Energy generation through electrogenic organism microsystems

This project will look for evidence of coherent electron transport from bacterial cells to electrodes as a means of efficient energy generation.

Start date
Ongoing
Duration
35 months
Application deadline
Ongoing
Funding information

All University fees are covered for the duration of the project with a stipend of approximately £15,000 per year for eligible UK/EU students. 

About

In this project, you will pursue the following lines of research connecting electrogenic bacteria and quantum effects:

  • Explore in detail the electron transport mechanisms between membrane cytrochromes and electrode along pili. Is this a classical conductive transport, is it ion transport, or does it involve quantum tunnelling along a series of Fe-S clusters? For example, the quantum extension of the classical Drude theory of metal conductivity shows that regularly spaced potential wells (positive metal atom core) can achieve nearly 100% electron permeability through superposition of quantum wave packets. What permeability rates can the (regular) potential wells associated with geometrical arrangement of FeS clusters in pili achieve?
  • So far, bio-electricity has been produced using metallic (or carbon) electrodes as the interface between the microbial electro-generation and the electric load. We want to examine here how using a semiconductor as the electrode influences the microbial metabolism and therefore electron transfer.
  • Semiconductors are characterised by the energy-band gaps for electrons, implying that electrons in them can exist only on discrete potential / energy levels (as opposed to metals or carbon). Therefore, the electron donation process from microorganism is constrained by these potential bands. Consequently microorganisms cannot change the energy-level at which they are donating electrons continuously, but only in discrete steps. How does this influence the composition and metabolism of a microbial species (or a microbial community) with respect to its electrogenicity?
  • Use semiconductor electrodes to create a varied and differentiated microbial community. Quantum effects allow to have a marked potential gradient along the surface of an electrode, and therefore electrogenic microbes with a preferred donation voltage would group better in the region where this potential exists along the gradient on the electrode surface. This potential gradient will allow for a completely new and efficient way to analyse the electrogenic behaviour in a multi-species community by differentiating the electric habitat along the gradient, while all the species still share a common biochemical habitat. This would allow for new communities to evolve that perhaps can metabolise incoming organic waste more efficiently: each species could donate electrons to the electrode at their preferred potential while still allowing exchange of partial oxidised organic compounds between them.

For the last 10 years, we have been working with bioelectrochemical systems, using electrogenic microorganisms able to transfer electrons to an external solid acceptor such as an electrode. If the electrode is connected via an external circuit to a cathode, an electric current is produced (of the order of mW/m2 of anode). Several mechanisms have been proposed for external electron transfer by bacteria to electrode. One of them involves the modification of the cell membrane to form a pilus, which acts as a nanowire that attaches to the solid electrode. It has been shown that electrons are transported along the length of those bacterial nanowires (El-Naggar et al PNAS (2010) 107(42), 18127–18131). Other work has shown electron tunnelling between FeS clusters (a quantum effect) in enzymes (cytochromes) of the same species (Wigginton et al Geochim Cosmochim Acta (2007) 71, 543–555). There are experimental methods to measure electron transfer (Xian-Wei Liu et al Sci Reports 4, 3732 DOI: 10.1038/srep03732) and models have been developed which attempt to explain the phenomena involved (Polizzi et al Faraday Discuss 155, 43–62). There is an ongoing discussion about the true nature of the mechanisms involved, either electron hopping or electron tunnelling. We propose using semiconductors as opposed to metals in these systems, as the potential gradient which can be produced on the surface will allow selective growth of microorganisms with different redox potentials, and the consequent improved transfer of electrons from the microorganism to the electrical system.

Eligibility criteria

To be eligible, you will need a 2:1 or above in a BSc or MSc or equivalent degree in biophysics, biological chemistry, bioelectronics or bioengineering would be desirable.

Experience in computer modelling of biological reactions and/or modelling of charge transfer and transport in biological, organic or inorganic systems.

If English is not your first language, then you are required to have an IELTS score of 6.5 or above.

Please note that international applicants will be considered but will not receive additional stipend funding.

How to apply

To apply for this, firstly apply for the Biosciences and Medicine PhD. During your application, please mention your desire to apply to this studentship in order to be considered.

Biosciences and Medicine PhD

Contact details

Claudio Avignone Rossa FRSB
09 AX 01
Telephone: +44 (0)1483 686457
E-mail: C.Avignone-Rossa@surrey.ac.uk

Studentships at Surrey

We have a wide range of studentship opportunities available.