Honglin Li

Honglin Li

Postgraduate Research Student

My publications


Samaneh Kouchaki, Francesca Palermo, Honglin Li, Alexander Capstick, Nan Fletcher-Lloyd, Yuchen Zhao, Ramin Nilforooshan, David Sharp, Payam Barnaghi (2021)Designing A Clinically Applicable Deep Recurrent Model to Identify Neuropsychiatric Symptoms in People Living with Dementia Using In-Home Monitoring Data

Agitation is one of the neuropsychiatric symptoms with high prevalence in de-mentia which can negatively impact the Activities of Daily Living (ADL) and the independence of individuals. Detecting agitation episodes can assist in providing People Living with Dementia (PLWD) with early and timely interventions. Analysing agitation episodes will also help identify modifiable factors such as ambient temperature and sleep as possible components causing agitation in an individual. This preliminary study presents a supervised learning model to anal-* We apply a recurrent deep learning model to identify agitation episodes validated and recorded by a clinical monitoring team. We present the experiments to assess the efficacy of the proposed model. The proposed model achieves an average of 79.78% recall, 27.66% precision and 37.64% F1 scores when employing the optimal parameters, suggesting a good ability to recognise agitation events. We also discuss using machine learning models for analysing the behavioural patterns using continuous monitoring data and explore clinical applicability and the choices between specificity and specificity in home monitoring applications.

Honglin Li, Shirin Enshaeifar, Frieder Ganz, Payam Barnaghi (2019)Continual Learning in Deep Neural Network by Using a Kalman Optimiser, In: Proceedings of the 2019 ICML Workshop on Uncertainty & Robustness in Deep Learning ICML

Learning and adapting to new distributions or learning new tasks sequentially without forgetting the previously learned knowledge is a challenging phenomenon in continual learning models. Most of the conventional deep learning models are not capable of learning new tasks sequentially in one model without forgetting the previously learned ones. We address this issue by using a Kalman Optimiser. The Kalman Optimiser divides the neural network into two parts: the long-term and short-term memory units. The long-term memory unit is used to remember the learned tasks and the short-term memory unit is to adapt to the new task. We have evaluated our method on MNIST, CIFAR10, CIFAR100 datasets and compare our results with state-of-the-art baseline models. The results show that our approach enables the model to continually learn and adapt to the new changes without forgetting the previously learned tasks.

Zhong Ji, Biying Cui, Huihui Li, Yu-Gang Jiang, Tao Xiang, Timothy Hospedales, Yanwei Fu (2020)Deep Ranking for Image Zero-Shot Multi-Label Classification, In: IEEE Transactions on Image Processing29pp. 6549-6560 IEEE

During the past decade, both multi-label learning and zero-shot learning have attracted huge research attention, and significant progress has been made. Multi-label learning algorithms aim to predict multiple labels given one instance, while most existing zero-shot learning approaches target at predicting a single testing label for each unseen class via transferring knowledge from auxiliary seen classes to target unseen classes. However, relatively less effort has been made on predicting multiple labels in the zero-shot setting, which is nevertheless a quite challenging task. In this work, we investigate and formalize a flexible framework consisting of two components, i.e., visual-semantic embedding and zero-shot multi-label prediction. First, we present a deep regression model to project the visual features into the semantic space, which explicitly exploits the correlations in the intermediate semantic layer of word vectors and makes label prediction possible. Then, we formulate the label prediction problem as a pairwise one and employ Ranking SVM to seek the unique multi-label correlations in the embedding space. Furthermore, we provide a transductive multi-label zero-shot prediction approach that exploits the testing data manifold structure. We demonstrate the effectiveness of the proposed approach on three popular multi-label datasets with state-of-the-art performance obtained on both conventional and generalized ZSL settings.