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Abstract

This paper provides a first attempt to quantify and at the same time utilize esti-

mated measures of uncertainty for the design of robust interest rate rules. We estimate

several variants of a linearized form of a New Keynesian model using quarterly US

data. Both our theoretical and numerical results indicate that Inflation-Forecast-

Based (IFB) rules are increasingly prone to the problem of indeterminacy as the for-

ward horizon increases. As a consequence the stabilization performance of optimized

rules of this type worsens too. Robust IFB rules can be designed to avoid indetermi-

nacy in an uncertain environment, but at an increasing utility loss as rules become

more forward-looking.
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1 Introduction

“Uncertainty is not just an important feature of the monetary policy landscape; it is

the defining characteristic of that landscape.” Alan Greenspan1

This paper adopts a consistently Bayesian approach to the measurement of uncertainty

and the design of robust rules for the conduct of monetary policy. Employing a closed

economy New Keynesian model, the sources of uncertainty in our paper are the structural

parameters and the volatility of the white noise disturbances. We estimate several vari-

ants of a linearized form of the model using quarterly US data. From these competing

specifications we obtain estimates for posterior model probabilities and, for each model

variant, estimates of the posterior densities of the parameters.

Using these rival models with estimates set at their median values and the estimated

probabilities we then design rules that are robust in two senses: ‘weakly robust’ rules are

guaranteed to be stable and determinate in all the possible central variants of the model

whereas ‘strongly robust’ rules, also guarantee stable and unique equilibria and, in addi-

tion, use the probabilities to minimize an expected loss function of the central bank subject

to this model uncertainty. Both these forms of robustness across models with estimates

at their median values we refer to as ‘M-robustness’, weak or strong. A more demanding

robustness requirement is minimize the expected loss across all possible parameter values

drawn from a large sample constructed using the estimated posterior parameter distribu-

tions as well as the model probabilities. This we refer to as ‘P-robustness’, weak or strong.

Table 1 summarizes this taxonomy.

Weak Robustness Strong Robustness

M (Model)-Robustness (M,W) (M,S)

P (Parameter)-Robustness (P,W) (P,S)

Table 1. Four Robustness Criteria

The monetary rules studied in the paper are defined in terms of feedback parameters.

Weakly robust rules then define a space of these parameters for which stability and deter-

minacy is guaranteed across models with model parameters at median values, or across
1Federal Reserve Bank of Kansas (2003), Opening Remarks.
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all possible parameter values. In each case, a strongly robust rule chooses from the set of

weakly robust rules the rule that maximizes the policymaker’s expected utility.

Our approach thus differs from existing work on the design of robust policy rules in

a number of important respects. First, existing work that assumes unstructured model

uncertainty typically posits the latter by arbitrarily calibrating the relative probability of

alternative models being true representations of the economy (see for example Angeloni

et al. (2003); Coenen (2003); Levin et al. (2003)).2 This paper provides a first attempt

to quantify and at the same time utilize estimated measures of uncertainty for the design

of robust rules. Second, the literature taking the rival model approach typically confines

itself to what we call strong M-robustness. Third, we examine robust policy in a unified

framework that compares different simple rules with each other, and with their optimal

counterparts.

Throughout we focus on Taylor-type rules, and in particular on inflation-forecast-based

(IFB) rules. These are ‘simple’ rules as in Taylor (1993), but where the policy instrument

responds to deviations of expected, rather than current inflation from target. In most

applications, the inflation forecasts underlying IFB rules are taken to be the endogenous

rational-expectations forecasts conditional on an intertemporal equilibrium of the model.

These rules are of interest because, as shown in Clarida et al. (2000) and Castelnuovo

(2003), estimates of IFB-type rules appear to be a good fit to the actual monetary policy

in the US and Europe of recent years. However, with IFB rules indeterminacy can be

particularly severe and can take two forms: if the response of interest rates to a rise in

expected inflation is insufficient, then real interest rates fall, thus raising demand and

confirming any exogenous expected inflation. But indeterminacy is also possible if the

rule is overly aggressive (Bernanke and Woodford (1997); Batini and Pearlman (2002);

Giannoni and Woodford (2002); Batini et al. (2004), BLP hereafter).

