(TP12.2)

A Study of Transient Cornering Property by Use of an Analytical Tyre Model

Naoshi Miyashita
YOKOHAMA Rubber Co., Ltd.
1. Purpose of This Study (1)

The side force F_y of a cornering tyre shows some delayed responses to steering inputs.

- Vehicle dynamics / Ride quality

- Side force: F_y
- Cornering force: $CF \approx F_y \cos a$
- Self-aligning torque: M_z (SAT)
1. Purpose of This Study (2)

- Transient cornering property is characterized by ...
 - (1) Steady-state gain
 - (2) Time constant

- How can the part stiffness (tread, belt and sidewall) affect the response parameter (1) and (2)?
1. Purpose of This Study (3)

- Analytical descriptions of the steady and transient cornering, which is applicable to both tyre design and vehicle simulation.

- How can the tread, belt and sidewall stiffness change the step response of side force F_y and self-aligning torque M_z?

Simplified modeling
Contents

1. Purpose of This Study
2. Steady Cornering Model
3. Transient Cornering Model
4. Numerical Simulations (Effect of Tread, Belt and Sidewall Parts)
5. Model Validation
6. Conclusion
2. Steady Cornering Model

Load dependence of side force F_y and self-aligning torque M_z at a small slip angle α.

- **Fiala Model**
 - E. Fiala (1954)
 - For bias tyres.
 - Poor description for M_z.

- **Neo-FIALA Model**
 - Miyashita & Kabe (2003)
 - For radial tyres.
 - Good description for F_y and M_z.
2. Steady Cornering Model

Origin of Side Force F_y

Shear deformation of tread rubber by slip angle α

- Side force F_y, Self-aligning torque M_z
2. Steady Cornering Model

Neo-FIALA Model (1)

The cornering-tyre deformation is approximated by a combination of (i) Shear, (ii) Deflection and (iii) Torsion.

(i) Shear deformation of tread rubber

(ii) In-plane belt deflection (F_y feedback)

(iii) Out-plane sidewall torsion (M_z feedback)

Tyre illustrations are the extremely stretched view to help understanding.
2. Steady Cornering Model

Neo-FIALA Model (2)

[Steady Model] (For a small slip angle)

- Contact length \(l \)
- Contact width \(w \)
- Lateral spring constant of tread element \(C_y \)
- Deflection compliance of belt \(\epsilon \)
- Torsional stiffness of sidewall \(G_{mz} \)

\[
\begin{align*}
\alpha_e &= \alpha - \frac{M_z}{G_{mz}} \\
F_y &= K_{y0} \left(\tan \alpha_e - \frac{\epsilon l F_y}{3} \right), \quad K_{y0} = \frac{C_y w l^2}{2} \\
M_z &= A_{s0} \tan \alpha_e, \quad A_{s0} = \frac{C_y w l^3}{12}
\end{align*}
\]
2. Steady Cornering Model

Neo-FIALA Model (3)

The model can describe the steady load-dependence of F_y and M_z with the deformation stiffness of (i) Shear, (ii) Deflection and (iii) Torsion.

Comparison between measurements and model
(Load dependence at 200kPa, 10km/h, $\alpha=1\text{deg}$ for a 195/65R15 tyre)
The time differential term $\frac{dF_y}{dt}$ and $\frac{dM_z}{dt}$ are added to the F_y and M_z feedback loop, respectively.
3. Transient Cornering Model

Further Simplified Assumption

(a) The dynamic characteristic lengths, such as the relaxation length σ, are assumed to be roughly proportional to the contact length l. And the differential term $\frac{dF_y}{dt}$, $\frac{dM_z}{dt}$ contribute proportionally to l/v.

(b) The contribution of initial torsional torque to SAT M_z is neglected.

