
A General Approach to the Solution of Nonlinear

Rational Expectations Models

Andrew P. Blake�

National Institute of Economic and Social Research

and

Richard G. Pierse

Department of Economics, University of Surrey

June 15, 2000

Abstract

A general method for the solution of rational expectations models is

described. This focuses on the role of ordering rather than any partic-

ular algorithm, such as Gauss-Seidel or Newton, considering many ap-

proaches that have been previously proposed and showing where they

�t into an overall general scheme. Each speci�c method is described by

use of an algorithmic language built into WinSolve, a general nonlinear

model solution program. Using this language a variety of methods can

be easily compared.

Keywords: Nonlinear rational expectations models; solution

JEL classi�cation: C50; C61; C63; C88

E-mail: ablake@niesr.ac.uk

Tel.: +44-20-7654-1924; Fax: +44-20-7654-1900

E-mail: r.pierse@surrey.ac.uk

Tel.: +44-1483-876953; Fax: +44-1483-303775

1 Introduction

In this paper a general approach to the solution of nonlinear rational expec-

tations models is described which encompasses many previously proposed

methods as special cases. This approach focuses on the role of ordering in

model solution and shows how various solution methods can be interpreted

as a natural outcome of adopting di�erent orderings. Solution methods are

�Corresponding author: NIESR, 2 Dean Trench Street, London, SW1P 3HE, UK.

1

represented using an appropriate algorithmic language. This language pro-

vides a consistent framework for considering the various methods and has

been implemented in WinSolve (Pierse (2000)), a Windows program for the

solution of general economic models.

Early iterative solution methods were suggested by Anderson (1979) and

Fair (1979), and �rst formalised by Fair and Taylor (1983). They adopted

approaches which are simple extensions of the �rst-order solution meth-

ods (such as Gauss-Seidel) used for time-recursive models without rational

expectations. Two key contributions by Stephen Hall (Hall (1985), Hall

(1986)) refocused the literature. In the �rst he had the important insight

that rational expectations solution should be interpreted as a `stacked' sys-

tem of n�T equations (where n is the number of equations and T the number

of time periods). The resulting large sparse system (say of the order of 20

thousand equations) can be iterated over simultaneously to solution. He

suggested that Gauss-Seidel could be applied to the whole system without

regard to time structure. In the second paper Hall suggested that some

equations might be better solved backwards rather than forwards if there is

better information about values at the terminal date rather than the initial

period. The real exchange rate is a perfect example of this, where the initial

value will jump but the �nal value is usually known.

Becker and R�ustem (1993), Judd (1998).

Recent contributions have concentrated on the use of system-wide New-

ton methods, developing the ideas in Hall (1985). These rely on derivative

information.1 Both La�argue (1990) and Armstrong, Black, Laxton, and

Rose (1998) suggest alternative ways in which the sparsity of the system

can be exploited to make feasible solving all the equations simultaneously.2

Some comparative analysis between various methods has been carried out by

Juillard, Laxton, McAdam, and Pioro (1998). In a recent survey McAdam

1Bischof, Carle, Corliss, Griewank, and Hovland (1992) have pioneered the use of a

parsing program which reads computer code and supplies additional code for the model

Jacobian. Alternatively, the derivatives can be evaluated by the compiler, at the same

time as evaluating the expressions, a technique known as automatic di�erentiation (see

Rall (1981)). WinSolve and other similar programs such as TROLL provide the derivatives

through the compiler in this way.
2Well established coding for handling sparsity includes the Harwell MA48 Fortran

library and the older MA28. See Du�, Erisman, and Reid (1986).

2

and Hughes Hallett (1999) compare available methods, noting that �rst or-

der iterative schemes often have an advantage in much larger systems.3

Another way of exploiting sparsity is to adopt some form of block-based

iteration. This has been widely used in practice in several di�erent guises.

It was common for multi-country models at least as far back as 1960s (see

Duesenberry, Fromm, Klein, and Kuh (1969)) and continues in use, e.g.

Faust and Tryon (1995). Individual blocks are solved one at a time and

then iterated over to full solution. With only a few non-zero interactions

between blocks this is an eÆcient strategy. Blocks are not necessarily lim-

ited to sets of equations in a single time period but may include groups of

equations stacked over all time periods. An example of such a stacked-time

block is the exchange rate system in Hall (1986). Solution of the individ-

ual blocks can be by any of the full system methods: �rst-order iterations

(Gauss-Seidel or the like), Newton-type methods or even, say, Krylov meth-

ods. Furthermore, the Fair-Taylor approach can be viewed as a block-based

approach, where the blocks are the equations in individual time periods and

the connections between them are the future values.4 Determining appro-

priate blocks for a model is an economic problem, related to the natural

ordering of equations. The National Institute domestic model (NiDEM)

for example uses nine separate blocks, each of which is determined by the

characteristics of the model.