We find four main results. First, in each of our three model variants with the highest

posterior model probabilities chosen for the policy exercise, there are significant gains

from stabilization using an optimized inflation targeting rule with the interest rate feeding

back on current inflation. Second, a strongly M-robust and P-robust current inflation rule
2This literature contrasts with the minmax framework of Hansen and Sargent (2002) that assumes

unstructured model uncertainty. Walsh (2003) provides a useful overview of this approach and Tetlow and

von zur Muehlen (2002) provides a comparison.
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can be designed that achieves almost all of the stabilization gain that would be achieved

if there was no model uncertainty. Third, integral interest rate rules where the change

in interest rates feeds back on current of expected future inflation perform better than

non-integral rules.3 Fourth, the optimized inflation targeting rules perform increasingly

less well as the forward horizon increases from j = 0 (the current inflation rule) to j = 4

quarters. Denoting such a rule by IFBj, we find a qualitative difference between IFB0,

IFB1 rules on the one hand and IFBj, j ≥ 2 rules. For IFB0 and IFB1 optimized rules,

little by way of utility outcome is lost by insisting on M-robustness or P-robustness. For

the IFB3 and IFB4 rule, robustness in both senses is only achieved by sacrificing the utility

outcome when each of the models in turn describes the true economic environment. This

deterioration is especially marked if we insist on P-robustness as our design criterion.

The rest of the paper is organized as follows. Section 2 sets out our model. Section

3 provides a theoretical examination of the indeterminacy problem of IFB rules using the

root locus method employed by Batini and Pearlman (2002) and BLP. This analysis indi-

cates which features of the model and the rule make them indeterminacy-prone. Section 4

first focuses on optimized IFB rules and optimal rules without uncertainty before we turn

to the robust policy problem in section 5. Section 6 concludes the paper.

2 The Model

Our model is the closed economy version of BLP. There is one traded risk-free nominal

bond. A final homogeneous good is produced competitively using a CES technology con-

sisting of a continuum of differentiated non-traded goods. Intermediate goods producers

and household suppliers of labor have monopolistic power. Nominal prices of intermediate

goods are sticky. We incorporate a bias for consumption of home-produced goods, habit

formation in consumption, and Calvo price setting with indexing of prices for those firms

who, in a particular period, do not re-optimize their prices. The latter two aspects of the

model follow Christiano et al. (2001) and, as with these authors, our motivation is an em-

pirical one: to generate sufficient inertia in the model so as to enable it, in calibrated form,

to reproduce commonly observed output, inflation and nominal interest rate responses to

exogenous shocks. Our model is stochastic with two exogenous AR(1) stochastic processes
3This accords the results of Levin et al. (2003).
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for total factor productivity in the intermediate goods sector and government spending.

2.1 Households

A representative household r maximizes

E0

∞∑
t=0

βt

⎡
⎢⎣(Ct(r) − Ht)1−σ

1 − σ
+ χ

(
Mt(r)

Pt

)1−ϕ

1 − ϕ
− κ

Nt(r)1+φ

1 + φ
+ u(Gt)

⎤
⎥⎦ (1)

where Et is the expectations operator indicating expectations formed at time t, Ct(r) is

an index of consumption, Nt(r) are hours worked, Ht represents the habit, or desire not

to differ too much from other consumers, and we choose it as Ht = hCt−1, where Ct is the

average consumption index and h ∈ [0, 1) and σ > 1 is a risk aversion parameter. Mt(r)

are end-of-period nominal money balances and u(Gt) is the utility from exogenous real

government spending Gt.

The representative household r must obey a budget constraint:

PtCt(r) + Dt(r) + Mt(r) = Wt(r)Nt(r) + (1 + it−1)Dt−1(r) + Mt−1(r) + Γt(r) − Ptτt (2)

where Pt is a price index, Dt(r) are end-of-period holdings of riskless nominal bonds with

nominal interest rate it over the interval [t, t + 1]. Wt(r) is the wage, Γt(r) are dividends

from ownership of firms and τt are lump-sum real taxes. In addition, if we assume that

households’ labour supply is differentiated with elasticity of supply η, then (as we shall

see below) the demand for each consumer’s labor is given by

Nt(r) =
(

Wt(r)
Wt

)−η

Nt (3)

where Wt =
[∫ 1

0 Wt(r)1−ηdr
] 1

1−η is an average wage index and Nt is average employment.

