Medical Imaging MSc

To learn more about Surrey and what we offer, sign up to a webinar.

Why Surrey?

Through a mix of lectures, laboratories, clinical demonstrations and hospital visits, our MSc in Medical Imaging will develop you as a professional, enhancing your ability to take on new challenges with confidence. This programme is run together with the Department of Physics.

Programme overview

Medical imaging is a rapidly-growing discipline within the healthcare sector, involving clinicians, physicists, computer scientists and those in IT industries.

This programme delivers the expertise you'll need to forge a career in medical imaging, including radiation physics, image processing, biology, computer vision, pattern recognition, artificial intelligence and machine learning.

Programme structure

This programme is studied full-time over 12 months and part-time over 48 months. It consists of eight taught modules and an extended project.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Facilities, equipment and support

To support your learning, we hold regular MSc group meetings where any aspect of the programme, technical or non-technical, can be discussed in an informal atmosphere. This allows you to raise any problems that you would like to have addressed and encourages peer-based learning and general group discussion.

We provide computing support with any specialised software required during the programme, for example, Matlab.

The Department’s student common room is also covered by the university’s open-access wireless network, which makes it a very popular location for individual and group work using laptops and mobile devices. There is also a Faculty quiet room for individual study.

We pride ourselves on the many opportunities that we provide to visit collaborating hospitals. These enable you to see first-hand demonstrations of medical imaging facilities and to benefit from lectures by professional practitioners.

To support material presented during the programme, you will also undertake a selection of ultrasound and radiation detection experiments, hosted by our sister MSc programme in Medical Physics.

Educational aims of the programme

The taught postgraduate Degree Programmes of the Department are intended both to assist with professional career development within the relevant industry and, for a small number of students, to serve as a precursor to academic research.

Our philosophy is to integrate the acquisition of core engineering and scientific knowledge with the development of key practical skills (where relevant).

To fulfil these objectives, the programme aims to:

  • Attract well-qualified entrants, with a background in Electronic Engineering, Physical Sciences, Mathematics, Computing & Communications, from the UK, Europe and overseas
  • Provide participants with advanced knowledge, practical skills and understanding applicable to the MSc degree
  • Develop participants' understanding of the underlying science, engineering, and technology, and enhance their ability to relate this to industrial practice
  • Develop participants' critical and analytical powers so that they can effectively plan and execute individual research/design/development projects
  • Provide a high level of flexibility in programme pattern and exit point
  • Provide students with an extensive choice of taught modules, in subjects for which the Department has an international and UK research reputation

Intended capabilities

  • Know, understand and be able to apply the fundamental mathematical, scientific and engineering facts and principles that underpin medical imaging
  • Be able to analyse problems within the field of medical imaging and more broadly in electronic engineering and find solutions
  • Be able to use relevant workshop and laboratory tools and equipment, and have experience of using relevant task-specific software packages to perform engineering tasks
  • Know, understand and be able to use the basic mathematical, scientific and engineering facts and principles associated with the topics within medical imaging
  • Be aware of the societal and environmental context of his/her engineering activities
  • Be aware of commercial, industrial and employment-related practices and issues likely to affect his/her engineering activities, particularly (in the case of the Medical Imaging MSc) those related to the safety of patients
  • Be able to carry out research-and-development investigations
  • Be able to design electronic circuits and electronic/software products and systems
  • Demonstrate transferable skills such as problem solving, analysis and critical interpretation of data, through the undertaking of the extended 90-credit project
  • Know how to take into account constraints such as environmental and sustainability limitations, health and safety and risk assessment
  • Have gained comprehensive understanding of design processes
  • Understand customer and user needs, including aesthetics, ergonomics and usability
  • Have acquired experience in producing an innovative design
  • Appreciate the need to identify and manage cost drivers
  • Have become familiar with the design process and the methodology of evaluating outcomes
  • Have acquired knowledge and understanding of management and business practices
  • Have gained the ability to evaluate risks, including commercial risks
  • Understand current engineering practice and some appreciation of likely developments.
  • Have gained extensive understanding of a wide range of engineering materials/components.
  • Understand appropriate codes of practice and industry standards.
  • Have become aware of quality issues in the discipline

Technical characteristics of the pathway

Medical Imaging is a rapidly growing discipline within the healthcare sector, incorporating engineers, physicists, computer scientists and clinicians. It is driven by the recent rapid development of 3-D Medical Imaging Systems, fuelled by an exponential rise in computing power.