Often solution methods seem more diverse than they really are, and naive

implementations of published algorithms are prone to failure. This paper is

3We should mention shooting methods, originally championed by Lipton, Poterba,

Sachs, and Summers (1982), which exploit the two-point boundary-value structure of the

problem. Equations with expectations are normalised on the maximum lead and solved

forwards from arbitrary start values; initial conditions are then updated by some (Newton-

type) rule and re-solved. Despite a variety of re�nements this approach is infrequently

used because models typically contain large unstable roots that cannot be solved forwards

even over short horizons. Press, Teukolsky, Vetterling, and Flannery (1992) suggest that

for the analogous di�erential equation problem a stacked-Newton approach is preferred.
4A successful variation on block-based approaches is to use incomplete iterations, pro-

posed by Fisher, Holly, and Hughes Hallett (1986) and Fisher and Hughes Hallett (1988).

Instead of iterating every individual block to full convergence, a partial solution is found,

either by limiting the number of iterations or setting loose convergence criteria. This

avoids wasting time achieving full convergence far from the �nal solution point. Although

it may not help the convergence of models which would otherwise fail, this suggestion can

often speed the iterative process considerably.

3

intended to to provide a bridge between published algorithms and practice.

These have diverged as model users, expert in their respective models and

software, have utilised `tricks' that can be used to improve solution times

and robustness. The approach described here is a formalization of the di�er-

ent suggestions by many authors over the past two decades. What our paper

has in common with other published methods is that it presents the various

iterative schemes algorithmically (although we choose to use an algorithmic

language); what it has in common with practice is the role for heuristics.

All technical details of underlying solution algorithms can be found in el-

ementary numerical analysis textbooks, with Press, Teukolsky, Vetterling,

and Flannery (1992) a particularly useful reference as it includes computer

code. An up-to-date survey outlining how Gauss-Seidel, Newton and so on

all work is McAdam and Hughes Hallett (1999).

The rest of the paper is organised as follows: Section 2 considers the

ordering problem in rational expectations models which is illustrated graph-

ically with a simple example. Section 3 describes a simple algorithmic lan-

guage that is used in Section 4 to set out a variety of solution methods

that have been proposed in the literature. It can be seen that all these

methods are related by their treatment of ordering. Section 5 presents some

conclusions.

2 Ordering rational expectations models

Equation ordering for models without rational expectations has mostly been

associated with the approach of Don and Gallo (1987). Alternatively, Gilli

(1992) and Gilli and Pauletto (1997) use graph theoretic methods to anal-

yse the problem and suggest that ordering can be used to improve both

the robustness and speed of model solution. There is an important role for

ordering in methods that use either blocks or �rst-order iterations or both,

but not for full system Newton methods where they make no di�erence. Re-

cently, Hughes Hallett and Piscitelli (1998) have suggested that ordering can

be used to speed model solution by some simple expedients. The approach

to ordering outlined here is a similar method for speeding solution.

4

2.1 A simple model and ordering problem

The general solution problem is usually illustrated using a linear model. A

linear constant coeÆcient model in �rst order form is written:

Acst = Alst�1 +Afs
e

t+1 + bt (1)

where the vector st of endogenous variables has as many `dummy' leads

and lags as required to make it into �rst-order form, and bt is a vector

of constants and initial and terminal conditions. In solving the model we

assume internally consistent expectations so that s
e

t+1 = st+1. Of course if

Af = 0 then the model has no rational expectations of future variables.

The solution problem is to �nd s, the stacked values of st from t =

1; : : : ; T such that:

2
66666666664

Ac �Af 0 � � � 0 0 0

�Al Ac �Af � � � 0 0 0

0 �Al Ac � � � 0 0 0
...

...
...

. . .
...

...
...

