THE TEMPERED ORDERED PROBIT (TOP) MODEL WITH AN APPLICATION TO MONETARY POLICY

Presenter: Christopher Spencer

William Greene, Max Gillman, Mark N. Harris and Christopher Spencer

NYU, University of Missouri-St Louis, Curtin University and Loughborough University, U.K.

October 2014: Paul’s Festschrift@Surrey
Recent rise in development and application of so-called inflated models
Recent rise in development and application of so-called inflated models

Arise from empirical regularity that often a large proportion of empirical observations fall into one particular choice category
Introduction and Background

- Recent rise in development and application of so-called *inflated* models
- Arise from empirical regularity that often a large proportion of empirical observations fall into one particular choice category
 - this (these) category(ies) appear ‘inflated’
Recent rise in development and application of so-called \textit{inflated} models

Arise from empirical regularity that often a large proportion of empirical observations fall into one particular choice category

- this (these) category(ies) appear ‘inflated’

Here we add to this literature by proposing the \textit{Tempered Ordered Probit} (TOP) model →
Introduction and Background

- Recent rise in development and application of so-called inflated models
- Arise from empirical regularity that often a large proportion of empirical observations fall into one particular choice category
 - this (these) category(ies) appear ‘inflated’
- Here we add to this literature by proposing the Tempered Ordered Probit (TOP) model
 - explicitly accounts for an (choice) “inflation”
Introduction and Background

- Recent rise in development and application of so-called *inflated* models
- Arise from empirical regularity that often a large proportion of empirical observations fall into one particular choice category
 - this (these) category(ies) appear ‘inflated’
- Here we add to this literature by proposing the *Tempered Ordered Probit* (TOP) model
 - explicitly accounts for an (choice) “inflation”
 - is extremely flexible relative to more standard models
Introduction and Background

- Recent rise in development and application of so-called *inflated* models
- Arise from empirical regularity that often a large proportion of empirical observations fall into one particular choice category
 - this (these) category(ies) appear ‘inflated’
- Here we add to this literature by proposing the *Tempered Ordered Probit* (TOP) model →
 - explicitly accounts for an (choice) “inflation”
 - is extremely flexible relative to more standard models
 - provides a specification test of more standard *inflated* models
Discrete Choice Approaches to Monetary Policy

- With our data, as with most others, we essentially only “ever” see votes for ±25, ±50 etc.
Discrete Choice Approaches to Monetary Policy

- With our data, as with most others, we essentially only “ever” see votes for ±25, ±50 etc.→
 - most empirical applications model these as ordered, discrete choice outcome
Discrete Choice Approaches to Monetary Policy

- With our data, as with most others, we essentially only “ever” see votes for ±25, ±50 etc.
 - most empirical applications model these as ordered, discrete choice outcome
 - often just up/no-change/down
Discrete Choice Approaches to Monetary Policy

- With our data, as with most others, we essentially only “ever” see votes for ±25, ±50 etc. →
 - most empirical applications model these as ordered, discrete choice outcome
 - often just up/no-change/down
 - ordered probit (OP) models therefore dominate
Discrete Choice Approaches to Monetary Policy

• With our data, as with most others, we essentially only “ever” see votes for ±25, ±50 etc. →
 • most empirical applications model these as ordered, discrete choice outcome
 • often just up/no-change/down
 • ordered probit (OP) models therefore dominate

• Gerlach (2007); uses an OP to model short term-interest rate setting behavior of the ECB
Discrete Choice Approaches to Monetary Policy

- With our data, as with most others, we essentially only “ever” see votes for ±25, ±50 etc. →
 - most empirical applications model these as ordered, discrete choice outcome
 - often just up/no-change/down
 - ordered probit (OP) models therefore dominate

- Gerlach (2007); uses an OP to model short term-interest rate setting behavior of the ECB
 - (similar to us) uses the ECB's *Monthly Bulletin* to yield explanatory variables
Discrete Choice Approaches to Monetary Policy

- With our data, as with most others, we essentially only “ever” see votes for ±25, ±50 etc.
 - most empirical applications model these as ordered, discrete choice outcome
 - often just up/no-change/down
 - ordered probit (OP) models therefore dominate

- Gerlach (2007); uses an OP to model short term-interest rate setting behavior of the ECB
 - (similar to us) uses the ECB’s *Monthly Bulletin* to yield explanatory variables

- Lapp et al., (2003); similarly use OP models and real-time data for FOMC meetings under the Volcker and Greenspan era
Discrete Choice Approaches to Monetary Policy

- With our data, as with most others, we essentially only “ever” see votes for ±25, ±50 etc. →
 - most empirical applications model these as ordered, discrete choice outcome
 - often just up/no-change/down
 - ordered probit (OP) models therefore dominate

- Gerlach (2007); uses an OP to model short term-interest rate setting behavior of the ECB
 - (similar to us) uses the ECB's *Monthly Bulletin* to yield explanatory variables

- Lapp et al., (2003); similarly use OP models and real-time data for FOMC meetings under the Volcker and Greenspan era

- Xiong (2012); analyses the ‘policy stance’ of the People’s Bank of China (PBC), of “looser/no-change/tighter” with an OP
Discrete Choice Approaches to Monetary Policy

- With our data, as with most others, we essentially only “ever” see votes for ±25, ±50 etc. →
 - most empirical applications model these as ordered, discrete choice outcome
 - often just up/no-change/down
 - ordered probit (OP) models therefore dominate

- Gerlach (2007); uses an OP to model short term-interest rate setting behavior of the ECB
 - (similar to us) uses the ECB's *Monthly Bulletin* to yield explanatory variables

- Lapp et al., (2003); similarly use OP models and real-time data for FOMC meetings under the Volcker and Greenspan era

- Xiong (2012); analyses the ‘policy stance’ of the People’s Bank of China (PBC), of “looser/no-change/tighter” with an OP

- And so on...
Bank of England’s Monetary Policy Committee

- We work with unit level voting preferences of MPC members
Bank of England’s Monetary Policy Committee

- We work with unit level voting preferences of MPC members
- Since 1997 the BoE has had operational responsibility for UK monetary policy. Objectives:
Bank of England’s Monetary Policy Committee

- We work with unit level voting preferences of MPC members
- Since 1997 the BoE has had operational responsibility for UK monetary policy. Objectives:

1. Primary: price stability of a government-set inflation target (originally 2.5%)
Bank of England’s Monetary Policy Committee

- We work with unit level voting preferences of MPC members
- Since 1997 the BoE has had operational responsibility for UK monetary policy. Objectives:

1. Primary: price stability of a government-set inflation target (originally 2.5%)
2. Secondary: to support the economic policy of Her Majesty’s Government, regarding growth (and employment)
Bank of England’s Monetary Policy Committee

- We work with unit level voting preferences of MPC members
- Since 1997 the BoE has had operational responsibility for UK monetary policy. Objectives:

1. Primary: price stability of a government-set inflation target (originally 2.5%)
2. Secondary: to support the economic policy of Her Majesty’s Government, regarding growth (and employment)

- Looks pretty much like a Taylor-rule!!!
Bank of England’s Monetary Policy Committee

- We work with unit level voting preferences of MPC members
- Since 1997 the BoE has had operational responsibility for UK monetary policy. Objectives:
 1. Primary: price stability of a government-set inflation target (originally 2.5%)
 2. Secondary: to support the economic policy of Her Majesty’s Government, regarding growth (and employment)
- Looks pretty much like a Taylor-rule!!!
- MPC has 9 members: ‘insiders’ and ‘outsiders’:
Bank of England’s Monetary Policy Committee

• We work with unit level voting preferences of MPC members
• Since 1997 the BoE has had operational responsibility for UK monetary policy. Objectives:

1. Primary: price stability of a government-set inflation target (originally 2.5%)
2. Secondary: to support the economic policy of Her Majesty’s Government, regarding growth (and employment)

• Looks pretty much like a Taylor-rule!!!
• MPC has 9 members: ‘insiders’ and ‘outsiders’:
 • the Governor + 4 Bank staff chosen by the Governor
We work with unit level voting preferences of MPC members
Since 1997 the BoE has had operational responsibility for UK monetary policy. Objectives:

1. Primary: price stability of a government-set inflation target (originally 2.5%)
2. Secondary: to support the economic policy of Her Majesty’s Government, regarding growth (and employment)

Looks pretty much like a Taylor-rule!!!