New methods have been developed for the acquisition, reconstruction, processing and display of digital medical-image data with unprecedented speed, resolution and contrast.

This programme in Medical Imaging is aimed at training graduates for careers in this exciting multi-disciplinary area, and our graduates can expect to find employment in the medical imaging industry or the public health care sector.

It represents a blend of fundamental medical physics topics concerned with image acquisition and reconstruction coupled with imaging science and image engineering topics such that graduates understand how images are formed and how advanced machine-based methods can be bought to bare to provide new diagnostic information.

Programme learning outcomes

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

General transferable skills

  • Be able to use computers and basic IT tools effectively
  • Information retrieval. Be able to retrieve information from written and electronic sources
  • Be able to apply critical but constructive thinking to received information
  • Be able to study and learn effectively
  • Be able to communicate effectively in writing and by oral presentations
  • Be able to present quantitative data effectively, using appropriate methods
  • Be able to manage own time and resources
  • Be able to develop, monitor and update a plan, in the light of changing circumstances
  • Be able to reflect on own learning and performance, and plan its development/improvement, as a foundation for life-long learning

Underpinning learning

  • Know and understand scientific principles necessary to underpin their education in electronic and electrical engineering, to enable appreciation of its scientific and engineering content, and to support their understanding of historical, current and future developments
  • Know and understand the mathematical principles necessary to underpin their education in electronic and electrical engineering and to enable them to apply mathematical methods, tools and notations proficiently in the analysis and solution of engineering problems
  • Be able to apply and integrate knowledge and understanding of other engineering disciplines to support study of electronic and electrical engineering

Engineering problem-solving

  • Understand electronic and electrical engineering principles and be able to apply them to analyse key engineering processes
  • Be able to identify, classify and describe the performance of systems and components through the use of analytical methods and modelling techniques
  • Be able to apply mathematical and computer-based models to solve problems in electronic and electrical engineering, and be able to assess the limitations of particular cases
  • Be able to apply quantitative methods relevant to electronic and electrical engineering, in order to solve engineering problems
  • Understand and be able to apply a systems approach to electronic and electrical engineering problems

Engineering tools

  • Have relevant workshop and laboratory skills
  • Be able to write simple computer programs, be aware of the nature of microprocessor programming, and be aware of the nature of software design
  • Be able to apply computer software packages relevant to electronic and electrical engineering, in order to solve engineering problems

Technical expertise

  • Know and understand the facts, concepts, conventions, principles, mathematics and applications of the range of electronic and electrical engineering topics he/she has chosen to study
  • Know the characteristics of particular materials, equipment, processes or products
  • Have thorough understanding of current practice and limitations, and some appreciation of likely future developments
  • Be aware of developing technologies related to electronic and electrical engineering
  • Have comprehensive understanding of the scientific principles of electronic engineering and related disciplines
  • Have comprehensive knowledge and understanding of mathematical and computer models relevant to electronic and electrical engineering, and an appreciation of their limitations
  • Know and understand, at Master's level, the facts, concepts, conventions, principles, mathematics and applications of a range of engineering topics that he/she has chosen to study
  • Have extensive knowledge of a wide range of engineering materials and components
  • Understand concepts from a range of areas including some from outside engineering, and be able to apply them effectively in engineering projects

Societal and environmental content

  • Understand the requirement for engineering activities to promote sustainable development
  • Be aware of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety and risk (including environmental risk issues
  • Understand the need for a high level of professional and ethical conduct in engineering

Employment context

  • Know and understand the commercial and economic context of electronic and electrical engineering processes
  • Understand the contexts in which engineering knowledge can be applied (e.g. operations and management, technology development, etc.)
  • Understand appropriate codes of practice and industry standards
  • Be aware of quality issues
  • Be able to apply engineering techniques taking account of a range of commercial and industrial constraints
  • Understand the basics of financial accounting procedures relevant to engineering project work
  • Be able to make general evaluations of commercial risks through some understanding of the basis of such risks
  • Be aware of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety and risk (including environmental risk) issues