0 0 0 � � � Ac �Af 0

0 0 0 � � � �Al Ac �Af
0 0 0 � � � 0 �Al Ac

3
77777777775

2
66666666664

s1

s2

s3

...

sT�2

sT�1

sT

3
77777777775

=

2
66666666664

b1

b2

b3

...

bT�2

bT�1

bT

3
77777777775

(2)

which is compactly written as:

As = b: (3)

Any valid method can be used to solve the system simultaneously. These,

of course, include the stacked-Newton variants, the Hall (1985) full system

method or any other method which reduces the problem to a series of partial

solutions which can be iterated on to complete convergence. A very impor-

tant point to note is that here re-orderings of the matrix A are considered,

which will enable a much richer set of solution methods to be described or

implemented.

Later, a precise description of all the methods so far discussed will be

given, using an algorithmic language. For now, we concentrate on the im-

portance of ordering to our very general approach and begin by using a very

concrete example which has enough features to illustrate the method.

5

Consider the following simple three equation model:

xt = f(xe
t+1; yt�1) (4)

yt = g(xt; yt�1) (5)

zt = h(yt; zt�1) (6)

where f(�), g(�) and h(�) are (possibly linear) functions normalised on a

particular left-hand side variable. Consider a �ve period problem, so (2) for

this particular problem and one order of equations can be written:

s =
h
x1 y1 z1 x2 y2 z2 x3 y3 z3 x4 y4 z4 x5 y5 z5

i
0

:

This model can be considered essentially as linear, but here pictorial rather

than parametric representation is used as this makes the point very clearly.

The matrix A is represented by Figure 1. This is an incidence matrix where

each equation is represented by a single row with an e�ect from another

variable indicated by a non-white square. Note that in the middle a partic-

ular three 3� 3 contiguous blocks are outlined. These represent from left to

right the equivalents to the matrices �Al, Ac and �Af. SuÆcient initial

and terminal conditions for solution are assumed.

The di�erently shaded blocks have the following interpretations. Quar-

tered boxes represent the normalised variable in equations (4){(6). Black

boxes represent a lead of the endogenous variable, or indeed anything that

might appear in Af. The light grey boxes indicate either contemporaneous

or lagged values of any other variable that appear in a given equation, or

lagged `own' values.

This model has been chosen to have a number of salient features. Firstly,

as ordered, it is recursive except for the forward expectations term. This

would be untrue if, say, z were placed before y. Thus we have essentially

`sensibly' pre-ordered the model before considering the terms brought about

by Af being non-zero. In fact, this is rather implicit in any analysis of the

rational expectations problem, where iterative methods based on partial so-

lutions of some sort are often assuming at least some reasonable ordering for

each sub-problem. Secondly, the Fair and Taylor (1983) and other methods

can be illustrated by simple description, which is returned to below. Finally,

it will very nicely show the properties of re-ordering schemes.

6

Figure 1: Unordered model

The Fair-Taylor method and variants then passes through the model

ordered as in Figure 1 until convergence. For a more simultaneous model

it would loop over the 3 equations until convergence is achieved (or not in

the case of incomplete iterations). This is rather like separating the black

squares out into a single block.

However, consider the equations simultaneously. An obvious (although

not often used) strategy is the following. Perhaps a modeller should just

reorder the whole system, �nd the best ordering on the basis of all equations

simultaneously, and then simply go ahead and use full-system methods.

Better ordering should help iterative methods, but they are irrelevant for

Newton iterations, although modi�ed Newton methods will be a�ected. To

illustrate the outcome of this, the commonly used Don and Gallo (1987)

7

Figure 2: Don and Gallo (1987) ordered model

algorithm can be applied, to obtain the new ordering:

s =
h
x1 y1 y2 x3 y3 y4 x5 x2 x4 z1 y5 z2 z3 z4 z5

i
0

with the reordered A matrix illustrated in Figure 2.

Note that the z variables are now placed at the end, as they can easily

be. But for the x variables this procedure gives a fascinating result. It is no

longer the case that the leads (the black boxes) are all above the diagonal:

Two appear below the diagonal. This is because the algorithm orders the

x variable by �rst the odd period values and then the even. Therefore, the

time structure of the model has been completely altered. Although this

was done in a systematic way, it is diÆcult to rationalise with the economic

structure.

8

Figure 3: Model re-ordered by variable and then time

However, we wish to be rather more systematic. Consider the following

ordering:

s =
h
y1 z1 y2 z2 y3 z3 y4 z4 y5 z5 x1 x2 x3 x4 x5

i
0

where the x variables are taken out from the main block and placed at the

end. This is illustrated by an incidence matrix in Figure 3.

The pattern is emphasised by dividing the diagram into four. This

ordering naturally suggests a block based iteration, where now there is a

completely time-recursive block in the top left and a backwards in time re-

cursive block in the bottom right. They depend on each other through the

o�-diagonal terms.