Maximizing (1) subject to (2) and (3) and imposing symmetry on households (so that

Ct(r) = Ct, etc) yields standard results:

1 = β(1 + it)Et

[(
Ct+1 − Ht+1

Ct − Ht

)−σ Pt

Pt+1

]
(4)

(
Mt

Pt

)−ϕ

=
(Ct − Ht)−σ

χPt

[
it

1 + it

]
(5)

Wt

Pt
=

κ

(1 − 1
η )

Nφ
t (Ct − Ht)σ (6)
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(4) is the familiar Keynes-Ramsey rule adapted to take into account of the consumption

habit. In (5), the demand for money balances depends positively on consumption relative

to habit and negatively on the nominal interest rate. Given the central bank’s setting of

the latter, (5) is completely recursive to the rest of the system describing our macro-model

and will be ignored in the rest of the paper. (6) reflects the market power of households

arising from their monopolistic supply of a differentiated factor input with elasticity η.

2.2 Firms

Competitive final goods firms use a continuum of non-traded intermediate goods according

to a constant returns CES technology to produce aggregate output

Yt =
(∫ 1

0
Yt(m)(ζ−1)/ζdm

)ζ/(ζ−1)

(7)

where ζ is the elasticity of substitution. This implies a set of demand equations for each

intermediate good m with price Pt(m) of the form

Yt(m) =
(

Pt(m)
Pt

)−ζ

Yt (8)

where Pt =
[∫ 1

0 Pt(m)1−ζdm
] 1

1−ζ . Pt is an aggregate intermediate price index, but since

final goods firms are competitive and the only inputs are intermediate goods, it is also the

domestic price level.

In the intermediate goods sector each good m is produced by a single firm m using

only differentiated labour with another constant returns CES technology:

Yt(m) = At

(∫ 1

0
Nt(r, m)(η−1)/ηdr

)η/(η−1)

(9)

where Nt(r, m) is the labour input of type r by firm m and At is an exogenous shock

capturing shifts to trend total factor productivity (TFP) in this sector. Minimizing costs∫ 1
0 Wt(r)Nt(r, m)dr and aggregating over firms and denoting

∫ 1
0 Nt(r, m)dm = Nt(r) leads

to the demand for labor as shown in (3). In an equilibrium of equal households and firms,

all wages adjust to the same level Wt and it follows that Yt = AtNt.

For later analysis it is useful to define the real marginal cost as the wage relative to

domestic producer price. Using (6) and Yt = AtNt this can be written as

MCt ≡ Wt

AtPt
=

κ

(1 − 1
η )At

(
Yt

At

)φ

(Ct − Ht)σ (10)
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Now we assume that there is a probability of 1 − ξ at each period that the price of

each intermediate good m is set optimally to P 0
t (m). If the price is not re-optimized,

then it is indexed to last period’s aggregate producer price inflation.4 With indexation

parameter γ ≥ 0, this implies that successive prices with no re-optimization are given

by P 0
t (m), P 0

t (m)
(

Pt
Pt−1

)γ
, P 0

t (m)
(

Pt+1

Pt−1

)γ
, ... . For each intermediate producer m the

objective is at time t to choose {P 0
t (m)} to maximize discounted profits

Et

∞∑
k=0

(
ξ

1 + it

)k

Yt+k(m)
[
P 0

t (m)
(

Pt+k−1

Pt−1

)γ

− Wt+k

At+k

]
(11)

given it (since firms are atomistic), subject to (8). The solution to this is

Et

∞∑
k=0

(
ξ

1 + it

)k

Yt+k(m)
[
P 0

t (m)
(

Pt+k−1

Pt−1

)γ

− 1
(1 − 1/ζ)

Wt+k

At+k

]
= 0 (12)

and by the law of large numbers the evolution of the price index is given by

P 1−ζ
t+1 = ξ

(
Pt

(
Pt

Pt−1

)γ)1−ζ

+ (1 − ξ)(P 0
t+1)

1−ζ (13)

2.3 Equilibrium

In equilibrium, goods markets, money markets and the bond market all clear. Equating

the supply and demand of the consumer good we obtain

Yt = AtNt = Ct + Gt (14)

