Exotic shapes and exotic clusterization

J. Cseh1, J. Darai2, A. Algora3

1Institute of Nuclear Research of the Hungarian Academy of Sciences, Debrecen, Pf. 51, Hungary-4001
cseh@atomki.hu

2Institute of Experimental Physics, University of Debrecen, Debrecen, Pf. 105, Hungary-4010

3IFIC, CSIC-Universidad de Valencia, A.C.22085, E46071, Valencia, Spain
Content

I. Superdeformed (SD) states in N=Z nuclei
II. Clusterization of 36Ar: select reactions
III. 24Mg+12C scattering: HD band
IV. Quasi-dynamical SU(3) symmetry
V. HD state from Nilsson-model
VI. Alpha-emitting reactions
VII. Summary and outlook
I. SD states in N = Z nuclei

Recently.
E.g. in 36Ar: Svensson et al, PRL 85 (2000) 2693.
Many theoretical studies concentrating on SD.
Clusterization is also important for the understanding of their structure.

HD state?
Alpha-cluster-model prediction. (Rae, Merchant, PLB 279 (1992) 207.)
Clusterization: which reaction channel can populate the shape isomers.
II. Binary clusterizations

of the GS, SD and HD in 36Ar
(J. Cseh, A. Algora, J. Darai, P.O. Hess, PRC 70 (2004) 0334311.)

GS and SD are experimentally known.
HD? Alpha-cluster-model, or $\beta = 0.86$.
Method:
a) Microscopic structure:
 U(3) selection rule + Harvey-prescription
b) Energetic preference.
Conclusion:
GS: asymmetric, HD: symmetric, SD: in between 24Mg+12C in each of them.

HD state: 24Mg+12C and 20Ne+16O clusterizations.
Selection rules and Harvey’s prescription

Harvey’s prescription:

Only the number of quanta along the molecular axis (z) is effected (can change).

U(3) selection rule:

In general: \[n_1, n_2, n_3 = n_1^{CI}, n_2^{CI}, n_3^{CI} \otimes n_1^{C2}, n_2^{C2}, n_3^{C2} \otimes n_1^r, 0, 0 \]

E.g.: \[[4, 4, 0] \otimes [4, 4, 0] \otimes [12, 0, 0] = [16, 8, 4] \]

Similarly for the \(U^{ST}(4) \) spin-isospin group.
Harvey’s prescription

Only the number of quanta along the molecular axis (z) can change, while the numbers along the two other directions remain unchanged.

\[
\begin{array}{ccc}
0 & 0 & 3 \\
0 & 2 & 0 \\
1 & 1 & 0 \\
2 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
0 & 0 & 2 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0 \\
\end{array}
\]

\[
\begin{array}{ccc}
12C & + & 12C \\
16O & + & 16O \\
\end{array}
\]
<table>
<thead>
<tr>
<th>st</th>
<th>I_{ex}</th>
<th>I_{sm}</th>
<th>$U(3)$</th>
<th>$a : b : c$</th>
<th>$^{24}\text{Mg} + ^{12}\text{C}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I_t</td>
</tr>
<tr>
<td>GS</td>
<td>0.92</td>
<td>2.00</td>
<td>[20,20,12]</td>
<td>1.3:1.3:1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.97</td>
<td>[20,18,14]</td>
<td>1.2:1.1:1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>2.97</td>
<td>2.83</td>
<td>[32,12,12]</td>
<td>1.7:1:1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.75</td>
<td>[32,14,10]</td>
<td>1.8:1.1:1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.95</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.67</td>
<td>[32,16,8]</td>
<td>1.9:1.3:1</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.35</td>
<td>[40,12,8]</td>
<td>2.2:1.2:1</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.54</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HD</td>
<td>4.4</td>
<td>4.21</td>
<td>[48,8,8]</td>
<td>2.5:1:1</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.21</td>
<td>[48,8,8]</td>
<td>2.5:1:1</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
HD state: $^{24}\text{Mg}+^{12}\text{C}$ and $^{20}\text{Ne}+^{16}\text{O}$ clusterizations, therefore, the HD state can be populated in the $^{24}\text{Mg}+^{12}\text{C}$ and $^{20}\text{Ne}+^{16}\text{O}$ reactions.
III. $^{24}\text{Mg}(^{12}\text{C},^{12}\text{C})^{24}\text{Mg}$ S. Paolo experiment

No satisfactory description with potentials.

2007-2008: potential + resonances:

GS, SD and HD states in 36Ar

![Graph showing the excitation energy $E^{*}(^{36}\text{Ar})$ (MeV) versus $J(J+1)$ for different bands in 36Ar. The bands include the HD-band, the GS-band, and the SD-band, indicated by different markers and colors.](image_url)
Structure of the shape isomers

SD state:
Nilsson, large-scale sm, Skyrme-HF, HF-BCS, AMD, core+alpha,…
4 hw excited, prolate shape with small triaxiality (uncertainty)

HD state:
algebra-cluster.
IV. Quasi-dynamical \textit{SU(3)} symmetry

from Nilsson-model + quasidynamical symmetry

Quasidynamical symmetry (Rowe et al, JMP 29 (1988) 572)

<table>
<thead>
<tr>
<th>operator</th>
<th>eigenvector</th>
<th>example</th>
</tr>
</thead>
<tbody>
<tr>
<td>exact</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>dyn(b) sym.</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>q-dyn.sym.</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Energy-eigenstate: linear combination of basis states belonging to different irreps, but a very special one.
Logic of the calculation

Quadrupole shape >
 Nilsson-model >
 q-dyn. SU(3) symmetry >
 quadrupole shape.

Shape-isomers: stability of the shape with respect to the input parameter.
V. HD state from Nilsson-model

SD: 4hw; joined conclusion of many theoretical studies.

HD: 12hw; alpha-cluster + Nilsson-q-SU(3) symmetry + binary clusterizations + experiment.
VI. Alpha-emitting reactions

So far experimental indications from scattering or transfer reactions: channels match with shape isomers.

How about alpha-emitting reactions (with possible gamma-decay), like e.g. that used for SD?

One-alpha-emitting reactions of alpha-like nuclei are also possible from the structural viewpoint:

\[^{20}\text{Ne}(^{20}\text{Ne},\alpha)^{36}\text{Ar}(\text{HD});
^{24}\text{Mg}(^{16}\text{O},\alpha)^{36}\text{Ar}(\text{HD});
^{28}\text{Si}(^{12}\text{C},\alpha)^{36}\text{Ar}(\text{HD}). \]

Two- or three-alpha emitting is also right (from structural viewpoint):

\[^{24}\text{Ne}(^{20}\text{Ne},2\alpha)^{36}\text{Ar}(\text{HD});
^{24}\text{Mg}(^{24}\text{Mg},3\alpha)^{36}\text{Ar}(\text{HD}). \]
VII. Summary and outlook

Symmetry-considerations can be helpful in studying the shape isomers, cluster configurations and their interrelations in light nuclei.

E.g. in 36Ar HD state (in addition to GS and SD states).
HD state: alpha-cluster + Nilsson-q. calculations
24Mg+12C and 20Ne+16O prediction + observation.
Further experimental verification?! E.g. alpha-emitting react.

Heavy nuclei: exotic clusterization, very exotic clusterization.
Energetics + Pauli-principle.
Phenomenological models (microscopically very difficult).
Quasidynamical SU(3) can be helpful.
Thank you for your attention!