MPC has 9 members: ‘insiders’ and ‘outsiders’:
- the Governor + 4 Bank staff chosen by the Governor
- 4 outsiders: appointed by the Chancellor - usually from academia and the private sector
Bank of England’s Monetary Policy Committee

- We work with unit level voting preferences of MPC members.
- Since 1997 the BoE has had operational responsibility for UK monetary policy. Objectives:
 1. Primary: price stability of a government-set inflation target (originally 2.5%)
 2. Secondary: to support the economic policy of Her Majesty’s Government, regarding growth (and employment)
- Looks pretty much like a Taylor-rule!!!
- MPC has 9 members: ‘insiders’ and ‘outsiders’:
 - the Governor + 4 Bank staff chosen by the Governor
 - 4 outsiders: appointed by the Chancellor - usually from academia and the private sector
- Interest rate decision taken on first Thursday of each month:
Bank of England’s Monetary Policy Committee

- We work with unit level voting preferences of MPC members
- Since 1997 the BoE has had operational responsibility for UK monetary policy. Objectives:
 1. Primary: price stability of a government-set inflation target (originally 2.5%)
 2. Secondary: to support the economic policy of Her Majesty’s Government, regarding growth (and employment)
- Looks pretty much like a Taylor-rule!!!
- MPC has 9 members: ‘insiders’ and ‘outsiders’:
 - the Governor + 4 Bank staff chosen by the Governor
 - 4 outsiders: appointed by the Chancellor - usually from academia and the private sector
- Interest rate decision taken on first Thursday of each month:
 - Governor tables a rate motion; members vote; majority rules; Governor has a casting vote in the event of a split decision
Empirical Approach

- Following much of the recent empirical literature we take a discrete choice approach:
Empirical Approach

- Following much of the recent empirical literature we take a discrete choice approach:
 - re-classify the choices faced by members of the MPC into tighten, loosen or leave interest rates unchanged
Empirical Approach

• Following much of the recent empirical literature we take a discrete choice approach:
 • re-classify the choices faced by members of the MPC into tighten, loosen or leave interest rates unchanged

• Turning a continuous variable into a discrete one, is in line with notions of stepping:
Empirical Approach

- Following much of the recent empirical literature we take a discrete choice approach:
 - re-classify the choices faced by members of the MPC into tighten, loosen or leave interest rates unchanged
- Turning a continuous variable into a discrete one, is in line with notions of stepping:
 - i.e., the ‘options’ available to a member are ±25, ±50 etc., basis points (not ‘any’ rate level)
Empirical Approach

- Following much of the recent empirical literature we take a discrete choice approach:
 - re-classify the choices faced by members of the MPC into tighten, loosen or leave interest rates unchanged

- Turning a continuous variable into a discrete one, is in line with notions of stepping:
 - *i.e.*, the ‘options’ available to a member are ±25, ±50 *etc.*, basis points (not ‘any’ rate level)
 - bulk of the votes were for changes of ±25 basis points, such that we effectively lose nothing by modeling the discretised variable
Empirical Approach

- Following much of the recent empirical literature we take a discrete choice approach:
 - re-classify the choices faced by members of the MPC into *tighten*, *loosen* or leave interest rates *unchanged*

- Turning a continuous variable into a discrete one, is in line with notions of stepping:
 - *i.e.*, the ‘options’ available to a member are ±25, ±50 etc., basis points (not ‘any’ rate level)
 - bulk of the votes were for changes of ±25 basis points, such that we effectively lose nothing by modeling the discretised variable

- Let’s have a look at the raw data...
The Repo-Rate

- Bank of England’s *repo-rate* post-independence →
The Repo-Rate

- Bank of England’s *repo-rate* post-independence →

![Diagram showing UK Policy Rate, CPI Inflation, RPIX Inflation, CPI Target, and RPIX Target over time.](image-url)
Empirical Approach

<table>
<thead>
<tr>
<th></th>
<th>All members</th>
<th>Insiders</th>
<th>Outsiders</th>
</tr>
</thead>
<tbody>
<tr>
<td>Down</td>
<td>0.19</td>
<td>0.14</td>
<td>0.24</td>
</tr>
<tr>
<td>No change</td>
<td>0.67</td>
<td>0.72</td>
<td>0.61</td>
</tr>
<tr>
<td>Up</td>
<td>0.15</td>
<td>0.14</td>
<td>0.16</td>
</tr>
</tbody>
</table>

Empirical regularity of no-change clearly evident!:

Over 3 bigger than 'up' or 'down'.

Some (raw) evidence of insiders and outsiders acting differently (e.g., outsiders seem to have a bigger preference for tightening...).
Empirical Approach

- Empirical regularity of no-change clearly evident!

Some (raw) evidence of insiders and outsiders acting differently (e.g., outsiders seem to have a bigger preference for tightening...)
Empirical regularity of no-change clearly evident!:
- over 3× bigger than ‘up’ or ‘down’
Empirical Approach

Empirical regularity of no-change clearly evident!:

- over 3× bigger than ‘up’ or ‘down’

Some (raw) evidence of insiders and outsiders acting differently (e.g., outsiders seem to have a bigger preference for tightening...)

Empirical Approach: Middle Inflated Models

- Brooks, Harris and Spencer, (2012) address the clear “excess” of no-change observations here →
Empirical Approach: Middle Inflated Models

- Brooks, Harris and Spencer, (2012) address the clear “excess” of no-change observations here →
- Assume an underlying latent variable q^*, representing propensity to choose the inflated category over any other →
Empirical Approach: Middle Inflated Models

- Brooks, Harris and Spencer, (2012) address the clear “excess” of no-change observations here →
- Assume an underlying latent variable q^*, representing propensity to choose the inflated category over any other →
- Translates into an “observed” binary outcome ($q = 0, q = 1$)
Empirical Approach: Middle Inflated Models

- Brooks, Harris and Spencer, (2012) address the clear “excess” of no-change observations here →
- Assume an underlying latent variable q^*, representing propensity to choose the inflated category over any other →
- Translates into an “observed” binary outcome ($q = 0, q = 1$)
- q^* can be labelled an “inertia” (or “splitting”) equation, and is assumed to be driven by covariates of the form
Empirical Approach: Middle Inflated Models

- Brooks, Harris and Spencer, (2012) address the clear “excess” of no-change observations here →
- Assume an underlying latent variable q^*, representing propensity to choose the inflated category over any other →
- Translates into an “observed” binary outcome ($q = 0, q = 1$)
- q^* can be labelled an “inertia” (or “splitting”) equation, and is assumed to be driven by covariates of the form

$$q^* = x'_s \beta_s + \varepsilon_s.$$
Empirical Approach: Middle Inflated Models

- Brooks, Harris and Spencer, (2012) address the clear “excess” of no-change observations here →
- Assume an underlying latent variable q^*, representing propensity to choose the inflated category over any other →
- Translates into an “observed” binary outcome ($q = 0, q = 1$)
- q^* can be labelled an “inertia” (or “splitting”) equation, and is assumed to be driven by covariates of the form

$$ q^* = \mathbf{x}'_s \beta_s + \varepsilon_s. $$

- A two-regime scenario arises:
Empirical Approach: Middle Inflated Models

- Brooks, Harris and Spencer, (2012) address the clear “excess” of no-change observations here →
- Assume an underlying latent variable q^*, representing propensity to choose the inflated category over any other →
- Translates into an “observed” binary outcome ($q = 0, q = 1$)
- q^* can be labelled an “inertia” (or “splitting”) equation, and is assumed to be driven by covariates of the form

$$q^* = x'_s \beta_s + \varepsilon_s.$$

- A two-regime scenario arises:
 - for observations in regime $q = 0$, the inflated (no-change) outcome is observed
Empirical Approach: Middle Inflated Models