A balanced budget government budget constraint

Gt = τt +
Mt − Mt−1

Pt
(15)

completes the model. Given interest rates it (expressed later in terms of an optimal or IFB

rule) the money supply is fixed by the central banks to accommodate money demand. By

Walras’ Law we can dispense with the bond market equilibrium condition and therefore the

government budget constraint that determines taxes τt. Then the equilibrium is defined

at t = 0 by stochastic processes Ct, Dt, Pt, Mt, Wt, Yt, Nt, given past price indices and

exogenous TFP and government spending processes.
4Thus we can interpret 1

1−ξ
as the average duration for which prices are left unchanged.
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2.4 Linearization and State Space Representation

We now linearize about the deterministic zero-inflation steady state. Output is then at its

sticky-price, imperfectly competitive natural rate and from the Keynes-Ramsey condition

(4) the nominal rate of interest is given by ı̄ = 1
β − 1. Define all lower case variables as

proportional deviations from this baseline steady state.5 Then the linearization takes the

form:

πt =
β

1 + βγ
Etπt+1 +

γ

1 + βγ
πt−1 +

(1 − βξ)(1 − ξ)
(1 + βγ)ξ

mct (16)

mct = −(1 + φ)at +
σ

1 − h
(ct − hct−1) + φyt (17)

ct =
h

1 + h
ct−1 +

1
1 + h

Etct+1 − 1 − h

(1 + h)σ
(it − Etπt+1) (18)

yt =
C̄

Ȳ
ct +

Ḡ

Ȳ
gt (19)

gt = ρggt−1 + εgt (20)

at = ρaat−1 + εat (21)

Variables yt, ct, mct, at, gt are proportional deviations about the steady state. [εgt, εat] are

i.i.d. disturbances. πt and it are absolute deviations about the steady state. For later use

we require the output gap the difference between output for the sticky price model obtained

above and output when prices are flexible, ynt say. The latter, obtained by setting ξ = 0

in (16) to (19), is in deviation form given by6

σ

1 − h
(cnt − hcn,t−1) + φynt = (1 + φ)at (22)

ynt =
C̄

Ȳ
cnt +

Ḡ

Ȳ
gt (23)

We can write this system in state space form as⎡
⎣ zt+1

Etxt+1

⎤
⎦ = A

⎡
⎣ zt

xt

⎤
⎦+ Bit + C

⎡
⎣ εgt+1

εat+1

⎤
⎦ (24)

⎡
⎣ yt

ynt

⎤
⎦ = E

⎡
⎣ zt

xt

⎤
⎦ (25)

5That is, for a typical variable Xt, xt = Xt−X̄
X̄

� log
(

Xt
X̄

)
where X̄ is the baseline steady state. The

interest rate however is now expressed as an absolute deviation about ī.
6Note that the zero-inflation steady states of the sticky and flexi-price steady states are the same.
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where zt = [at, gt, ct−1, cn,t−1, πt−1] is a vector of predetermined variables at time t and

xt = [ct, πt] are non-predetermined variables. Rational expectations are formed assuming

an information set {zs, xs}, s ≤ t, the model and the monetary rule.

2.5 Estimation

2.5.1 Overview

In this section we estimate four main variants of model (16)-(21) using Bayesian methods.

In particular, we estimate: the most general specification of the model with both inflation

and habit persistence (we label this variant ‘Z’); a version of the model without inflation

persistence but with persistence in habits (γ = 0, variant ‘G’); a version without habit

persistence but with persistence in inflation (h = 0, variant ‘H’); and finally a version with

neither inflation nor habit persistence (γ = h = 0, variant ‘GH’). We close the model

with a 1-quarter ahead IFB rule of the form (28) that is the subject of the next section.