Research and development

  • Understand the use of technical literature and other information sources
  • Be aware of the need, in appropriate cases, for experimentation during scientific investigations and during engineering development
  • Be able to use fundamental knowledge to investigate new and emerging technologies
  • Be able to extract data pertinent to an unfamiliar problem, and employ this data in solving the problem, using computer-based engineering tools when appropriate
  • Be able to work with technical uncertainty

Design

  • Understand the nature of the engineering design process
  • Investigate and define a problem and identify constraints, including environmental and sustainability limitations, and health and safety and risk assessment issues
  • Understand customer and user needs and the importance of considerations such as aesthetics
  • Identify and manage cost drivers
  • Use creativity to establish innovative solutions
  • Ensure fitness for purpose and all aspects of the problem including production, operation, maintenance and disposal
  • Manage the design process and evaluate outcomes
  • Have wide knowledge and comprehensive understanding of design processes and methodologies and be able to apply and adapt them in unfamiliar situations
  • Be able to generate an innovative design for products, systems, components or processes, to fulfil new needs

Project management

  • Be able to work as a member of a team
  • Be able to exercise leadership in a team
  • Be able to work in a multidisciplinary environment
  • Know about management techniques that may be used to achieve engineering objectives within the commercial and economic context of engineering processes
  • Have extensive knowledge and understanding of management and business practices, and their limitations, and how these may be applied appropriately

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Learn more about opportunities that might be available for this particular programme by using our student exchanges search tool.

Fees

Study mode Start date UK/EU fees Overseas fees
Full-time Sep 2017 £9,000 £19,000
Part-time Sep 2017 £1,000* £2,200*

Please note these fees are for the academic year 2017/2018 only. Annual fees will rise by four per cent (rounded up to the nearest £100) for each year of study.

A complete list of all fees for our Masters Programmes

Related programmes

Postgraduate (Taught)

Related departments/schools

Related research areas

Programme leader

Dr Kevin Wells

Find out more

General enquiries:

+44 (0)1483 681 681

Admissions enquiries:

+44-(0)1483-682-222

admissions@surrey.ac.uk

Programme facts

Type of programme:

MSc

Programme length:

  • Full-time: 12 months
  • Part-time: 60 months

Start date:

Sep 2017

Entry Requirements

An honours degree in electronic engineering, mathematics, computing or physical sciences. Our minimum entry level is a 2.2 from a UK university, or overseas equivalent. Relevant industrial experience will also be considered.

View entry requirements by country

English language requirements

IELTS 6.5 overall, 6.0 in each component (or equivalent)

We offer intensive English language pre-sessional courses, designed to take you to the level of English ability and skill required for your studies here.

Funding

Loans, scholarships and financial support

There are many streams of funding for postgraduate students including awards, scholarships and loans. Learn more.

 

For more details

Discounts for Surrey graduates

Thinking of continuing your education at Surrey? As an alumnus of Surrey you may be eligible for a ten per cent discount on our taught Masters programme fees.

For more details

Surrey International Scholarship for Engineering and Physical Sciences

These university-funded scholarships are worth £2,000 - £4,000 for 2017 entry onto the MSc programmes within the Faculty of Engineering and Physical Sciences departments.

Offer holders for these programmes who are overseas feepayers and achieve either a 2:1 or a 1st class honours degree, or equivalent, are eligible. Those paying UK/EU fees are not eligible.

For more details

Admissions Information

Our Admissions Policy provides the basis for admissions practice across the University and gives a framework for how we encourage, consider applications and admit students.

Further information for applicants

Postgraduate Study Advice

Steps to Postgraduate Study is an official, independent guide for anyone considering a taught postgraduate course. The guide is produced by the Higher Education Funding Council for England (HEFCE), the Higher Education Funding Council for Wales, the Scottish Funding Council and the Department for Employment and Learning, Northern Ireland.

Find out more

Disclaimer

Modules listed are indicative, reflecting the information available at the time of publication. Please note that modules may be subject to teaching availability and/or student demand.

Upcoming Events

Our alumni