- Brooks, Harris and Spencer, (2012) address the clear “excess” of no-change observations here →
- Assume an underlying latent variable q^*, representing propensity to choose the inflated category over any other →
- Translates into an “observed” binary outcome $(q = 0, q = 1)$
- q^* can be labelled an “inertia” (or “splitting”) equation, and is assumed to be driven by covariates of the form
 \[
 q^* = x_s' \beta_s + \varepsilon_s.
 \]
- A two-regime scenario arises:
 - for observations in regime $q = 0$, the inflated (no-change) outcome is observed
 - for those in $q = 1$ any of the possible outcomes in the choice set $\{-1, 0, 1\}$ which includes the outcome with an excess of observations are observed
Empirical Approach: Middle Inflated Models

- Brooks, Harris and Spencer, (2012) address the clear “excess” of no-change observations here →
- Assume an underlying latent variable q^*, representing propensity to choose the inflated category over any other →
- Translates into an “observed” binary outcome ($q = 0, q = 1$)
- q^* can be labelled an “inertia” (or “splitting”) equation, and is assumed to be driven by covariates of the form

 $$q^* = x'_s \beta_s + \epsilon_s.$$

- A two-regime scenario arises:
 - for observations in regime $q = 0$, the inflated (no-change) outcome is observed
 - for those in $q = 1$ any of the possible outcomes in the choice set $\{-1, 0, 1\}$ which includes the outcome with an excess of observations are observed

- Regime membership ($q = 0, q = 1$) is unobserved and must be identified on data
Empirical Approach: Middle Inflated Models

- In regime $q = 1$, an second latent variable y^* is specified as
Empirical Approach: Middle Inflated Models

- In regime $q = 1$, a second latent variable y^* is specified as

$$y^* = x'_y \beta_y + \varepsilon_y$$
Empirical Approach: Middle Inflated Models

- In regime $q = 1$, an second latent variable y^* is specified as
 \[y^* = x'_y \beta_y + \varepsilon_y \]
- For $q = 1$, outcomes are driven by an OP model
Empirical Approach: Middle Inflated Models

- In regime $q = 1$, a second latent variable y^* is specified as

\[y^* = x'_y \beta_y + \epsilon_y \]

- For $q = 1$, outcomes are driven by an OP model

- Overall probabilities are therefore $\text{Pr}(y_{it}) =$
Empirical Approach: Middle Inflated Models

- In regime $q = 1$, an second latent variable y^* is specified as
 \[y^* = x_y' \beta_y + \varepsilon_y \]
- For $q = 1$, outcomes are driven by an OP model
- Overall probabilities are therefore $\Pr(y_{it}) =$

\[
\begin{align*}
\Pr(-1) &= \Phi(x_s' \beta_s) \times \Phi(\mu_0 - x_y' \beta_y) \\
\Pr(0) &= [1 - \Phi(x_s' \beta_s)] + \Phi(x_s' \beta_s) \times [\Phi(\mu_1 - x_y' \beta_y) - \Phi(\mu_0 - x_y' \beta_y)] \\
\Pr(1) &= \Phi(x_s' \beta_s) \times [1 - \Phi(\mu_1 - x_y' \beta_y)]
\end{align*}
\]
Empirical Approach: Middle Inflated Models

- In regime $q = 1$, an second latent variable y^* is specified as

$$y^* = x'_y \beta_y + \varepsilon_y$$

- For $q = 1$, outcomes are driven by an OP model
- Overall probabilities are therefore $Pr(y_{it}) =$

$$
Pr(-1) = \Phi (x'_s \beta_s) \times \Phi \left(\mu_0 - x'_y \beta_y \right) \\
Pr(0) = \left[1 - \Phi (x'_s \beta_s) \right] \\
+ \Phi (x'_s \beta_s) \times \left[\Phi \left(\mu_1 - x'_y \beta_y \right) - \Phi \left(\mu_0 - x'_y \beta_y \right) \right] \\
Pr(1) = \Phi (x'_s \beta_s) \times \left[1 - \Phi \left(\mu_1 - x'_y \beta_y \right) \right]
$$

- Now probability of no-change ($Pr y_{it} = 0$) has been ‘inflated’
Empirical Approach: Middle Inflated Models

- In regime $q = 1$, an second latent variable y^* is specified as

 $$y^* = x'_y \beta_y + \varepsilon_y$$

- For $q = 1$, outcomes are driven by an OP model
- Overall probabilities are therefore $P(y_{it}) =$

\[
\begin{align*}
Pr(-1) &= \Phi (x'_s \beta_s) \times \Phi \left(\mu_0 - x'_y \beta_y \right) \\
Pr(0) &= \left[1 - \Phi (x'_s \beta_s) \right] \\
&\quad + \Phi (x'_s \beta_s) \times \left[\Phi \left(\mu_1 - x'_y \beta_y \right) - \Phi \left(\mu_0 - x'_y \beta_y \right) \right] \\
Pr(1) &= \Phi (x'_s \beta_s) \times \left[1 - \Phi \left(\mu_1 - x'_y \beta_y \right) \right]
\end{align*}
\]

- Now probability of no-change $(Pr y_{it} = 0)$ has been ‘inflated’

 • Observationally equivalent no-change outcomes, can hence arise from two distinct sources
Empirical Approach: the Tempered Ordered Probit (TOP) Model

- Let’s turn things around: members “firstly” have a propensity for a desired rate change, y^*
Empirical Approach: the Tempered Ordered Probit (TOP) Model

- Let’s turn things around: members “firstly” have a propensity for a desired rate change, y^*
- But let “movement” propensities be *tempered/moderated*
Empirical Approach: the Tempered Ordered Probit (TOP) Model

- Let’s turn things around: members “firstly” have a propensity for a desired rate change, y^*
- But let “movement” propensities be *tempered/moderated* →
 - allow members with either propensity to still choose no-change
Empirical Approach: the Tempered Ordered Probit (TOP) Model

- Let’s turn things around: members “firstly” have a propensity for a desired rate change, y^*
- But let “movement” propensities be *tempered/moderated* →
 - allow members with either propensity to still choose no-change
 - why? due to uncertainties (and institutional factors); x_s above
Empirical Approach: the TOP model

(a) TOP model

(b) MIOP model

Figure 1: MPC members’ votes modelled as a Tempered Ordered Probit (TOP) model
Empirical Approach: the Tempered Ordered Probit (TOP) Model

- Define two further latent variables, \(d^* \) and \(u^* \); respectively act on down and up propensities:
Empirical Approach: the Tempered Ordered Probit (TOP) Model

- Define two further latent variables, \(d^* \) and \(u^* \); respectively act on down and up propensities:

\[
d^* = x_s' \beta_d + \varepsilon_d
\]
Empirical Approach: the Tempered Ordered Probit (TOP) Model

- Define two further latent variables, d^* and u^*; respectively act on down and up propensities:

$$d^* = x_s \beta_d + \varepsilon_d$$

- With associated probability:
Empirical Approach: the Tempered Ordered Probit (TOP) Model

- Define two further latent variables, d^* and u^*; respectively act on down and up propensities:

 \[d^* = x_s' \beta_d + \varepsilon_d \]

- With associated probability:

 \[\Pr (\text{decrease} \mid \text{down propensity}) = \Phi (x_s' \beta_d) \]
Empirical Approach: the Tempered Ordered Probit (TOP) Model