Bayesian estimation of the model has the specific advantage that it provides a posterior

distribution of the parameter values that allows us to make probabilistic statements about

the functionals of the model(s)’ parameters. Furthermore, it provides us with the odds

on models that allow us to quantify how likely it is that the data would have come from

a model with both habit and inflation persistence as opposed to a framework with just

one of these mechanisms or neither. In this sense the estimation method per se supplies

us with a consistent measure of both parameter (posterior distribution of the parameters)

and model (posterior odds) uncertainty.7

The sub-sections below offer: a brief sketch of the methods used in estimation (subsec-

tion 2.5.2); a discussion of the specification of the prior distributions (sub-section 2.5.3);

the results from the estimation of our four model specifications (sub-section 2.5.4); and

a formal comparison of models (sub-section 2.5.5). This sub-section shows how we ob-

tain the posterior model probabilities that we use as weights for the competing model

specifications in the analysis of robust IFB rules under uncertainty.
7 Justiniano and Preston (2004) discuss the many additional advantages of using Bayesian methods to

estimate dynamic stochastic general equilibrium models. These include overcoming convergence problems

with numerical routines to maximize the likelihood as well as providing measures of uncertainty that need

not assume a symmetric distribution.
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2.5.2 Methodology

Each model indexed by k and denoted mk, has an associated set of unknown parameters

ωk ∈ Ωk. Following a Bayesian approach, our aim is to characterize the posterior distri-

bution of the models’ parameters, p
(
ωk|Y T , mk

)
,where Y T stands for the full sample of

observed data (T denotes the number of observations). Having specified a (perhaps model

specific) prior density, p(ωk|mk), the posterior of the parameters is given by

p
(
ωk|Y T , mk

)
=

L (ωk|Y T , mk

)
p(ωk|mk)∫ L (ωk|Y T , mk) p(ωk|mk)dωk

(26)

where L (ωk|Y T , mk

)
is the likelihood obtained under the assumption of normally dis-

tributed disturbances from the state-space representation implied by the solution of the

linear rational expectations model. The denominator in equation (26) corresponds to the

marginal likelihood (also known as the ‘marginal data density’) and, as explained later,

plays a key role in model comparisons.

The solution of the model is a non-linear function of the parameters which does not

allow for any closed-form expression for the posterior density. Furthermore, the high

dimension of the parameters space renders numerical integration inefficient. Markov Chain

Monte Carlo (MCMC) methods, however, provide a feasible and accurate approximation

to this density.

Following Schorfheide (2000) the estimation follows a two step approach. In the first

step, a numerical algorithm is used to approximate the posterior mode by combining the

likelihood L(Y T |ωk, mk) with the prior. In the second step, the obtained posterior mode is

then used as starting value (ω0
k) for a Random Walk Metropolis algorithm that generates

draws from the posterior p(ωk|Y T , mk). At each step i of the Markov Chain, the proposal

density used to draw a new candidate parameter ω∗
k is a normal centered at the current

state of the chain, N(ωi
k, cΣk). A new draw is then accepted with probability

α = min(1,
L(Y T |ω∗

k, mk)p(ω∗
k|mk)

L(Y T |ωi
k, mk)p(ωi

k|mk)
)

If accepted, ωi+1
k = ω∗

k; otherwise, ωi+1
k = ωı

k. This may be viewed as a stochastic

climbing algorithm. Whenever a new draw results in higher posterior probability than the

current state of the chain, the draw is retained. Otherwise, there is probability (α) that

9



you will jump to a point of lower posterior density. We generate chains of 130,000 draws

in this manner discarding the first 30,000 iterations.8

Point estimates of the parameters ωk can be obtained from the generated values by

using various location measures, such as mean or, as in this paper, medians. Similarly,

measures of uncertainty follow from computing the percentiles of the draws.

2.5.3 Data and Priors

We estimate the model(s) using quarterly US data on real GDP (detrended–as standard

in the literature we detrend this using a Hodrick-Prescott filter, see Lubik and Schorfheide

(2003), Juillard et al. (2004)), the Federal Funds rate (annualized, in percentage points),

and the annualized log difference of the consumer price index (CPI) for the sample 1984:I-

2003:IV.9 All series were obtained from DataStream International.

Following Lubik and Schorfheide (2004) rather than de-meaning the series, we estimate

the mean of inflation and the (unobservable) real interest rate, π∗ and r∗ respectively,

together with the model(s) parameters. In turn, this gives the following mapping between

observables (superscript obs) and the variables following the solution of the model.