This is nothing other than the trick of taking the exchange rate out and

solving it backwards. This therefore demonstrates the good sense in the

9

approach suggested by Hall (1986), but motivates it by ordering.

2.2 A synthesis of existing approaches

Figure 3 contains the key to the approach we suggest. Some variables are

more naturally a�ected by their own leads and lags than any other simul-

taneous variable. These are more properly iterated over �rst through time

and then across equations, as updating next (or last) periods value has more

impact than updating the concurrent value of another. Others are very nat-

urally a�ected in a nearly (or completely) time-recursive way once other

variables are treated as a separate block. These are properly iterated across

equations and then through time.

This suggests the following strategy. Take as one group variables which

are very forward-looking or depend closely on such variables: nominal vari-

ables such wages and prices might be an example. Take as another group

variables which do not have such dependencies: many real variables are like

this. Having separated these out, there are likely to be a large number of

pre- and post-recursive variables to those blocks that can be ordered. There

are often several distinct groups which can be naturally separated out. In

the National Institute model, NiDEM, there are three groups linked by other

recursive blocks.

Each block is then solved sequentially, taking into account dependencies

(the o�-diagonal elements in Figure 3). The variables in the blocks them-

selves are determined by what drives Figure 3: namely ordering. Each block

may be solved iteratively forwards or backwards, or by Newton per period

or stacked-Newton for every period but for a subset of variables. Each iter-

ative scheme can also be incomplete as long as a full convergence check is

done at the end.

This scheme is best understood by example. We show how methods

inter-relate in the next section.

3 An Algorithmic Description Language

To describe the algorithms a formal language is used. This is a simpli�ed

version of the algorithmic language developed in WinSolve to specify user-

10

de�ned solution algorithms or `DIY' �les.5 Commands and keywords in this

language are case insensitive and keywords can appear in any order.

The following conventions are used:

bold indicates a command or keyword that should be typed as shown

italic indicates a parameter or value to be supplied by the user

[] denotes an optional keyword or parameter which may be omitted

: : : (ellipsis) denotes input is a series of values as indicated

bname denotes a name to identify a block of equations

lname denotes a name to identify a loop

vname denotes the name of a variable in the current model

3.1 Commands

Commands are organised into three groups. These control the equation

block de�nitions, solution of the blocks of equations and the looping struc-

ture itself. As the language is recursive, loops can be nested to any depth

and quite arbitrary schemes can be implemented.

3.1.1 Equation block de�nition

The eqn command de�nes the equations that comprise a given block:

eqn bname vname1 : : : vnamek ;

where block bname is de�ned to consist of equations for variables vname1

to vnamek. These equations will be solved in the order that they are listed.

Equations may appear in more than one block.

3.1.2 Solution control

Equation blocks are solved using the following command:

solve bname [damp f]

This solves the block of equations bname with damp the solution damping

factor to be used for this equation block. Setting a damping factor will

5The acronym DIY stands for `Do It Yourself', which seems appropriate for something

user-de�ned.

11

override the globally set default, and can therefore also be used to remove

damping from a block.

3.1.3 Looping control

Three di�erent types of loops are supported. The �rst is the basic:

loop lname [alg type] [itmax n] [abs f] [pct g]

which starts an iteration loop named lname. It is terminated by matching

`end lname' command. The argument alg determines the solution method

for the loop which can be one of Jacobi, Gauss-Seidel (GS, the default),

Fast Gauss-Seidel (FGS) or Newton. The maximum number of iterations

is controlled by itmax and the two (absolute and percentage) convergence

criteria by abs and pct.

This command is used for controlling the number of times any of the

other commands is repeated, the termination of the loop being determined

by the convergence criteria. This command will generally be used in con-

junction with time looping, which is achieved by either

forw lname

which starts a time loop with lname running forwards in time and is termi-

nated by matching `end lname' command or

backw lname

which starts a time loop named lname running backwards in time. Again,

it is terminated by matching `end lname' command. Note that loops must

be nested correctly.

The ability to make up loops using these commands for di�erent blocks

of equations is the key to developing general solution methods using theory-

based iterations. Examples of these are given below.