- Define two further latent variables, d^* and u^*; respectively act on down and up propensities:

 $$d^* = x_s' \beta_d + \varepsilon_d$$

- With associated probability:

 $$\Pr(\text{decrease} \mid \text{down propensity}) = \Phi(x_s' \beta_d)$$

- For members with an up propensity, on the basis of

 $$u^* = x_s' \beta_u + \varepsilon_u$$
Empirical Approach: the Tempered Ordered Probit (TOP) Model

- Define two further latent variables, d^* and u^*; respectively act on down and up propensities:

$$d^* = \mathbf{x}_s' \beta_d + \varepsilon_d$$

- With associated probability:

$$\Pr (\text{decrease} \mid \text{down propensity}) = \Phi (\mathbf{x}_s' \beta_d)$$

- For members with an up propensity, on the basis of

$$u^* = \mathbf{x}_s' \beta_u + \varepsilon_u$$

- Probability of them voting for rate increase is
Empirical Approach: the Tempered Ordered Probit (TOP) Model

- Define two further latent variables, \(d^* \) and \(u^* \); respectively act on down and up propensities:

\[
d^* = x_s' \beta_d + \epsilon_d
\]

- With associated probability:

\[
\Pr (\text{decrease} \mid \text{down propensity}) = \Phi (x_s' \beta_d)
\]

- For members with an up propensity, on the basis of

\[
u^* = x_s' \beta_u + \epsilon_u
\]

- Probability of them voting for rate increase is

\[
\Pr (\text{increase} \mid \text{up propensity}) = \Phi (x_s' \beta_u)
\]
Empirical Approach: the Tempered Ordered Probit (TOP) Model

- Define two further latent variables, d^* and u^*; respectively act on down and up propensities:

 $$d^* = x_s' \beta_d + \varepsilon_d$$

- With associated probability:

 $$\Pr (\text{decrease} \mid \text{down propensity}) = \Phi (x_s' \beta_d)$$

- For members with an up propensity, on the basis of

 $$u^* = x_s' \beta_u + \varepsilon_u$$

- Probability of them voting for rate increase is

 $$\Pr (\text{increase} \mid \text{up propensity}) = \Phi (x_s' \beta_u)$$

- Is no requirement that $\beta_d \equiv \beta_u$; and good reasons to expect not...
Empirical Approach: the Tempered Ordered Probit (TOP) Model

- Overall probabilities of vote choices will be
Empirical Approach: the Tempered Ordered Probit (TOP) Model

- Overall probabilities of vote choices will be

\[
\begin{align*}
Pr(-1) &= \Phi \left(\mu_0 - x'_y \beta_y \right) \times \Phi \left(x'_s \beta_d \right) \\
Pr(0) &= \left[\Phi \left(\mu_1 - x'_y \beta_y \right) - \Phi \left(\mu_0 - x'_y \beta_y \right) \right] + \\
&\quad \left[\Phi \left(\mu_0 - x'_y \beta_y \right) \times \Phi \left(-x'_s \beta_d \right) \right] + \\
&\quad \left[\left(1 - \Phi \left(\mu_1 - x'_y \beta_y \right) \right) \times \Phi \left(-x'_s \beta_u \right) \right] \\
Pr(1) &= \left[1 - \Phi \left(\mu_1 - x'_y \beta_y \right) \right] \times \Phi \left(x'_s \beta_u \right)
\end{align*}
\]
Empirical Approach: the Tempered Ordered Probit (TOP) Model

- Overall probabilities of vote choices will be

\[
\begin{align*}
Pr(-1) &= \Phi \left(\mu_0 - x'_y \beta_y \right) \times \Phi \left(x'_s \beta_d \right) \\
Pr(0) &= \left[\Phi \left(\mu_1 - x'_y \beta_y \right) - \Phi \left(\mu_0 - x'_y \beta_y \right) \right] + \\
&\quad \left[\Phi \left(\mu_0 - x'_y \beta_y \right) \times \Phi \left(-x'_s \beta_d \right) \right] + \\
&\quad \left[\left(1 - \Phi \left(\mu_1 - x'_y \beta_y \right) \right) \times \Phi \left(-x'_s \beta_u \right) \right] \\
Pr(1) &= \left[1 - \Phi \left(\mu_1 - x'_y \beta_y \right) \right] \times \Phi \left(x'_s \beta_u \right)
\end{align*}
\]

- Still embodies “excess” of no-change, but in a much more flexible manner (“representing member uncertainty”)
Empirical Approach: the Tempered Ordered Probit (TOP) Model

- Overall probabilities of vote choices will be

\[
\Pr(-1) = \Phi(\mu_0 - x_y' \beta_y) \times \Phi(x_s' \beta_d)
\]

\[
Pr(0) = \left[\Phi(\mu_1 - x_y' \beta_y) - \Phi(\mu_0 - x_y' \beta_y) \right] + \\
\left[\Phi(\mu_0 - x_y' \beta_y) \times \Phi(-x_s' \beta_d) \right] + \\
\left[(1 - \Phi(\mu_1 - x_y' \beta_y)) \times \Phi(-x_s' \beta_u) \right] \\
Pr(1) = \left[1 - \Phi(\mu_1 - x_y' \beta_y) \right] \times \Phi(x_s' \beta_u)
\]

- Still embodies “excess” of no-change, but in a much more flexible manner (“representing member uncertainty”)

- So here, \(x_j \) can have opposing signs: a tempering effect in one direction and an intensifying effect in the other
A Specification Test for the MIOP

- Interesting empirical issue is whether the down and up propensities are tempered to the same extent.
A Specification Test for the MIOP

- Interesting empirical issue is whether the down and up propensities are tempered to the same extent
 - that is, does $\beta_d = \beta_u$?
A Specification Test for the MIOP

- Interesting empirical issue is whether the down and up propensities are tempered to the same extent
 - that is, does $\beta_d = \beta_u$?

- If we enforce this restriction, that $\beta_d = \beta_u$, and call this β_s the TOP probabilities collapse to the MIOP ones! \rightarrow
A Specification Test for the MIOP

- Interesting empirical issue is whether the down and up propensities are tempered to the same extent
 - that is, does $\beta_d = \beta_u$?
- If we enforce this restriction, that $\beta_d = \beta_u$, and call this β_s the TOP probabilities collapse to the MIOP ones! →
- The TOP model can be used as a specification test of the MIOP
A Specification Test for the MIOP

• Interesting empirical issue is whether the down and up propensities are tempered to the same extent
 • that is, does $\beta_d = \beta_u$?

• If we enforce this restriction, that $\beta_d = \beta_u$, and call this β_s the TOP probabilities collapse to the MIOP ones! →

• The TOP model can be used as a specification test of the MIOP
 • the implicit test is one of symmetry versus asymmetry in the inertia equations
Variable Selection

- So, we want an explicit role of *uncertainty* in affecting monetary policy decisions (in the tempering equations)
Variable Selection

- So, we want an explicit role of *uncertainty* in affecting monetary policy decisions (in the tempering equations)
 - “Uncertainty is not just a feature of the monetary policy landscape; it is the defining characteristic of that landscape” (Alan Greenspan)
Variable Selection

- So, we want an explicit role of uncertainty in affecting monetary policy decisions (in the tempering equations)
 - "Uncertainty is not just a feature of the monetary policy landscape; it is the defining characteristic of that landscape" (Alan Greenspan)

1. uncertainty parameters associated with the MPC’s inflation (π_σ) and growth (GAP_σ) forecasts
Variable Selection

- So, we want an explicit role of *uncertainty* in affecting monetary policy decisions (in the tempering equations)
 - “Uncertainty is not just a feature of the monetary policy landscape; it is the defining characteristic of that landscape” (Alan Greenspan)

1. uncertainty parameters associated with the MPC’s inflation (π_σ) and growth (GAP_σ) forecasts
2. dummies for *Inflation Report* months (IR), February, May, August, November; and (TYPE), one for external member
Variable Selection

