Placeholder image for staff profile

Mr Anthony Wu

Engineering Doctorate student


Wu AT, Lovett D, McEwan M, Cecelja F, Chen T (2016) A spreadsheet calculator for estimating biogas production and economic measures for UK-based farm-fed anaerobic digesters,Bioresource Technology220(Nov)pp. 479-489 Elsevier
This paper presents a spreadsheet calculator to estimate biogas production and the operational revenue and costs for UK-based farm-fed anaerobic digesters. There exist sophisticated biogas production models in published literature, but the application of these in farm-fed anaerobic digesters is often impractical. This is due to the limited measuring devices, financial constraints, and the operators being non-experts in anaerobic digestion. The proposed biogas production model is designed to use the measured process variables typically available at farm-fed digesters, accounting for the effects of retention time, temperature and imperfect mixing. The estimation of the operational revenue and costs allow the owners to assess the most profitable approach to run the process. This would support the sustained use of the technology. The calculator is first compared with literature reported data, and then applied to the digester unit on a UK Farm to demonstrate its use in a practical setting.

Model Predictive Control (MPC) is a solution towards more energy-efficient waste treatment without compromising on treatment quality. A key component is the process model describing how the inputs and outputs correlate. MPC uses this model to predict future outputs over a finite horizon to decide on step changes to make at the input. These step changes are made so that the output reaches and maintains at a user specified set point. For MPC to be effective, the process model needs to accurately describe the process behaviour. This is a difficult challenge in waste treatment processes due to a combination of slow response, process complexity, and large disturbances.

This research project investigated two research avenues towards developing better modelling techniques. This would result in more accurate models or achieve a sufficiently accurate model with fewer experiments. The first avenue is Constrained Model Identification (CMI). Model identification is an optimisation problem to estimate the model parameters. In CMI, process knowledge from first principles and operator experience is translated into optimisation constraints to aid data-driven model identification.

The second avenue is Sequential Optimal Experiment Design (SOED). This uses the concept of measuring a value representing information content of a dataset. Like MPC, SOED uses the model to make output predictions. The expected output response to a sequence of input steps form a dataset, and SOED is an optimisation problem to maximise the information content of that expected dataset, by changing the input step sequence. Once optimised, this step sequence is applied in the next experiment.

The third part of this work focused on farm-fed anaerobic digestion. It is a renewable energy technology fuelled by agricultural waste. They rely on government incentives to be profitable, but these incentives have steadily been decreased. This project investigated methods to help farmers in the day-to day operation of the unit, including biogas production estimation, automated fault identification and partial diagnosis.