Placeholder image for staff profiles

Dr Kaspar Snashall

My publications


Kaspar Snashall, Marios Constantinou, Maxim Shkunov (2017)Flow-assisted Dielectrophoresis: A Low Cost Method for the Fabrication of High Performance Solution-processable Nanowire Devices, In: Journal of Visualized Experiments(130)e56408 Journal of Visualized Experiments

Flow-assisted dielectrophoresis (DEP) is an efficient self-assembly method for the controllable and reproducible positioning, alignment, and selection of nanowires. DEP is used for nanowire analysis, characterization, and for solution-based fabrication of semiconducting devices. The method works by applying an alternating electric field between metallic electrodes. The nanowire formulation is then dropped onto the electrodes which are on an inclined surface to create a flow of the formulation using gravity. The nanowires then align along the gradient of the electric field and in the direction of the liquid flow. The frequency of the field can be adjusted to select nanowires with superior conductivity and lower trap density. In this work, flow-assisted DEP is used to create nanowire field effect transistors. Flow-assisted DEP has several advantages: it allows selection of nanowire electrical properties; control of nanowire length; placement of nanowires in specific areas; control of orientation of nanowires; and control of nanowire density in the device. The technique can be expanded to many other applications such as gas sensors and microwave switches. The technique is efficient, quick, reproducible, and it uses a minimal amount of dilute solution making it ideal for the testing of novel nanomaterials. Wafer scale assembly of nanowire devices can also be achieved using this technique, allowing large numbers of samples for testing and large-area electronic applications.