- So, we want an explicit role of *uncertainty* in affecting monetary policy decisions (in the tempering equations)
 - “Uncertainty is not just a feature of the monetary policy landscape; it is the defining characteristic of that landscape” (Alan Greenspan)

1. uncertainty parameters associated with the MPC’s inflation (π_σ) and growth (GAP_σ) forecasts
2. dummies for *Inflation Report* months (IR), February, May, August, November; and (TYPE), one for external member
3. *financial uncertainty*, on asset price volatility (FTSE)
Variable Selection

- So, we want an explicit role of *uncertainty* in affecting monetary policy decisions (in the tempering equations)
 - “Uncertainty is not just a feature of the monetary policy landscape; it is the defining characteristic of that landscape” (Alan Greenspan)

1. uncertainty parameters associated with the MPC’s inflation (π_σ) and growth (GAP_σ) forecasts
2. dummies for *Inflation Report* months (IR), February, May, August, November; and (TYPE), one for external member
3. *financial uncertainty*, on asset price volatility (FTSE)

- See paper for how these relate to the literature, expected signs *etc.*
Variable Selection

- So, we want an explicit role of *uncertainty* in affecting monetary policy decisions (in the tempering equations)
 - “Uncertainty is not just a feature of the monetary policy landscape; it is the defining characteristic of that landscape” (Alan Greenspan)

1. uncertainty parameters associated with the MPC’s inflation (π_σ) and growth (GAP_σ) forecasts
2. dummies for *Inflation Report* months (IR), February, May, August, November; and (TYPE), one for external member
3. *financial uncertainty*, on asset price volatility (FTSE)

- See paper for how these relate to the literature, expected signs *etc.*
- In the economic conditions equation: standard Taylor-rule variables
Variable Selection

- So, we want an explicit role of *uncertainty* in affecting monetary policy decisions (in the tempering equations)
 - “Uncertainty is not just a feature of the monetary policy landscape; it is the defining characteristic of that landscape” (Alan Greenspan)

1. uncertainty parameters associated with the MPC’s inflation (π_σ) and growth (GAP_σ) forecasts
2. dummies for *Inflation Report* months (IR), February, May, August, November; and (TYPE), one for external member
3. *financial uncertainty*, on asset price volatility (FTSE)

- See paper for how these relate to the literature, expected signs *etc.*
- In the economic conditions equation: standard Taylor-rule variables
 - inflation and output gap forecasts; $\pi_{Dev,t}$ and GAP_t
Results

- First, estimated; a simple pooled OP; MIOP; and TOP →

- Model selection criteria, all prefer TOP > MIOP > OP.
- Moreover, LR test of TOP vs MIOP is 69, p < 0.001.
- Clearly reject MIOP model in favor of TOP: symmetry doesn't hold.

- Sticking with preferred TOP model, we refine by:
 1. Allow for unobserved heterogeneity in the tempering equations:
 \[
 d_{it} = x_0 d_{it} + \alpha_{id} + \epsilon_{it},
 \]
 \[
 u_{it} = x_0 u_{it} + \alpha_{iu} + \epsilon_{it},
 \]
 2. Allow different members-specific reaction functions: random parameters on the inflation and growth variables:
 \[
 \beta_{\pi i} = \bar{\beta}_{\pi i} + e_{\pi i};
 \]
 \[
 \beta_{GAP i} = \bar{\beta}_{GAP i} + e_{GAP i}.
 \]
- And estimate using simulated ML.
Results

- First, estimated a simple pooled OP; MIOP; and TOP →
 - for all, in ZLB regime, choice-set was restricted
Results

- First, estimated a simple pooled OP; MIOP; and TOP →
 - for all, in ZLB regime, choice-set was restricted
- Model selection criteria, all prefer TOP > MIOP > OP
Results

• First, estimated; a simple pooled OP; MIOP; and TOP →
 • for all, in ZLB regime, choice-set was restricted
• Model selection criteria, all prefer TOP > MIOP > OP
• Moreover, LR test of TOP vs MIOP is 69, $p < 0.001$ →
Results

- First, estimated; a simple pooled OP; MIOP; and TOP →
 - for all, in ZLB regime, choice-set was restricted
- Model selection criteria, all prefer TOP > MIOP > OP
- Moreover, LR test of TOP vs MIOP is 69, $p < 0.001$ →
 - clearly reject MIOP model in favour of TOP: symmetry doesn’t hold!
Results

- First, estimated; a simple pooled OP; MIOP; and TOP →
 - for all, in ZLB regime, choice-set was restricted
- Model selection criteria, all prefer TOP > MIOP > OP
- Moreover, *LR test* of TOP vs MIOP is 69, *p* < 0.001 →
 - clearly reject MIOP model in favour of TOP: symmetry doesn’t hold!
- Sticking with preferred TOP model, we refine by:
Results

- First, estimated; a simple pooled OP; MIOP; and TOP →
 - for all, in ZLB regime, choice-set was restricted
- Model selection criteria, all prefer TOP > MIOP > OP
- Moreover, LR test of TOP vs MIOP is 69, \(p < 0.001 \) →
 - clearly reject MIOP model in favour of TOP: symmetry doesn’t hold!
- Sticking with preferred TOP model, we refine by:
 1. allow for unobserved heterogeneity in the tempering equations:

\[
d^{*}_{it} = x'_{it,s} \beta_d + \alpha_{id} + \varepsilon_{it,d}; \text{ and } u^{*}_{it} = x'_{it,s} \beta_u + \alpha_{iu} + \varepsilon_{it,u}
\]
Results

- First, estimated; a simple pooled OP; MIOP; and TOP →
 - for all, in ZLB regime, choice-set was restricted
- Model selection criteria, all prefer TOP > MIOP > OP
- Moreover, LR test of TOP vs MIOP is 69, \(p < 0.001 \) →
 - clearly reject MIOP model in favour of TOP: symmetry doesn’t hold!
- Sticking with preferred TOP model, we refine by:
 1. allow for unobserved heterogeneity in the tempering equations:
 \[
 d_{it}^* = \mathbf{x}_{it,s}^\prime \mathbf{\beta}_d + \alpha_{id} + \epsilon_{it,d}; \text{ and } u_{it}^* = \mathbf{x}_{it,s}^\prime \mathbf{\beta}_u + \alpha_{iu} + \epsilon_{it,u}
 \]
 2. Allow different members-specific reaction functions: random parameters on the inflation and growth variables:
 \[
 \beta_i^\pi = \bar{\beta}^\pi + \epsilon_i^\pi; \text{ and } \beta_i^{GAP} = \bar{\beta}^{GAP} + \epsilon_i^{GAP}
 \]
Results

- First, estimated; a simple pooled OP; MIOP; and TOP \rightarrow
 - for all, in ZLB regime, choice-set was restricted
- Model selection criteria, all prefer TOP > MIOP > OP
- Moreover, LR test of TOP vs MIOP is 69, $p < 0.001 \rightarrow$
 - clearly reject MIOP model in favour of TOP: symmetry doesn’t hold!
- Sticking with preferred TOP model, we refine by:
 1. allow for unobserved heterogeneity in the tempering equations:
 $$d^*_{it} = x'_{it,s} \beta_d + \alpha_{id} + \varepsilon_{it,d}; \text{ and } u^*_{it} = x'_{it,s} \beta_u + \alpha_{iu} + \varepsilon_{it,u}$$
 2. Allow different members-specific reaction functions: random parameters on the inflation and growth variables:
 $$\beta^\pi_i = \bar{\beta}^\pi + \varepsilon^\pi_i; \text{ and } \beta^{GAP}_i = \bar{\beta}^{GAP} + \varepsilon^{GAP}_i$$
- And estimate using simulated ML
Results: Panel Effects and Economic Conditions Equation