3.2 Terminal conditions

The command term with no arguments updates the terminal conditions

independent of their position relative to equation block de�nitions. This

12

is a useful way of replicating other methods, although is rather against

the overall approach outlined. It can be used as an `all at once' call to

ensure that the most up-to-date information is used. WinSolve can instead

be operated so that the terminal conditions are updated in a `just-in-time'

fashion, where the special equation for data past the end is called when the

required data would otherwise be missing. In the current National Institute

model of the UK economy, NiDEM, the current treatment is that terminal

conditions are coded up explicitly for calling in the `just-in-time' fashion.

This is a convention rather than an option and is an important part of what

de�nes that solution method. In earlier incarnations of NiDEM, terminal

conditions were only updated by (equivalent) calls to term.

The updating of terminal conditions can make a substantial di�erence

to solution. Simply updating the terminal condition at some time during

the inner iteration can be markedly di�erent to the `just-in-time' approach.

4 Solution algorithms as DIY �les

WinSolve has several built-in solution methods in addition to DIY �les.

These include `canned' versions of the Fair and Taylor (1983) and La�argue

(1990). The available options for Fair and Taylor (1983) allow for Newton

inner iterations (as in Juillard, Laxton, McAdam, and Pioro (1998)) and

incomplete iterations (as in Fisher and Hughes Hallett (1988) and as a lim-

iting case Hall (1985)). These
exible implementations allow the user many

choices in, say, the treatment of terminal conditions or choice of Jacobi,

Gauss-Seidel, Fast-Gauss-Seidel or Newton iterative algorithms.

However, using the DIY �les it is possible to implement exactly as written

all the methods outlined above using the DIY language and many possible

variations. In particular, we can apply the method used by the National

Institute of Economic and Social Research to solve their UK model, NiDEM

2000. This method is a synthesis of several previous approaches, relying on

an analysis of `whole-model' ordering.

In this section we give examples of DIY �les that reproduce the Fair-

Taylor, Hall and Fisher-Hughes Hallett methods for a simple model. Fair-

Taylor is taken as the benchmark method and we indicate where the others

13

depart from it. The example model is purely illustrative but contains fea-

tures that can be exploited more generally.

The twelve `dummy' equations are initially split into �ve groups to repli-

cate the types of equation blocks commonly found. armas contains equations

that do not depend on any endogenous variables and can be solved before

the outer iteration loop. This typically consists of auto-regressive equations.

prerecs are pre-recursive equations and so, in each time period, can be solved

before the inner iteration loop. simul is the main simultaneous block. exch

is a block of equations that have some e�ect on variables in the simultane-

ous block. The equations in postrecs are post-recursive and so, in each time

period can be solved after the inner iteration loop. Finally, outputs contains

equations that do not feed back into the other equations at all and so can

be solved after the outer iteration loop. It is the triple prerecs, simul and

postrecs which will receive most attention in the generalised method.

The global damping factor must be set to unity as without it armas and

outputs will not solve correctly. The equations in the simul block are solved

with a damping factor of 0�7. The convention is followed that eqn state-

ments are grouped together at the end, and that indentation is used to aid

readability. To the left, the lines are numbered. This is particularly useful as

some di�erent methods require only minor modi�cation of individual lines.

4.1 The Fair and Taylor (1983) method

Here we outline how to recreate the Fair and Taylor (1983) solution using a

DIY �le. We create so-called Type I (inner loop) and Type II (outer loop)

iterations, as the need for Type III iterations is usually obviated by the use

of appropriate terminal conditions and experimentation with the terminal

date. The algorithm is shown in Table 1 and the equation de�nitions are

included in Table 2.

We omit the equation block de�nitions for convenience but retain the

same numbering. It is an important feature of the overall approach outlined

here that there is a close connection between the equation block de�nitions

and the `algorithm'. When considering other algorithms, additional equation

blocks will need to be de�ned.

14

1. WinSolve diy �le

2. forw armaloop

3. solve armas

4. end armaloop

5. loop outerloop itmax 300 pct .0001

6. term

7. forw mainloop

8. solve prerecs

9. loop innerloop

10. solve simul damp 0.7

11. solve exch

12. end innerloop

13. solve postrecs

14. end mainloop

15. end outerloop

16. forw outloop

17. solve outputs

18. end outloop

Table 1: Fair and Taylor (1983) algorithm.

15

19. eqn armas

20. Y10 Y2;

21. eqn prerecs

22. Y5 Y4;

23. eqn simul

24. Y3 Y6 Y8 Y11;

25. eqn exch

26. Y7;

27. eqn postrecs

28. Y1;

29. eqn outputs

30. Y9 Y12;

Table 2: Equation de�nitions (Version 1).

