may be applied to the broader concept of environmental protection.

The substantial practical element of this programme enables you to relate taught material to real-world applications. Formal lectures are complemented with work in specialist radiation laboratories that were recently refurbished as part of a £1m upgrade to our facilities.

Here you will work with a wide range of radioactive sources and radiation detectors. There is also an extended project in the spring and an eleven-week MSc dissertation project in the summer.

Programme structure

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year. It consists of eight taught modules and a dissertation.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Research-led teaching

The programme material is taught by a combination of academics from the Department of Physics at Surrey and specialists provided by industrial partners. The Surrey academics are part of the Centre for Nuclear and Radiation Physics which houses the largest academic nuclear physics research group in the UK.

In addition to the formal lectures for taught modules, the programme provides a wide range of experimental hands-on training. This includes a nine-week radiation physics laboratory which takes place in the specialist radiation laboratories within the Department of Physics at the University of Surrey.

These were recently refurbished as part of a £1 million upgrade to the departmental teaching infrastructure. Within the Department, we also have a common room and a departmental library, which contains copies of earlier MSc dissertations.

As well as the laboratory training, you will also undertake a research project at the beginning of the Spring semester as a precursor to the eleven-week research dissertation project which makes up the final part of the MSc.

There are many opportunities for both the spring research project and summer dissertation project to be taken in an external industrial environment.


The programme has produced over 500 UK and overseas graduates, many of whom have gone on to well-paid positions in companies in the nuclear and radiation sectors. In the UK we need to decommission old reactors and build new ones to provide a low-carbon source of energy.

This, together with, for example, the importance of radioisotopes in fields such as medicine, means that the career prospects of our graduates are excellent.

Educational aims of the programme

The programme integrates the acquisition of core scientific knowledge with the development of key practical skills with a focus on professional career development within medical physics and radiation detection, and related industries.

The principle educational aims and outcomes of learning are to provide participants with advanced knowledge, practical skills and understanding applied to medical physics, radiation detection instrumentation, radiation and environmental practice in an industrial or medical context.

This is achieved by the development of the participants’ understanding of the underlying science and technology and by the participants gaining an understanding of the legal basis, practical implementation and organisational basis of medical physics and radiation measurement.

Programme learning outcomes

Knowledge and understanding

  • A systematic understanding of Radiation and Environmental Protection in an academic and professional context together with a critical awareness of current problems and / or new insights
  • A comprehensive understanding of techniques applicable to their own research project in Radiation and / or Environmental Protection
  • Originality in the application of knowledge, together with a practical understanding of radiation-based, experimental research projects
  • An ability to evaluate and objectively interpret experimental data pertaining to radiation detection
  • Familiarity with generic issues in management and safety and their application to Radiation and Environmental Protection in a professional context

Intellectual / cognitive skills

  • The ability to plan and execute under supervision, an experiment or investigation and to analyse critically the results and draw valid conclusions from them. Students should be able to evaluate the level of uncertainty in their results, understand the significance of uncertainty analysis and be able to compare these results with expected outcomes, theoretical predictions and/or with published data. Graduates should be able to evaluate the significance of their results in this context
  • The ability to evaluate critically current research and advanced scholarship in the discipline of radiation protection
  • The ability to deal with complex issues both systematically and creatively, make sound judgements in the absence of complete data, and communicate their conclusions clearly to specialist and non- specialist audiences

Professional practical skills

  • The ability to communicate complex scientific ideas, the conclusions of an experiment, investigation or project concisely, accurately and informatively
  • The ability to manage their own learning and to make use of appropriate texts, research articles and other primary sources
  • Responsibility for personal and professional development. Ability to use external mentors for personal / professional purposes

Key / transferable skills

  • Identify and resolve problems arising from lectures and experimental work
  • Make effective use of resources and interaction with others to enhance and motivate self-study
  • Make use of sources of material for development of learning and research such as journals, books and the internet
  • Take responsibility for personal and professional development

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Learn more about opportunities that might be available for this particular programme by using our student exchanges search tool.

Related programmes

Postgraduate (Taught)

Related departments/schools

Related research areas

Programme leader

Professor Zsolt Podolyak

Find out more

General enquiries:

+44 (0)1483 681 681

Admissions enquiries:



Programme facts

Type of programme:


Programme length:

  • Full-time: 12 months
  • Part-time: 24 months

Start date:

Sep 2017

Entry Requirements

A minimum 2.2 honours degree (or overseas equivalent) in the physical or environmental sciences, electronics or in a relevant engineering discipline.

View entry requirements by country

English language requirements

IELTS 6.5 overall, 6.0 in each component (or equivalent)

We offer intensive English language pre-sessional courses, designed to take you to the level of English ability and skill required for your studies here.


Study mode Start date UK/EU fees Overseas fees
Full-time Sep 2017 £9,500 £19,000
Part-time Sep 2017 £4,800 £9,500

Please note these fees are for the academic year 2017/2018 only. Annual fees will rise by four per cent (rounded up to the nearest £100) for each year of study.

A complete list of all fees for our Masters Programmes


Discounts for Surrey graduates

Thinking of continuing your education at Surrey? As an alumnus of Surrey you may be eligible for a ten per cent discount on our taught Masters programme fees. Learn more.

For more details

Admissions Information

Our Admissions Policy provides the basis for admissions practice across the University and gives a framework for how we encourage, consider applications and admit students.

Further information for applicants

Postgraduate Study Advice

Steps to Postgraduate Study is an official, independent guide for anyone considering a taught postgraduate course. The guide is produced by the Higher Education Funding Council for England (HEFCE), the Higher Education Funding Council for Wales, the Scottish Funding Council and the Department for Employment and Learning, Northern Ireland.

Find out more


Modules listed are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.