<table>
<thead>
<tr>
<th></th>
<th>POP</th>
<th>MIOP</th>
<th>TOP</th>
<th>PTOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\pi_{Dev,t}$</td>
<td>0.195***</td>
<td>0.588***</td>
<td>0.527***</td>
<td>0.816***</td>
</tr>
<tr>
<td></td>
<td>(0.025)</td>
<td>(0.075)</td>
<td>(0.067)</td>
<td>(0.077)</td>
</tr>
<tr>
<td>GAP$_t$</td>
<td>0.055</td>
<td>0.139***</td>
<td>0.260**</td>
<td>0.145</td>
</tr>
<tr>
<td></td>
<td>(0.052)</td>
<td>(0.087)</td>
<td>(0.103)</td>
<td>(0.120)</td>
</tr>
<tr>
<td>μ_0</td>
<td>-0.915***</td>
<td>-0.626***</td>
<td>-0.550***</td>
<td>-0.555***</td>
</tr>
<tr>
<td></td>
<td>(0.041)</td>
<td>(0.07589)</td>
<td>(0.078)</td>
<td>(0.119)</td>
</tr>
<tr>
<td>μ_1</td>
<td>1.103***</td>
<td>1.012***</td>
<td>0.667***</td>
<td>0.682***</td>
</tr>
<tr>
<td></td>
<td>(0.046)</td>
<td>(0.083)</td>
<td>(0.153)</td>
<td>(0.199)</td>
</tr>
<tr>
<td>σ^2_π</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.408***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.053)</td>
</tr>
<tr>
<td>σ^2_{GAP}</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.302***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.139)</td>
</tr>
<tr>
<td>σ^2_{down}</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.416**</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.183)</td>
</tr>
<tr>
<td>σ^2_{up}</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>1.253***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.249)</td>
</tr>
</tbody>
</table>
Results: Panel Effects and Economic Conditions Equation

<table>
<thead>
<tr>
<th></th>
<th>POP</th>
<th>MIOP</th>
<th>TOP</th>
<th>PTOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\pi_{Dev,t}$</td>
<td>0.195***</td>
<td>0.588***</td>
<td>0.527***</td>
<td>0.816***</td>
</tr>
<tr>
<td></td>
<td>(0.025)</td>
<td>(0.075)</td>
<td>(0.067)</td>
<td>(0.077)</td>
</tr>
<tr>
<td>GAP$_t$</td>
<td>0.055</td>
<td>0.139***</td>
<td>0.260**</td>
<td>0.145</td>
</tr>
<tr>
<td></td>
<td>(0.052)</td>
<td>(0.087)</td>
<td>(0.103)</td>
<td>(0.120)</td>
</tr>
<tr>
<td>μ_0</td>
<td>-0.915^{***}</td>
<td>-0.626^{***}</td>
<td>-0.550^{***}</td>
<td>-0.555^{***}</td>
</tr>
<tr>
<td></td>
<td>(0.041)</td>
<td>(0.07589)</td>
<td>(0.078)</td>
<td>(0.119)</td>
</tr>
<tr>
<td>μ_1</td>
<td>1.103***</td>
<td>1.012***</td>
<td>0.667***</td>
<td>0.682***</td>
</tr>
<tr>
<td></td>
<td>(0.046)</td>
<td>(0.083)</td>
<td>(0.153)</td>
<td>(0.199)</td>
</tr>
<tr>
<td>σ_π^2</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.408***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.053)</td>
</tr>
<tr>
<td>σ_{GAP}^2</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.302***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.139)</td>
</tr>
<tr>
<td>σ_{down}^2</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.416**</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.183)</td>
</tr>
<tr>
<td>σ_{up}^2</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>1.253***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.249)</td>
</tr>
</tbody>
</table>

- Distinct differences across models for Taylor-variables (although these aren’t Partial Effects)
Results: Panel Effects and Economic Conditions Equation

<table>
<thead>
<tr>
<th></th>
<th>POP</th>
<th>MIOP</th>
<th>TOP</th>
<th>PTOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\pi_{Dev,t}$</td>
<td>0.195***</td>
<td>0.588***</td>
<td>0.527***</td>
<td>0.816***</td>
</tr>
<tr>
<td></td>
<td>(0.025)</td>
<td>(0.075)</td>
<td>(0.067)</td>
<td>(0.077)</td>
</tr>
<tr>
<td>GAP$_t$</td>
<td>0.055</td>
<td>0.139***</td>
<td>0.260**</td>
<td>0.145</td>
</tr>
<tr>
<td></td>
<td>(0.052)</td>
<td>(0.087)</td>
<td>(0.103)</td>
<td>(0.120)</td>
</tr>
<tr>
<td>μ_0</td>
<td>-0.915***</td>
<td>-0.626***</td>
<td>-0.550***</td>
<td>-0.555***</td>
</tr>
<tr>
<td></td>
<td>(0.041)</td>
<td>(0.07589)</td>
<td>(0.078)</td>
<td>(0.119)</td>
</tr>
<tr>
<td>μ_1</td>
<td>1.103***</td>
<td>1.012***</td>
<td>0.667***</td>
<td>0.682***</td>
</tr>
<tr>
<td></td>
<td>(0.046)</td>
<td>(0.083)</td>
<td>(0.153)</td>
<td>(0.199)</td>
</tr>
<tr>
<td>σ^2_π</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
<td>0.408***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.053)</td>
</tr>
<tr>
<td>σ^2_{GAP}</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
<td>0.302***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.139)</td>
</tr>
<tr>
<td>σ^2_{down}</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
<td>0.416**</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.183)</td>
</tr>
<tr>
<td>σ^2_{up}</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
<td>1.253***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.249)</td>
</tr>
</tbody>
</table>

- Distinct differences across models for Taylor-variables (although these aren’t Partial Effects)
- All panel effects signif.
Results: Panel Effects and Economic Conditions Equation

<table>
<thead>
<tr>
<th></th>
<th>$\pi_{Dev,t}$</th>
<th>MIOP</th>
<th>TOP</th>
<th>PTOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\pi_{Dev,t}$</td>
<td>0.195***</td>
<td>0.588***</td>
<td>0.527***</td>
<td>0.816***</td>
</tr>
<tr>
<td></td>
<td>(0.025)</td>
<td>(0.075)</td>
<td>(0.067)</td>
<td>(0.077)</td>
</tr>
<tr>
<td>GAP$_t$</td>
<td>0.055</td>
<td>0.139***</td>
<td>0.260**</td>
<td>0.145</td>
</tr>
<tr>
<td></td>
<td>(0.052)</td>
<td>(0.087)</td>
<td>(0.103)</td>
<td>(0.120)</td>
</tr>
<tr>
<td>μ_0</td>
<td>-0.915^{***}</td>
<td>-0.626^{***}</td>
<td>-0.550^{***}</td>
<td>-0.555^{***}</td>
</tr>
<tr>
<td></td>
<td>(0.041)</td>
<td>(0.07589)</td>
<td>(0.078)</td>
<td>(0.119)</td>
</tr>
<tr>
<td>μ_1</td>
<td>1.103***</td>
<td>1.012***</td>
<td>0.667***</td>
<td>0.682***</td>
</tr>
<tr>
<td></td>
<td>(0.046)</td>
<td>(0.083)</td>
<td>(0.153)</td>
<td>(0.199)</td>
</tr>
<tr>
<td>σ^2_π</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.408***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.053)</td>
</tr>
<tr>
<td>σ^2_{GAP}</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.302***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.139)</td>
</tr>
<tr>
<td>σ^2_{down}</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.416**</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.183)</td>
</tr>
<tr>
<td>σ^2_{up}</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>1.253***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.249)</td>
</tr>
</tbody>
</table>

- Distinct differences across models for Taylor-variables (although these aren’t Partial Effects)
- All panel effects signif.
- GDP gap insignif.??
Table 1: Interpretation of parameters in the tempered equations