Solution relies on the loop outerloop which is simply a check that all

variables have converged. The forw loop mainloop iterates sequentially

through time with the solution over all equations which are fully solved out

by innerloop.

There is a question as to where is the best place to insert the call to

term, to update the terminal conditions. It could be in the forw loop

instead. This makes a number of redundant calls to term (i.e. where the

forecast horizon in individual equations is less than the number of periods-

to-go in the loop), but it mimics the just-in-time approach. In a number

of Fair-Taylor implementations we have seen, the equivalent calls to term

are as in Table 1. We prefer the just-in-time approach, and therefore would

remove the call to term and set just-in-time terminal conditions as a global

option.

4.2 The Stacked-Newton approach

The algorithmic language allows us to recreate the systems approach of

La�argue (1990). With such a system approach, a `just-in-time' terminal

condition becomes an extra equation to be determined simultaneously. In

Table 3, although the pre-recursive and post-recursive variables have been

16

1. WinSolve diy �le

2. forw armaloop

3. solve armas

4. end armaloop

5. loop newtonloop alg newton itmax 30 pct .0001

6. solve prerecs

7. solve simul

8. solve exch

9. solve postrecs

10. end newtonloop

11. forw outloop

12. solve outputs

13. end outloop

Table 3: The Stacked-Newton algorithm.

separated out,6 all three blocks are looped over together. The number of

iterations is set to 30: This is many less than the Gauss-Seidel type loops

in Table 1, but convergence of derivative methods will normally be faster.

The block structure is irrelevant except for the variables contained in armas

and outputs.

4.3 The Fisher and Hughes Hallett (1988) method

Fisher and Hughes Hallett (1988) noted that the solution of inner loops to

full convergence can be extremely wasteful when far from a solution. They

suggested that partial solution, dictated either by a maximum number of

inner iterations or a loose convergence criteria (or both), can substantially

reduce the number of iterations required in the early part of the solution

without necessarily increasing the number of outer iterations. In the DIY

�le this is achieved by judicious choice of the itmax or pct parameters in

the inner loop solve command (line 9 in Table 1). This turns out to be a

very e�ective strategy for speeding up solution, and incomplete iterations

between blocks should always be experimented with for any block-based

scheme. This is probably the most important practical advance in nonlinear

6The WinSolve implementation does this automatically.

17

5. loop outerloop itmax 300 pct .0001

6. term

7. forw mainloop

8. solve prerecs

9. loop innerloop itmax 10 pct .01

10. solve simul damp 0.7

11. solve exch

12. end innerloop

13. solve postrecs

14. end mainloop

15. end outerloop

Table 4: Fisher and Hughes Hallett (1988) algorithm.

RE model solution.

4.4 The Hall (1985) method

As noted above, Hall (1985) suggested that the Fair and Taylor (1983)

method did not take suÆcient account of the simultaneous structure of the

rational expectations solution problem. Looping vertically through the equa-

tions stacked by time period simply treats the whole system as a single set

of dynamic equations to be solved subject to initial and terminal conditions.

It is this simultaneous approach that makes the so-called `stacked-Newton'

methods attractive.

This method requires very little modi�cation to the solution procedure

suggested above. Indeed, in the WinSolve DIY �le, only one line needs to

be altered, and then only by adding an additional option. In line 9 of Table

1 we could impose a maximum iteration limit of 1. Note that this performs

the stacking procedure implicitly given the equation ordering in the equation

blocks.

In Table 5 we show the relevant part of the code which has been simpli�ed

by simply removing the loop innerloop.

18

5. loop outerloop itmax 300 pct .0001

6. term

7. forw mainloop

8. solve prerecs

9. solve simul damp 0.7

10. solve exch

11. solve postrecs

12. end mainloop

13. end outerloop

Table 5: Hall (1985) algorithm.

4.5 Hall (1986) method

What if we had identi�ed a variable that could be naturally solved back-

wards? Hall suggested that when the information about a variable is its

terminal condition rather than its initial condition, then it makes sense to

solve that variable backwards in time. In our model, the equation block exch

has been included to identify such variables which will be solved in a sepa-

rate loop. Table 6 includes the backw loop. In our example, there is only a

single equation in the block so that it does not need to be solved iteratively

and the loop exchloop is strictly redundant. More generally, iteration over

the block would be necessary. Iteration is over time before equations, just

as would be appropriate for Figure 3. The method can easily be generalised

to allow for incomplete iterations between blocks of equations.

