Quantifying the 12C+12C sub-Coulomb fusion with the time-dependent wave-packet method

Alexis Diaz-Torres and Michael Wiescher

Citation: AIP Conf. Proc. 1491, 273 (2012); doi: 10.1063/1.4764255

View online: http://dx.doi.org/10.1063/1.4764255

View Table of Contents: http://proceedings.aip.org/dbt/dbt.jsp?KEY=APCPCS&Volume=1491&Issue=1

Published by the American Institute of Physics.

Related Articles
Application of adaptive mesh refinement to particle-in-cell simulations of plasmas and beams

rf gas plasma source development for heavy ion fusion

Synthetic paths to the heavy elements (plenary)

Perturbation of a lattice spectral band by a nearby resonance

The discovery of new transuranic elements and the role of the electron cyclotron resonance ion sources

Additional information on AIP Conf. Proc.
Journal Homepage: http://proceedings.aip.org/
Journal Information: http://proceedings.aip.org/about/about_the_proceedings
Top downloads: http://proceedings.aip.org/dbt/most_downloaded.jsp?KEY=APCPCS
Information for Authors: http://proceedings.aip.org/authors/information_for_authors

ADVERTISEMENT

Explore AIP’s new open-access journal

• Article-level metrics now available

• Join the conversation! Rate & comment on articles
Quantifying the 12C + 12C Sub-Coulomb Fusion with the Time-Dependent Wave-Packet Method

Alexis Diaz-Torres* and Michael Wiescher†

ECT, Strada delle Tabarelle 286, I-38123 Villazzano, Trento, Italy
† JINA and Department of Physics, University of Notre Dame, IN 46656, USA

Abstract. This contribution provides a preliminary study of the 12C + 12C sub-Coulomb fusion reaction using the time-dependent wave-packet method within a nuclear molecular picture. The theoretical sub-Coulomb fusion resonances seem to correspond well with observations. The present method might be a more suitable tool for expanding the cross-section predictions towards lower energies than the commonly used potential-model approximation.

Keywords: Molecular collective states, Fusion, S-factor, Time-dependent wave-packet method
PACS: 24.30.-v, 25.70.Ef, 26.30.-k

Understanding the 12C + 12C sub-Coulomb fusion is a long-standing issue in heavy-ion physics. This reaction is critical for a number of stellar environments and conditions, and plays a key role in the chemical evolution of the Universe [1]. Of importance is to know the fusion cross section at energies near the Gamow peak (∼ 1.5 MeV). It is usually obtained by extrapolating high-energy fusion data [2, 3], as direct experiments are extremely difficult to carry out at very low incident energies (< 3 MeV). The presence of pronounced resonance structures in the observed fusion excitation curve makes the extrapolation very uncertain [4, 5, 6].

Understanding the 12C + 12C sub-Coulomb fusion is a long-standing issue in heavy-ion physics. This reaction is critical for a number of stellar environments and conditions, and plays a key role in the chemical evolution of the Universe [1]. Of importance is to know the fusion cross section at energies near the Gamow peak (∼ 1.5 MeV). It is usually obtained by extrapolating high-energy fusion data [2, 3], as direct experiments are extremely difficult to carry out at very low incident energies (< 3 MeV). The presence of pronounced resonance structures in the observed fusion excitation curve makes the extrapolation very uncertain [4, 5, 6].

The resonances may be mainly related to collective excitation modes in the dinuclear system, when the two 12C nuclei come into contact (Fig. 1). The 12C intrinsic symmetry axis vibrates and rotates with respect to the internuclear axis. The single-particle molecular shell structure at small internuclear distances is very sensitive to the alignment of the 12C nuclei [7]. Non-axial symmetric configurations preserve the individuality of the overlapping nuclei, while this is not the case for the axial symmetric configuration. The
former favors re-separation, and the latter fusion. The competition among these configurations, as a function of the incident energy and orbital angular momentum, should result in molecular resonance structures in the fusion excitation curve.

This picture is here quantified using the time-dependent wave-packet (TDWP) method which has not been much exploited in nuclear physics [8] unlike chemical physics [9]. This method involves three steps [9]:

1. the definition of the initial wave function $\Psi(t = 0)$,
2. the propagation $\Psi(0) \rightarrow \Psi(t)$, dictated by the time evolution operator, $\exp(-i\hat{H}t/\hbar)$, where \hat{H} is the total Hamiltonian,
3. the calculation of molecular collective states and the fusion cross section from the time-dependent wave function, $\Psi(t)$.