(a) Bottom view of a cornering tyre (stretched)

(b) An neglected torque
3. Transient Cornering Model (2)

[Transient Model]

\[
\frac{F_y(s)}{a(s)} = \frac{K_y}{(1 + T_1s)(1 + T_2s)} \quad \text{(Transfer function of } F_y; \text{ 2nd-order lag)}
\]

\[
\frac{M_z(s)}{a(s)} = \frac{A_s}{1 + T_2s} \quad \text{(Simplified transfer function of } M_z; \text{ 1st-order lag)}
\]

\[
T_1 = \frac{K_{y0} \varepsilon \kappa l^2}{v (3 + K_{y0} \varepsilon \ell)} = \frac{K_y}{K_{dr}v} \quad \text{(Time constant of belt deflection)}
\]

\[
T_2 = \frac{A_{s0} \kappa l}{(A_{s0} + G_{mz})v} = \frac{A_s}{K_{rr}v} \quad \text{(Time constant of sidewall torsion)}
\]

\[
K_{dr} = \frac{3 \varepsilon \kappa l^2}{v (1 + A_{s0}/G_{mz})} \quad \text{(Deflection stiffness)}
\]

\[
K_{rr} = \frac{G_{mz}}{\kappa l} \quad \text{(Torsional stiffness)}
\]
3. Transient Cornering Model

Block Diagram
3. Transient Cornering Model

Prediction of Step Response

(a) Load dependence of steady cornering

(b) Step response of F_y and M_z at a fixed load
4. Numerical Simulations

How can the tread, belt and sidewall stiffness change the step response of side force F_y and self-aligning torque M_z?

Deformation Stiffness
(Neo-FIALA model)

Part Stiffness
(Spring Bedded Ring)

[Conditions]

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>tyre size</td>
<td>195/65R15</td>
</tr>
<tr>
<td>inflation</td>
<td>200 kPa</td>
</tr>
<tr>
<td>load</td>
<td>4 kN</td>
</tr>
<tr>
<td>velocity</td>
<td>10 km/h</td>
</tr>
</tbody>
</table>
4. Numerical Simulations

Effect of 'Tread Ctr'

Side force: Down (earlier times)
Up (later times)

SAT: Up (later times)
4. Numerical Simulations

Effect of 'Belt EIz'

- Side force: Up (all times)
- SAT: No change
4. Numerical Simulations

Effect of 'Sidewall ky'

- Side force: Up (all times)
- SAT: Up (all times)
5. Model Validation

Model-parameter estimation by the response against 'Input A'

[Input A] Quasi-step Input @40 km/h

Prediction of the response against 'Input B'

[Input B] Sinusoidal Input @5, 40, 120 km/h

[Measurement Conditions]

<table>
<thead>
<tr>
<th>Test Tyre</th>
<th>205/55ZR16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inflation</td>
<td>200 kPa</td>
</tr>
<tr>
<td>Load</td>
<td>4.22 kN</td>
</tr>
<tr>
<td>Apparatus</td>
<td>MTS Flat-Trac III</td>
</tr>
</tbody>
</table>
5. Model Validation

Prediction of Frequency Response

- **Gain** — The estimated model is good agreement with measurements.
 (Input A)
- **Phase** — The model deviates from measurements at higher frequencies.
 (Input B)
 (that may come from the neglected viscoelasticity of rubber parts)
6. Conclusion

- The cornering-tyre deformation is approximately described with a combination of fundamental deformation (i)~(iii).

 (i) Shear deformation of tread rubber block
 (ii) In-plane belt deflection (time constant T_1)
 (iii) Out-plane sidewall torsion (time constant T_2)

- Deformation stiffness (i)~(iii) lead to the transient cornering model.

 \[
 \text{Side force: } \frac{F_y(s)}{a(s)} = \frac{K_y}{(1 + T_1 s)(1 + T_2 s)} \quad (2\text{nd-order lag})
 \]

 \[
 \text{SAT: } \frac{M_z(s)}{a(s)} = \frac{A_s}{1 + T_2 s} \quad (\text{Simplified, 1st-order lag})
 \]
Thank You for Your Attention.