4.6 Block-stacked-Newton algorithm

Blocks can equally well be solved by Newton rather than �rst-order meth-

ods.Table 7 shows an inner loop solved by Newton and the exch equation

block is solved by stacked-Newton, all periods at once.

The advantage here is that the very forward-looking variables can be

solved using stacked-Newton but the others by cheaper �rst-order methods.

This reduces the size of the system considerably and, if iteration between

blocks is cheap, then this might be an exceptionally cheap scheme.

19

5. loop outerloop itmax 300 pct .0001

6. term

7. forw mainloop

8. solve prerecs

9. loop innerloop

10. solve simul damp 0.7

11. end innerloop

12. solve postrecs

13. end mainloop

14. loop exchloop

15. backw backloop

16. solve exch

17. end backloop

18. end exchloop

19. end outerloop

Table 6: Hall (1986) algorithm.

5. loop outerloop itmax 100 pct .0001

6. forw mainloop

7. solve prerecs

8. loop innerloop alg newton

9. solve simul

10. end innerloop

11. solve postrecs

12. end mainloop

13. loop exchloop alg newton

14. solve exch

15. end exchloop

16. end outerloop

Table 7: A block-stacked-Newton algorithm.

20

4.7 The NIESR NiDEM 2000 solution scheme

Finally, we sketch the solution scheme used for the National Institute do-

mestic model NiDEM 2000. Table 9 shows the blocks used. The main blocks

are: MODEL (mainly real variables), REVREX (prices, wages and the ex-

change rate) and REVEQ (�nancial variables and equity prices). These are

linked by a series of other blocks. There is also a London submodel.

Table 8 illustrates the DIY �le. It demonstrates a mixture of blocks

solved over time before across equations (REVREX and REVEQ) and in

the standard way (MODEL), with incomplete iteration and varying damp-

ing factors. This sophisticated scheme relies on a model ordered by choice

of variables in each block. It is a very robust solution scheme, re
ecting

considerable experience with the model.

21

1. WinSolve diy �le

2. forw armaloop

3. solve ARMAS damp 1

4. end armaloop

5. loop outer itmax 500

6. forw modeltime

7. solve PREREC

8. loop modelloop itmax 10

9. solve MODEL

10. end modelloop

11. solve POSMOD

12. end modeltime

13. loop pwexloop itmax 500

14. forw pwextime

15. solve REVREX

16. end pwextime

17. end pwexloop

18. forw postpw

19. solve POSPW

20. end postpw

21. loop eqloop itmax 10

22. forw eqtime

23. solve REVEQ

24. end eqtime

25. end eqloop

26. end outer

27. forw outtime

28. solve POSOUT damp 1

29. end outtime

30. forw lontime

31. loop lonloop

32. solve LONDON

33. end lonloop

34. end lontime

Table 8: NIESR NiDEM 2000 forecasting model.

22

Block name No. of variables Any damping

ARMAS 56 No

PREREC 20 No

MODEL 156 Yes

POSMOD 13 No

REVREX 126 Yes

POSPW 49 No

REVEQ 41 Yes

POSOUT 24 No

LONDON 65 No

Table 9: Block de�nitions

5 Conclusions

In this paper, we have stressed the importance of the ordering problem as a

way of viewing di�erent solution algorithms and have developed a framework

in which existing algorithms can be described and new ones developed.7 In

practice, a large number of models, including NiDEM and models at the

Bank of England and the London Business school, are solved using an eclec-

tic approach involving an amalgam of the standard algorithms, taking into

account knowledge of the economic structure of the model. These methods

have in general proved very successful although they are rarely documented

and are often hardcoded into software, making them diÆcult to replicate

and evaluate. The algorithmic language described here represents a step

towards making the algorithms more transparent.

The knowledge required to implement the sort of solution procedure

outlined in Table 8 is simply a matter of the relevant economics. The blocks

are determined, for example, by whether the variables are forward looking

and closely related or not. In reality the very organisation process that goes

along with building a model is likely to reveal such orderings to the modeller.

Finally, WinSolve provides a convenient framework for analysing solution

methods. McAdam and Hughes Hallett (1999) suggest how comparisons

between methods should be made and in particular stress the importance of

7We are currently investigating the usefulness of partial stacked Newton solution in

NiDEM.

23

a common modelling framework. Given that models are often solved using

tricks known only to the modeller, the WinSolve provided DIY �les allows

exact comparisons to be made.