<table>
<thead>
<tr>
<th>Estimated parameter signs</th>
<th>Impact of x_j based on coefficient signs</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{\beta}_{j,d}$</td>
<td>$\hat{\beta}_{j,u}$</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>+</td>
<td>−</td>
</tr>
</tbody>
</table>
Partial Effects: Split by Equation

<table>
<thead>
<tr>
<th>OP equation</th>
<th>Ease</th>
<th>No-Change</th>
<th>Tighten</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\pi_{Dev,t})</td>
<td>(-0.240^{***})</td>
<td>(0.186^{***})</td>
<td>(0.055^{***})</td>
</tr>
<tr>
<td></td>
<td>(0.026)</td>
<td>(0.030)</td>
<td>(0.017)</td>
</tr>
<tr>
<td>(GAP_t)</td>
<td>(-0.043)</td>
<td>(0.033)</td>
<td>(0.010)</td>
</tr>
<tr>
<td></td>
<td>(0.037)</td>
<td>(0.029)</td>
<td>(0.009)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tempering equations</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPE</td>
</tr>
<tr>
<td>(-0.136^{***})</td>
</tr>
<tr>
<td>(0.051)</td>
</tr>
<tr>
<td>FTSE</td>
</tr>
<tr>
<td>(0.186^{***})</td>
</tr>
<tr>
<td>(0.043)</td>
</tr>
<tr>
<td>(\pi_{\sigma})</td>
</tr>
<tr>
<td>(-0.093^{***})</td>
</tr>
<tr>
<td>(0.023)</td>
</tr>
<tr>
<td>GAP_{\sigma}</td>
</tr>
<tr>
<td>(0.103^{***})</td>
</tr>
<tr>
<td>(0.026)</td>
</tr>
<tr>
<td>IR</td>
</tr>
<tr>
<td>(0.162^{**})</td>
</tr>
<tr>
<td>(0.040)</td>
</tr>
</tbody>
</table>
Partial Effects: Split by Equation

<table>
<thead>
<tr>
<th>OP equation</th>
<th>Ease</th>
<th>No-Change</th>
<th>Tighten</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\pi_{Dev,t}$</td>
<td>-0.240^{***}</td>
<td>0.186^{***}</td>
<td>0.055^{***}</td>
</tr>
<tr>
<td></td>
<td>(0.026)</td>
<td>(0.030)</td>
<td>(0.017)</td>
</tr>
<tr>
<td>GAP_t</td>
<td>-0.043</td>
<td>0.033</td>
<td>0.010</td>
</tr>
<tr>
<td></td>
<td>(0.037)</td>
<td>(0.029)</td>
<td>(0.009)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tempering equations</th>
</tr>
</thead>
<tbody>
<tr>
<td>$TYPE$</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>$FTSE$</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>π_{σ}</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>GAP_{σ}</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>IR</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

- Strong inflation effects
Partial Effects: Split by Equation

<table>
<thead>
<tr>
<th>OP equation</th>
<th>Ease</th>
<th>No-Change</th>
<th>Tighten</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\pi_{Dev,t})</td>
<td>-0.240***</td>
<td>0.186***</td>
<td>0.055***</td>
</tr>
<tr>
<td></td>
<td>(0.026)</td>
<td>(0.030)</td>
<td>(0.017)</td>
</tr>
<tr>
<td>(GAP_t)</td>
<td>-0.043</td>
<td>0.033</td>
<td>0.010</td>
</tr>
<tr>
<td></td>
<td>(0.037)</td>
<td>(0.029)</td>
<td>(0.009)</td>
</tr>
</tbody>
</table>

Tempering equations

<table>
<thead>
<tr>
<th>TYPE</th>
<th>-0.136***</th>
<th>0.139***</th>
<th>-0.003</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(0.051)</td>
<td>(0.054)</td>
<td>(0.027)</td>
</tr>
<tr>
<td>FTSE</td>
<td>0.186***</td>
<td>-0.171***</td>
<td>-0.015**</td>
</tr>
<tr>
<td></td>
<td>(0.043)</td>
<td>(0.047)</td>
<td>(0.007)</td>
</tr>
<tr>
<td>(\pi_\sigma)</td>
<td>-0.093***</td>
<td>0.081***</td>
<td>0.012**</td>
</tr>
<tr>
<td></td>
<td>(0.023)</td>
<td>(0.025)</td>
<td>(0.007)</td>
</tr>
<tr>
<td>(GAP_\sigma)</td>
<td>0.103***</td>
<td>-0.082***</td>
<td>-0.021**</td>
</tr>
<tr>
<td></td>
<td>(0.026)</td>
<td>(0.027)</td>
<td>(0.009)</td>
</tr>
<tr>
<td>IR</td>
<td>0.162***</td>
<td>-0.206***</td>
<td>0.044***</td>
</tr>
<tr>
<td></td>
<td>(0.040)</td>
<td>(0.035)</td>
<td>(0.013)</td>
</tr>
</tbody>
</table>

- **Strong inflation effects**
- **All uncertainty effects very significant**
Partial Effects: Split by Equation

<table>
<thead>
<tr>
<th>OP equation</th>
<th>Ease</th>
<th>No-Change</th>
<th>Tighten</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\pi_{Dev,t}$</td>
<td>-0.240^{***}</td>
<td>0.186^{***}</td>
<td>0.055^{***}</td>
</tr>
<tr>
<td></td>
<td>(0.026)</td>
<td>(0.030)</td>
<td>(0.017)</td>
</tr>
<tr>
<td>GAP_t</td>
<td>-0.043</td>
<td>0.033</td>
<td>0.010</td>
</tr>
<tr>
<td></td>
<td>(0.037)</td>
<td>(0.029)</td>
<td>(0.009)</td>
</tr>
</tbody>
</table>

Tempering equations

<table>
<thead>
<tr>
<th>TYPE</th>
<th>-0.136^{***}</th>
<th>0.139^{***}</th>
<th>-0.003</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(0.051)</td>
<td>(0.054)</td>
<td>(0.027)</td>
</tr>
<tr>
<td>$FTSE$</td>
<td>0.186^{***}</td>
<td>-0.171^{***}</td>
<td>-0.015^{**}</td>
</tr>
<tr>
<td></td>
<td>(0.043)</td>
<td>(0.047)</td>
<td>(0.007)</td>
</tr>
<tr>
<td>π_σ</td>
<td>-0.093^{***}</td>
<td>0.081^{***}</td>
<td>0.012^{**}</td>
</tr>
<tr>
<td></td>
<td>(0.023)</td>
<td>(0.025)</td>
<td>(0.007)</td>
</tr>
<tr>
<td>GAP_σ</td>
<td>0.103^{***}</td>
<td>-0.082^{***}</td>
<td>-0.021^{**}</td>
</tr>
<tr>
<td></td>
<td>(0.026)</td>
<td>(0.027)</td>
<td>(0.009)</td>
</tr>
<tr>
<td>IR</td>
<td>0.162^{***}</td>
<td>-0.206^{***}</td>
<td>0.044^{***}</td>
</tr>
<tr>
<td></td>
<td>(0.040)</td>
<td>(0.035)</td>
<td>(0.013)</td>
</tr>
</tbody>
</table>

- **Strong inflation effects**
- **All uncertainty effects very significant**
- *e.g.*, IR months \rightarrow \uparrow chance of change; and as inflation forecast uncertainty \uparrow \rightarrow \downarrow ease rates; and so on...
Member-Specific Parameters

- Finally, following Train (2009) we recover member-specific inflation and GDP parameters
Member-Specific Parameters

- Finally, following Train (2009) we recover member-specific inflation and GDP parameters
- And Greene, Harris, Spencer (2014) standard errors of these
Member-Specific Parameters

