Inhale project studentship 2020 entry

Numerical simulation of the influence of urban trees on roadside pollutant dispersion.

The aim of this PhD study is to investigate the influence of trees (height, leaf density, spacing, etc.) on particulate pollutants in urban and build a biology-greening model using CFD, which is to predict the particles concentrations and contribute to the tree planting schemes so as to improve urban air quality.

Start date
4 January 2021
3 years
Application deadline
Funding information

The funding covers academic fees for UK/EU students. You will also receive a stipend of £15,500 per annum to cover your living expenses. Additional funding is available to present your work in a conference and for project related costs. Opportunities for tutorial support in the department are available and will enhance your teaching experience as well as provide further income (approximately £1,200-£1,500 per annum).


Urban roadside green furniture such as trees and hedges could efficiently reduce exposure to roadside pollutants. Their physical properties such as leaf surfaces can act as biological filters.

Complementing the scope of EPSRC funded Health assessment across biological length scales for personal pollution exposure and its mitigation (INHALE) project the objectives of this project are to investigate the influence of trees on air pollutants via adopting an integrated modelling approach including particle physics, deposition properties and health benefits of reduced concentrations on at-risk people such as asthmatics.

The work will include simulation of several cases using CFD methods. The momentum drag and particle deposition sink terms will be employed in the simulation model and simulated results evaluate against the monitored results. Finally, this model will be utilised to achieve the prediction of particles dispersion and deposit in the urban area considering greening effects, and further propose evidence-based optimum dimensions of relevant planting schemes to reduce impact of particulate pollution on public health.


While the specific objectives will be defined in the beginning of the project, the broad objectives of the project will include:

  • Developing a CFD-based greening model that considers detailed particle physics and green infrastructure properties, to allow assessment of the trees/hedges under different configurations such as their efficacy for roadside schools and parks.
  • Long-term monitoring of experiment data that could allow validation of computational model and build understanding of the pollutant reductions and alteration in physicochemical properties of particles.
  • Optimum dimensions (shape, height, width, leaf area density, vegetation types) of relevant planting schemes and presenting the project findings in a user-friendly tool to allow policy makers/relevant stakeholders.

The expected outcome will be a greening model that can allow prediction of diffusion and deposition of pollutants on green infrastructure and optimisation of various greening scenarios, and a user-friendly tool summarising the findings of the entire project for possible utilisation by stakeholders/interested users.


The PhD project will be supervised by Professor Prashant Kumar, who is a founding Director of the Global Centre for Clean Air Research (GCARE). He has extensive experience in air pollution and green infrastructure monitoring/modelling and particle dynamics modelling. The student will work in a team of postdoctoral/PhD researchers at the GCARE team. They will work closely with GCARE and project collaborators from the Imperial College London.

Related links
INHALE project Project news piece Global Centre for Clean Air Research Team members Research projects

Eligibility criteria

Candidates are expected to have:

  • A MEng/MSc in Environmental/Chemical/Civil/ Mechanical/Aeronautical/Automotive/Fluid Mechanics/Particle Physics/ /Transportation Engineering/Science or relevant discipline with a UK equivalent 2:1 classification or above.


  • A BEng in Environmental/Chemical/Civil/ Mechanical/Aeronautical/Automotive/Fluid Mechanics/Particle Physics/Transportation Engineering/Science or relevant discipline with a UK equivalent 2:1 classification or above and MSc/MEng degree in relevant discipline.

In addition to the academic qualifications listed above, skills in computational fluid dynamics modelling of air pollution using ANYSYS/OpenFoam, as well as background/interest in air pollution monitoring/particle physics/statistical data analysis, are desirable. Relevant work experience is also useful (please provide sufficient detail so that its relevance can be established).

Non-native speakers of English will normally be required to have IELTS 6.5 or above (or equivalent) with 6.0 in each individual category.

*The funding for this project is primarily available to citizens of UK/EU. Any interested overseas candidates need to cover the difference between the home and overseas fee difference by themselves. In case of exceptional overseas candidates, options to cover this difference may be explored.

How to apply

Applicants are required to send a cover letter explaining their interest in the project, a CV with relevant qualifications and prior expertise in areas relevant to the project, relevant transcripts and the names and contact details of two referees. At least one reference should be from an individual with good knowledge of the applicant’s academic record, especially in projects/dissertations.

Before making an online application, please discuss your interest and CV with Professor Kumar.

Suitable interview dates will be directly arranged with shortlisted applicants.

This studentship start date can be managed depending on the candidate's preference to either the 1 October or 2 January.

Application deadline

Contact details

Prashant Kumar
26 AA 03
Telephone: +44 (0)1483 682762

GCARE is a multidisciplinary centre, headed by Professor Prashant Kumar, researching in areas of air pollution, air-climate interactions, built and natural environments in the context of cities, megacities and rural areas, with an aim to develop engineering-driven solutions and regulatory strategies for mitigation of environmental risks by means of advanced measurements and modelling techniques. The GCARE’s research projects are funded by the UKRI (e.g., EPSRC, NERC, ESRC, Innovate UK), numerous national and international funding bodies (e.g., EU H2020, British Council, UKIERI) and the industry. Further information can be found here

Studentships at Surrey

We have a wide range of studentship opportunities available.