⎛
⎜⎜⎜⎝

πobs
t

yobs
t

iobs
t

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

π∗

0

π∗ + r∗

⎞
⎟⎟⎟⎠+

⎡
⎢⎢⎢⎣

4 0 0

0 1 0

0 0 4

⎤
⎥⎥⎥⎦
⎛
⎜⎜⎜⎝

πt

yt

it

⎞
⎟⎟⎟⎠

In addition, the mean of the real rate gives us an estimate of the discount factor

β = 1/ 4

√
1 + r∗

100 .

To proceed with the Bayesian estimation we need a prior distribution for the parame-

ters. Details on our priors are presented in Table B1 in Appendix B reporting the type

of density, mean and standard deviation for each coefficient.10 The last two columns also

provide the 1% and 99% percentiles of the prior ordinates. In choosing these densities we

considered the entire spectrum of prior existing empirical estimates or calibrations. As a
8 This initial burn-in phase is intended to remove any dependence of the chain from its starting values.
9 8 observations, corresponding to the period 1982:I - 1983:IV are used to initialize the Kalman filter.

10 In principle, is would be possible to specify flat or non-informative priors for estimating θk. However,

in addition to being able to choose priors based on coefficients values available in the literature, flat priors

are not well suited for model comparisons.
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result, some of our priors are more widely dispersed, and therefore less tight than those

chosen by other authors. 11

The degree of habit formation (h), price indexation (γ) and interest smoothing in the

IFB-type rule (ρ), as well as the autoregressive coefficients of the shocks (ρg and ρa) are all

constrained to the unit interval, motivating our choice of Beta densities for these priors.

The priors for h and γ are centered at 0.7, on the assumption that output and inflation

are considerably inertial, in line with findings by Fuhrer and Moore (1995), Fuhrer (2000),

Banerjee and Batini (2003, 2004) and Smets and Wouters (2004)(SW, 2004), among others.

Likewise, our prior for the mean of ρ is rather high and close to the estimates from Clarida

et al. (2000) (CGG,2000).

Priors for σ and φ are shaped in the form of a Gamma density and are chosen to be

fairly flat, reflecting the wide dispersion of existing empirical estimates and calibrations

of these parameters in the literature. (see Nelson and Nikolov (2002)).

The slope of the Phillips’ curve, χ = (1−βξ)(1−ξ)
(1+βγ)ξ is a function of the degree of price

stickiness in the economy, ξ, and the discount factor. So we selected the prior for χ in

line with the assumption that the quarterly discount factor is equal to 0.99 and prices are

sticky for three quarters, as suggested by survey evidence on the average duration of US

price contracts (see, for example, Blinder et al. (1998).12

Finally, the prior for θ accounts for the breadth of the spectrum of estimated responses

to expected inflation by the US Federal Reserve. More specifically, our specification con-

tains the 90% posterior intervals of Lubik and Schorfheide (2004)13 and is looser than the

prior specified by SW for the same parameter.14

11Throughout the estimation of different models, the share of government expenditures in output is

calibrated at 0.22,which represents the sample average of this coefficient for our sample.
12 It is worth noting that the results of the estimation from assuming a prior directly on the Calvo

coefficient ξ are somewhat different. This may be because with a prior on lambda, as we have used now,

the link between ξ and the discount factor in determining the slope of the PC is not imposed. We plan to

re-run the estimation with this alternative prior as a robustness check.
13Note that in contrast to these authors however we constrain the estimation to the region of determinacy

and therefore truncate the prior for θ. The results of their paper suggest, however, that at least for a Taylor

rule on current inflation, indeterminacy has not been an issue for our sample. In light of the results in

BLP, exploring whether their results extend to the estimation of IFB is left for a future project.
14 In their paper, however, SW include the output gap in the Taylor rule.
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2.5.4 Estimation Results

Table B2 in Appendix B, summarizes the results of estimating the four model variants

(G,H,GH and Z). The three columns for each specification report the median, 1st and

9th decile of the 100,000 draws generated using the Random Walk-Metropolis algorithm

used to approximate the posterior densities.

A few important things emerge from the table. First, estimates of the policy coefficients

are fairly robust across specifications. Posterior estimates of ρ are tightly concentrated

on values that suggest a substantial degree of interest smoothing, in accordance with

results reported by CGG amongst other authors. Meanwhile, the posterior density for

θ is remarkably similar (that is both in medians and percentiles) across the first three

specifications, implying a very aggressive response by the US Federal Reserve to expected

inflation, in line with findings by CGG for a similar rule and sample.