- Finally, following Train (2009) we recover member-specific inflation and GDP parameters
- And Greene, Harris, Spencer (2014) standard errors of these
 - based on Krinsky and Robb (1986) simulation approach
Member-Specific Parameters

- Finally, following Train (2009) we recover member-specific inflation and GDP parameters
- And Greene, Harris, Spencer (2014) standard errors of these
 - based on Krinsky and Robb (1986) simulation approach
- Now, although we found the “average” GDP effect to be zero
 →
Member-Specific Parameters

- Finally, following Train (2009) we recover member-specific inflation and GDP parameters
- And Greene, Harris, Spencer (2014) standard errors of these
 - based on Krinsky and Robb (1986) simulation approach
- Now, although we found the “average” GDP effect to be zero
 →
 - individually, for some members, *this no longer the case!*
Member-Specific Parameters

- Finally, following Train (2009) we recover member-specific inflation and GDP parameters
- And Greene, Harris, Spencer (2014) standard errors of these
 - based on Krinsky and Robb (1986) simulation approach
- Now, although we found the “average” GDP effect to be zero
 - individually, for some members, this no longer the case!
- Moreover, all members with individually **insignificant** inflation coefficients, are all those appointed close to, or after, the GFC

Member-Specific Parameters

- Finally, following Train (2009) we recover member-specific inflation and GDP parameters
- And Greene, Harris, Spencer (2014) standard errors of these based on Krinsky and Robb (1986) simulation approach
- Now, although we found the “average” GDP effect to be zero →
 - individually, for some members, *this no longer the case!*
- Moreover, all members with individually *insignificant* inflation coefficients, are all those appointed close to, or after, the GFC →
 - makes sense as post-crisis, rates fell to ZLB: members seemingly no longer responded to inflation - there is a *regime switch*
Member-Specific Parameters

- Finally, following Train (2009) we recover member-specific inflation and GDP parameters
- And Greene, Harris, Spencer (2014) standard errors of these
 - based on Krinsky and Robb (1986) simulation approach
- Now, although we found the “average” GDP effect to be zero
 →
 - individually, for some members, this no longer the case!
- Moreover, all members with individually insignificant inflation coefficients, are all those appointed close to, or after, the GFC
 →
 - makes sense as post-crisis, rates fell to ZLB: members seemingly no longer responded to inflation - there is a regime switch
 - some MPC members started paying more attention to output rather than inflation (especially hawks like Sentance, Weale and Dale)
Member-Specific Parameters

- Finally, following Train (2009) we recover member-specific inflation and GDP parameters
- And Greene, Harris, Spencer (2014) standard errors of these
 - based on Krinsky and Robb (1986) simulation approach
- Now, although we found the “average” GDP effect to be zero →
 - individually, for some members, *this no longer the case!*
- Moreover, all members with individually *insignificant* inflation coefficients, are all those appointed close to, or after, the GFC →
 - makes sense as post-crisis, rates fell to ZLB: members seemingly no longer responded to inflation - there is a *regime switch*
 - some MPC members started paying more attention to output rather than inflation (especially *hawks* like Sentance, Weale and Dale)
- So, recovered RP estimates can tell an interesting story!
Member Specific Parameters: Growth

![Graph showing estimated (random) coefficient for GDP across different researchers.](image-url)
Conclusions

- Could allow for correlations of unobservables in the sequencing of equations
Conclusions

- Could allow for correlations of unobservables in the sequencing of equations
- Could extend to a model with more than 3-outcomes
Conclusions

• Could allow for correlations of unobservables in the sequencing of equations
• Could extend to a model with more than 3-outcomes
• Suggest a new statistical model, the TOP model:
Conclusions

- Could allow for correlations of unobservables in the sequencing of equations
- Could extend to a model with more than 3-outcomes
- Suggest a new statistical model, the TOP model:
 1. appropriate for instances where are a build-up in one (or more) categories in an ordered discrete dependent variable
Conclusions

- Could allow for correlations of unobservables in the sequencing of equations
- Could extend to a model with more than 3-outcomes
- Suggest a new statistical model, the TOP model:

 1. appropriate for instances where are a build-up in one (or more) categories in an ordered discrete dependent variable
 2. achieves *inflation* by the introduction of “tempering equations”
Conclusions

• Could allow for correlations of unobservables in the sequencing of equations
• Could extend to a model with more than 3-outcomes
• Suggest a new statistical model, the TOP model:

1. appropriate for instances where are a build-up in one (or more) categories in an ordered discrete dependent variable
2. achieves inflation by the introduction of “tempering equations”
3. more flexible than existing inflation models (e.g., MIOP)
Conclusions

- Could allow for correlations of unobservables in the sequencing of equations
- Could extend to a model with more than 3-outcomes
- Suggest a new statistical model, the TOP model:
 1. appropriate for instances where are a build-up in one (or more) categories in an ordered discrete dependent variable
 2. achieves *inflation* by the introduction of “tempering equations”
 3. more flexible than existing *inflation* models (e.g., MIOP)
 4. potentially of use in many modeling situations
Conclusions

- Could allow for correlations of unobservables in the sequencing of equations
- Could extend to a model with more than 3-outcomes
- Suggest a new statistical model, the TOP model:
 1. appropriate for instances where are a build-up in one (or more) categories in an ordered discrete dependent variable
 2. achieves *inflation* by the introduction of “tempering equations”
 3. more flexible than existing *inflation* models (e.g., MIOP)
 4. potentially of use in many modeling situations

- The model provides a simple specification test for the increasingly popular MIOP models
Conclusions

- Applied model to interest-rate choices of Bank of England MPC members’
Conclusions

- Applied model to interest-rate choices of Bank of England MPC members’
 - here the tempered equations reflected financial, economic and institutional uncertainty
Conclusions

- Applied model to interest-rate choices of Bank of England MPC members’
 - here the tempered equations reflected financial, economic and institutional uncertainty
- Strong evidence of member-specific unobserved heterogeneity
Conclusions

• Applied model to interest-rate choices of Bank of England MPC members’

 • here the tempered equations reflected financial, economic and institutional uncertainty

• Strong evidence of member-specific unobserved heterogeneity

• And of member-specific “reaction functions”
Conclusions

- Applied model to interest-rate choices of Bank of England MPC members’
 - here the tempered equations reflected financial, economic and institutional uncertainty
- Strong evidence of member-specific unobserved heterogeneity
- And of member-specific “reaction functions”
- Model performed well (good significance levels *etc.*)
Conclusions

- Applied model to interest-rate choices of Bank of England MPC members’
 - here the tempered equations reflected financial, economic and institutional uncertainty

- Strong evidence of member-specific unobserved heterogeneity
- And of member-specific “reaction functions”
- Model performed well (good significance levels etc.)
- Found evidence of asymmetry in member responses to economic uncertainty when tightening or lowering the policy rate

The End! :-) questions/comments/suggestions (nice ones!) very welcome!
Conclusions

- Applied model to interest-rate choices of Bank of England MPC members’
 - here the tempered equations reflected financial, economic and institutional uncertainty
- Strong evidence of member-specific unobserved heterogeneity
- And of member-specific “reaction functions”
- Model performed well (good significance levels *etc.*)
- Found evidence of *asymmetry* in member responses to economic uncertainty when tightening or lowering the policy rate
 - thus previous models using the MIOP are mis-specified

The End! :-) questions/comments/suggestions (nice ones!) very welcome!
Conclusions

- Applied model to interest-rate choices of Bank of England MPC members'
 - here the tempered equations reflected financial, economic and institutional uncertainty
- Strong evidence of member-specific unobserved heterogeneity
- And of member-specific “reaction functions”
- Model performed well (good significance levels *etc.*)
- Found evidence of *asymmetry* in member responses to economic uncertainty when tightening or lowering the policy rate
 - thus previous models using the MIOP are mis-specified

The End! :-) questions/comments/suggestions (nice ones!) very welcome!