
Rolando Matos
Academic and research departments
Faculty of Health and Medical Sciences, School of Biosciences and Medicine.My publications
Publications
Optical coherence tomography angiography (OCTA) performs non-invasive visualization and characterization of microvasculature in research and clinical applications mainly in ophthalmology and dermatology. A wide variety of instruments, imaging protocols, processing methods and metrics have been used to describe the microvasculature, such that comparing different study outcomes is currently not feasible. With the goal of contributing to standardization of OCTA data analysis, we report a user-friendly, open-source toolbox, OCTAVA (OCTA Vascular Analyzer), to automate the pre-processing, segmentation, and quantitative analysis of en face OCTA maximum intensity projection images in a standardized workflow. We present each analysis step, including optimization of filtering and choice of segmentation algorithm, and definition of metrics. We perform quantitative analysis of OCTA images from different commercial and non-commercial instruments and samples and show OCTAVA can accurately and reproducibly determine metrics for characterization of microvasculature. Wide adoption could enable studies and aggregation of data on a scale sufficient to develop reliable microvascular biomarkers for early detection, and to guide treatment, of microvascular disease.
The epicardium constitutes an untapped reservoir for cardiac regeneration. Upon heart injury, the adult epicardium re-activates, leading to epithelial-to-mesenchymal transition (EMT), migration and differentiation. While interesting mechanistic and therapeutic findings arose from lower vertebrates and rodent models, the introduction of an experimental system representative of large mammals would undoubtedly facilitate translational advancements. Here, we apply innovative protocols to obtain living 3D organotypic epicardial slices from porcine hearts, encompassing the epicardial/myocardial interface. In culture, our slices preserve the in vivo architecture and functionality, presenting a continuous epicardium overlaying a healthy and connected myocardium. Upon thymosin β4 treatment of the slices, the epicardial cells become activated upregulating epicardial and EMT genes, resulting in epicardial cell mobilization and differentiation into epicardial-derived mesenchymal cells. Our 3D organotypic model enables to investigate the reparative potential of the adult epicardium, offering an advanced tool to explore ex vivo the complex 3D interactions occurring within the native heart environment