The median estimates for r∗ translate into a median value of 0.995 for the stochastic

discount factor which, in turn, implies plausible estimates for the degree of price stickiness

based on the inferred values for χ. The implied point estimates of ξ range from 0.36 up

to 0.67, increasing, as expected, depending on whether or not price indexation is allowed

for.15 These higher values are in accordance with Blinder et al. (1998) and Rotemberg and

Woodford (1998), but contrast the high degree of price rigidity estimated by SW (2004).

Our estimates of σ are rather large. With no habits, these estimates map directly with

the intertemporal elasticity of substitution and suggest that this may be quite small.16 A

common theme in papers estimating DSGE models is the difficulty in pinning down φ.

Therefore, it is not surprising that, inference on the inverse Frisch elasticity of labor supply

is susceptible to the specification of the model, and exhibits wide posterior probability

intervals.

Turning to the coefficient governing habit formation, h is tightly estimated and suggests

rather inertial consumption and output processes. Reported posterior intervals for h are

almost identical to the ones obtained by Juillard et al. (2004) and higher than the estimates

15Using χ ≡ (1−βξ)(1−ξ)
(1+βγ)ξ

we obtain ξ = 0.67, 0.36, 0, 60, 0.53 corresponding to contract lengths, 1
1−ξ

, of

3.06, 1.57, 2.50 and 2.13 quarters for models G, H, GH and Z respectively.
16This result is attributable to a prior density centered on high values for σ. Redoing the estimation

using the SW priors leads to point estimates far closer to one, clearly revealing that inference on this

parameters is sensitive to the choice of priors.
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by SW. By contrast, the posterior density of γ lies to the left of our chosen prior, suggesting,

in contrast to studies mentioned earlier, that inflation is intrinsically not very persistent

– a result that accords with findings in Erceg and Levin (2001), Taylor (2000) and Cogley

and Sargent (2001).

Estimates of the shock processes reveal that both the technology and the government

expenditure shock are highly persistent, and this holds true regardless of the exact model

specification. Posterior estimates clearly attribute greater volatility of shocks to the gov-

ernment expenditure component rather than to disturbances in technology.17 As usual,

exogenous disturbances to the monetary policy equation appear much less important than

technology and government expenditure shocks in driving inflation, consumption and out-

put processes.18

2.5.5 Model Comparison

Since the goal of this paper is to characterize the design of robust rules under uncertainty,

it is important to investigate which specification seems to be best supported by the data.

In doing so we do not intend to select any particular model as being the ‘true’ one but

rather wish to compute posterior probabilities to place odds on the different models.

Bayesian methods for model comparisons allows us to obtain these posterior model

probabilities in order to discriminate or aggregate across competing specifications, there-

after providing coefficient estimates that explicitly account for model uncertainty. Let

us define mk to be one possible element from the (discrete) set of competing models

µ = {G, H, GH, Z}. The posterior model probability for p(mk|Y T ) summarizes the evi-

dence provided by the data in favor of mk and is then given by

p(mk|Y T ) = f(Y T |mk)p(mk)/f(Y T ) (27)

where p(mk) stands for the prior probability assigned to model k, that in our case equals 1
4

since we treat each model as equiprobable a-priori. The first expression in the numerator is

known as the marginal likelihood (or marginal data density) and was previously presented
17 Indeed, the 1st posterior decile of the former exceeds the 9th decile of the latter, for all models, despite

similar prior densities for the innovation standard deviations.
18Note that the correlation of shocks is important as well. So far, as it is standard in most models, we

have constrained the disturbances to be i.i.d.
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as the denominator in equation (26) We compute the posterior model probabilities using

the Reversible Jump MCMC algorithm (RJMCMC) of Dellaportas et al. (2002)). This

method belongs to the class of product space search algorithm that adds a model indictor

variable to be estimated jointly with the parameters.

