Dr Imran Nasim


Postgraduate Research Student

Publications

Matthew D. A. Orkney, Justin Read, Martin P. Rey, Imran Nasim, Andrew Pontzen, Oscar Agertz, Stacy Y. Kim, Maxime Delorme, Walter Dehnen (2021)EDGE: two routes to dark matter core formation in ultra-faint dwarfs, In: Monthly notices of the Royal Astronomical Society504(3)pp. 3509-3522 Oxford Univ Press

In the standard Lambda cold dark matter paradigm, pure dark matter simulations predict dwarf galaxies should inhabit dark matter haloes with a centrally diverging density 'cusp'. This is in conflict with observations that typically favour a constant density 'core'. We investigate this 'cusp-core problem' in 'ultra-faint' dwarf galaxies simulated as part of the 'Engineering Dwarfs at Galaxy formation's Edge' project. We find, similarly to previous work, that gravitational potential fluctuations within the central region of the simulated dwarfs kinematically heat the dark matter particles, lowering the dwarfs' central dark matter density. However, these fluctuations are not exclusively caused by gas inflow/outflow, but also by impulsive heating from minor mergers. We use the genetic modification approach on one of our dwarf's initial conditions to show how a delayed assembly history leads to more late minor mergers and, correspondingly, more dark matter heating. This provides a mechanism by which even ultra-faint dwarfs (M-star < 10(5) M-circle dot), in which star formation was fully quenched at high redshift, can have their central dark matter density lowered over time. In contrast, we find that late major mergers can regenerate a central dark matter cusp, if the merging galaxy had sufficiently little star formation. The combination of these effects leads us to predict significant stochasticity in the central dark matter density slopes of the smallest dwarfs, driven by their unique star formation and mass assembly histories.

Imran Nasim, Alessia Gualandris, Justin Read, Walter Dehnen, Maxime Delorme, Fabio Antonini (2020)Defeating stochasticity: coalescence time-scales of massive black holes in galaxy mergers, In: Monthly notices of the Royal Astronomical Society497(1)pp. 739-746 Oxford Univ Press

The coalescence of massive black hole binaries (BHBs) in galactic mergers is the primary source of gravitational waves (GWs) at low frequencies. Current estimates of GW detection rates for the Laser Interferometer Space Antenna and the Pulsar Timing Array vary by three orders of magnitude. To understand this variation, we simulate the merger of equal-mass, eccentric, galaxy pairs with central massive black holes and shallow inner density cusps. We model the formation and hardening of a central BHB using the fast multiple method as a force solver, which features a O(N) scaling with the number N of particles and obtains results equivalent to direct-summation simulations. At N similar to 5 x 10(5), typical for contemporary studies, the eccentricity of the BHBs can vary significantly for different random realizations of the same initial condition, resulting in a substantial variation of the merger time-scale. This scatter owes to the stochasticity of stellar encounters with the BHB and decreases with increasing N. We estimate that N similar to 10(7) within the stellar half-light radius suffices to reduce the scatter in the merger time-scale to similar to 10 per cent. Our results suggest that at least some of the uncertainty in low-frequency GW rates owes to insufficient numerical resolution.

Imran Tariq Nasim, Alessia Gualandris, Justin I Read, Fabio Antonini, Walter Dehnen, Maxime Delorme (2021)Formation of the largest galactic cores through binary scouring and gravitational wave recoil, In: Monthly notices of the Royal Astronomical Society502(4)pp. 4794-4814

Massive elliptical galaxies are typically observed to have central cores in their projected radial light profiles. Such cores have long been thought to form through ‘binary scouring’ as supermassive black holes (SMBHs), brought in through mergers, form a hard binary and eject stars from the galactic centre. However, the most massive cores, like the $\sim 3{\, \mathrm{kpc}}$ core in A2261-BCG, remain challenging to explain in this way. In this paper, we run a suite of dry galaxy merger simulations to explore three different scenarios for central core formation in massive elliptical galaxies: ‘binary scouring’, ‘tidal deposition’, and ‘gravitational wave (GW) induced recoil’. Using the griffin code, we self-consistently model the stars, dark matter, and SMBHs in our merging galaxies, following the SMBH dynamics through to the formation of a hard binary. We find that we can only explain the large surface brightness core of A2261-BCG with a combination of a major merger that produces a small $\sim 1{\, \mathrm{kpc}}$ core through binary scouring, followed by the subsequent GW recoil of its SMBH that acts to grow the core size. Key predictions of this scenario are an offset SMBH surrounded by a compact cluster of bound stars and a non-divergent central density profile. We show that the bright ‘knots’ observed in the core region of A2261-BCG are best explained as stalled perturbers resulting from minor mergers, though the brightest may also represent ejected SMBHs surrounded by a stellar cloak of bound stars.

Imran Nasim, Alessia Gualandris, Justin Read, Walter Dehnen, Maxime Delorme, Fabio Antonini (2020)Defeating stochasticity: coalescence timescales of massive black holes in galaxy mergers, In: Monthly Notices of the Royal Astronomical Society Oxford University Press

The coalescence of massive black hole binaries (BHBs) in galactic mergers is the primary source of gravitational waves (GWs) at low frequencies. Current estimates of GW detection rates for the Laser Interferometer Space Antenna and the Pulsar Timing Array vary by three orders of magnitude. To understand this variation, we simulate the merger of equal-mass, eccentric, galaxy pairs with central massive black holes and shallow inner density cusps. We model the formation and hardening of a central BHB using the Fast Multiple Method as a force solver, which features a O¹Nº scaling with the number N of particles and obtains results equivalent to direct-summation simulations. At N 5105, typical for contemporary studies, the eccentricity of the BHBs can vary significantly for different random realisations of the same initial condition, resulting in a substantial variation of the merger timescale. This scatter owes to the stochasticity of stellar encounters with the BHB and decreases with increasing N. We estimate that N 107 within the stellar half-light radius suffices to reduce the scatter in the merger timescale to 10%. Our results suggest that at least some of the uncertainty in low-frequency GW rates owes to insufficient numerical resolution.