References

Anderson, P. (1979): \Rational Expectations Forecasts from Non-

Rational Models," Journal of Monetary Economics, 67(1), 101{115.

Armstrong, J., R. Black, D. Laxton, and D. Rose (1998): \A Robust

Method for Simulating Forward-Looking Models," Journal of Economic

Dynamics and Control, 22(4), 489{501.

Becker, R., and B. R�ustem (1993): \Algorithms for Solving Nonlinear

Dynamic Decision Models," Annals of Operations Research, 44, 117{142.

Bischof, C., A. Carle, G. Corliss, A. Griewank, and P. Hovland

(1992): \ADIFOR: Generating Derivative Codes from Fortran Programs,"

Scienti�c Programming, 1(1), 11{29.

Don, F., and G. Gallo (1987): \Solving Large Sparse Systems of Equa-

tions in Econometric Models," Journal of Forecasting, 6, 167{180.

Duesenberry, J., G. Fromm, L. Klein, and E. Kuh (1969): The Brook-

ings Model: Some Further Results. North-Holland Publishing Company,

Amsterdam.

Duff, I., A. Erisman, and J. Reid (1986): Direct Methods for Sparse

Matrices. Oxford University Press.

Fair, R., and J. Taylor (1983): \Solution and Maximum Likelihood

Estimation of Dynamic Rational Expectations Models," Econometrica,

51(4), 1169{1185.

Fair, R. C. (1979): \An Analysis of a Macro-Econometric Model with Ra-

tional Expectations in the Bond and Stock Markets," American Economic

Review, 69(4), 539{552.

Faust, J., and R. Tryon (1995): \A Distributed Block Approach to Solv-

ing Near-Block-Diagonal Systems with an Application to a Large Macro-

econometric Model," Computational Economics, 8(4), 303{316.

Fisher, P., S. Holly, and A. Hughes Hallett (1986): \EÆcient So-

lution Techniques for Nonlinear Rational Expectations Models," Journal

of Economic Dynamics and Control, 10(1/2), 139{145.

24

Fisher, P., and A. Hughes Hallett (1988): \EÆcient Solution Tech-

niques for Linear and Nonlinear Rational Expectations Models," Journal

of Economic Dynamics and Control, 12(4), 635{657.

Gilli, M. (1992): \Causal Ordering and Beyond," International Economic

Review, 33(4), 957{971.

Gilli, M., and G. Pauletto (1997): \Sparse Direct Methods for Model

Simulation," Journal of Economic Dynamics and Control, 21(6), 1093{

1111.

Hall, S. (1985): \On the Solution of Large Economic Models with Consis-

tent Expectations," Bulletin of Economic Research, 37(2), 157{161.

(1986): \Time Inconsistency and Optimal Policy Formulation in

the Presence of Rational Expectations," Journal of Economic Dynamics

and Control, 10(1/2), 323{326.

Hughes Hallett, A., and L. Piscitelli (1998): \Simple Reordering

Techniques for Expanding the Convergence Radius of First-Order Itera-

tive Techniques," Journal of Economic Dynamics and Control, 22(8/9),

1319{1333.

Judd, K. L. (1998): Numerical Methods in Economics. The MIT Press.

Juillard, M., D. Laxton, P. McAdam, and H. Pioro (1998): \An Al-

gorithm Competition: First-Order Iterations versus Newton-Based Tech-

niques," Journal of Economic Dynamics and Control, 22(8/9), 1291{1318.

Laffargue, J.-P. (1990): \R�esolution d'un Mod�ele Macro�economique

avec Anticipations Rationnelles," Annales D'Economie et de Statistique,

17(Janvier/Mars), 97{119.

Lipton, D., J. Poterba, J. Sachs, and L. Summers (1982): \Multiple

Shooting in Rational Expectations Models," Econometrica, 50(5), 1329{

1333.

McAdam, P., and A. Hughes Hallett (1999): \Nonlinearity, Computa-

tional Complexity and Macroeconomic Modelling," Journal of Economic

Surveys, 13(5), 577{618.

Pierse, R. G. (2000): WinSolve Version 3.0. Program and documentation

available from http://www.econ.surrey.ac.uk/winsolve/.

Press, W., S. Teukolsky, W. Vetterling, and B. Flannery (1992):

Numerical Recipes in C: The Art of Scienti�c Computing. Cambridge

University Press, second edn.

25

Rall, L. (1981): Automatic Di�erentiation: Techniques and Applications.

Springer Verlag, Lecture Notes in Computer Science, Volume 120.

26