The wave function and the Hamiltonian are represented in a multi-dimensional numerical grid. In this work, these are considered a function of five collective coordinates (Fig. 1): the internuclear distance R, and the (θ_1, ϕ_1) and (θ_2, ϕ_2) spherical angles of the 12C nuclei symmetry axis, thus reducing the complexity of the quantum many-body reaction problem. Moreover, the wave function is not expanded in any intrinsic basis (e.g., rotational or vibrational states of the individual nuclei), but it is calculated directly. The outgoing-wave-boundary condition at large internuclear distances as well as the irreversible process of fusion at small internuclear distances (usually described with an ingoing-wave-boundary condition) are here treated with the absorbing-boundary-condition [10]. The low-energy collision is described in the rotating center-of-mass frame within the nuclear molecular picture [11].

![Figure 2](image-url)

FIGURE 2. Cuts of the 12C + 12C collective PES, $V(R, \theta_1, \phi_1 = 0, \theta_2, \phi_2 = 0)$, as a function of the nuclei separation and alignment. The 90-90 alignment (dashed line) facilitates the access by tunneling to the potential pockets (3 – 6 fm). These are explored by the system, guided by the kinetic-energy operator [13]. The Coriolis force drives non-axial symmetric configurations towards the potential pocket of the axial symmetric configuration (solid line), where fusion occurs by a strong absorption.

Figure 2 shows cuts of the collective potential energy surface (PES) which is calculated using the finite-range liquid drop model [12] with nuclear shapes of the two-center shell model [7]. Fusion is here determined by two processes treated simultaneously:
(i) the tunneling through the many Coulomb barriers in Fig. 2, and (ii) the 12C nuclei re-alignment in the potential pockets. The 90-90 alignment (dashed line) dominates the Coulomb barriers penetrability, but the 0-0 alignment (solid line) is critical for fusion. Non-zero J partial waves substantially contribute to the fusion cross section, as the centrifugal contribution to the 90-90 Coulomb barrier is small for low $J \leq 6\hbar$ and the J-dependent Coriolis interaction, whose strength increases with J and the system compactness, strongly drives the non-axial symmetric configurations towards the potential pocket of the axial symmetric one (solid line), where fusion occurs.

The molecular resonance states with a total width of $\sim 100-180$ keV are presented in Fig. 3, which represent doorway states that irreversibly decay into more complex compound-nucleus states (simulated by the strong absorption providing the inclusive fusion probability) and the 12C + 12C continuum scattering states.

![Energy spectrum of the 12C + 12C system in the potential pockets of Fig. 2. The peaks are molecular resonances with a given spin and total width of $\sim 100-180$ keV. The widths relate to the total time interval spent by the dinuclear system in the potential pockets. These resonances are doorway states for fusion, which decay into more complex compound-nucleus states and the 12C + 12C scattering states. Various resonances exist near the Gamow peak energy (1.5 MeV).](image)

These molecular collective states are reflected in the total fusion excitation curve, as presented in Fig. 4 through the S-factor that includes $J \leq 8\hbar$. The fusion cross section, $\sigma_{\text{fus}}(E)$, is calculated taken into account the identity of the interacting nuclei and the parity of the radial wave function (only even partial waves J are included), i.e., $\sigma_{\text{fus}}(E) = \pi\hbar^2 / (2\mu E) \sum_J (2J + 1)(1 + \delta_{1,2})P_J(E)$, where μ is the reduced mass, E is the incident energy in the center-of-mass frame and P_J is the partial fusion probability. The S-factor is $S(E) = \sigma_{\text{fus}}(E)E \exp(2\pi\eta)$, where the Sommerfeld parameter $\eta = (\mu / 2)^{1/2}Z_1Z_2e^2 / (\hbar E^{1/2})$ and Z_i is the charge number of the 12C nuclei. The features resulting from the preliminary TDWP calculations (solid line) are consistent with those observed in the experimental data [2, 3] (squares). While the widths of the resonances show good agreement, the amplitudes are noticeably different: the theoretical predictions are too low in the higher energy range and too high in the lower energy range. This issue could be clarified using a bigger numerical grid (for checking convergence) and incorporating shell and pairing corrections into the collective mass and PES [14].
FIGURE 4. S-factor excitation function. There is a good qualitative agreement between measurements [2, 3] and preliminary TDWP calculations, highlighting the symphysis of molecular structure and fusion.

Using time-dependent wave-packet dynamics within a nuclear molecular picture, a quantitative study of the 12C + 12C sub-Coulomb fusion has been presented. Preliminary calculations are very promising, indicating a close correlation between molecular collective states and fusion. The present method might be a more suitable tool for expanding the cross section predictions towards lower energies than the usually employed potential-model approach.

ACKNOWLEDGMENTS

Support through the Joint Institute for Nuclear Astrophysics JINA NSF Grant Phys-0822648 is acknowledged.

REFERENCES