Estimates of p(mk|Y T ) obtained with the RJMCMC for our four model variants are

presented in Table B3. In line with results discussed above, the specification with habit

persistence and no price indexation (G) attains highest posterior probability. Model

Z, which allows for both of these intrinsic mechanisms, follows in probability ranking. In

contrast, a model with no habit persistence is 9 times less likely than those specifications (Z

and G) with endogenous persistence in consumption. Finally, the most restrictive model.,

GH attains the lowest posterior model probability further providing evidence of the need

to incorporate at least one of the two intrinsic mechanisms imparting greater inertia to

the model. Therefore, these results can be interpreted as suggesting that the addition of

endogenous mechanisms of persistence, particularly habit in consumption, improve the fit

of the model. These posterior odds will be used to weight the models for our analysis of

uncertainty on the robustness of policy rules.

In our policy analysis we confine ourselves to models G, GH and Z. The reason for

choosing GH over H is twofold. First, the degree of price flexibility suggested by the H

model (contract length 1.57 quarters) seems implausible. Second, an alternative Modified

Harmonic Mean estimator proposed by Geweke (1999) found that the H-model posterior

probability was much lower than that of the GH model.

3 The Stability and Determinacy of IFB Rules

3.1 Theory

This section studies an IFB rule of the form

it = ρit−1 + θ(1 − ρ)Etπt+j ; ρ ∈ [0, 1), θ > 0

= it−1 + ΘEtπt+j ; ρ = 1, Θ > 0 (28)
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where j ≥ 0 is the forecast horizon, which is a feedback on single-period inflation over the

period [t+j−1, t+j].19 With rule (28), policymakers set the nominal interest rate so as to

respond to deviations of the inflation term from target. In addition, policymakers smooth

rates, in line with the idea that central banks adjust the short-term nominal interest rate

only partially towards the long-run inflation target, which is set to zero for simplicity in

our set-up. The parameter ρ ∈ [0, 1] measures the degree of interest rate smoothing. If

ρ = 1 we have an integral rule that guarantees that the long-run inflation target (zero

in our set-up) is met, provided the rule stabilizes the economy. For ρ < 1, (28) can be

written as ∆it = 1−ρ
ρ [θEtπt+j − it] which is a partial adjustment to a static IFB rule

it = θEtπt+j . j is the feedback horizon of the central bank. When j = 0, the central

bank feeds back from current dated variables only. When j > 0, the central bank feeds

back instead from deviations of forecasts of variables from target. Finally, θ, Θ > 0 are

the feedback parameters for the non-integral and integral rules respectively: the larger is

θ or Θ, the faster is the pace at which the central bank acts to eliminate the gap between

expected inflation and its target value.

To understand better how the precise combination of the pairs (j, θ) or (j, Θ) in IFB

rules can lead the economy into instability or indeterminacy consider the deterministic

model economy (24) and (25) with interest rate rules of the form (28). gt and at are

exogenous stable processes and play no part in the stability analysis. For convenience, we

therefore set them to zero. Let z be the forward operator. Taking z -transforms of (16),

(17), (18) and (28), the characteristic equation for the system is given by:

(z − ρ)[(z − 1)(z − h)(βz − 1)(z − γ) − λ

µ
z2(φ̃z + µ(z − h))]

+
λθ

µ
(1 − ρ)(φ̃z + µ(z − h))zj+2 = 0 (29)

for non-integral rules and

(z − 1)[(z − 1)(z − h)(βz − 1)(z − γ) − λ

µ
z2(φ̃z + µ(z − h))]

+
λΘ
µ

(φ̃z + µ(z − h))zj+2 = 0 (30)

19To set the model up with this rule in state-space form for j ≤ 1 we need to augment the state vector

with a lagged term it−1. For j = 2 replace t with t + 1 in (16)-(17) and take expectations at time t. Then

the state-space presentations remains of the same dimension. For j > 2 replace t with t+ j−1 in (16)-(17)

and take expectations at time t. The state vector must then be augmented with Etπt+1 · · · Etπt+j−2.
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for integral rules. In these characteristic equations we have defined λ ≡ (1−βξ)(1−ξ)
ξ ,

φ̃ ≡ C̄
Ȳ

φ and µ ≡ σ
1−h . Equations (29) and (30) show that the minimal state-space form of

the system has dimension max (5, j + 3). Since there are 3 predetermined variables in the

system, it follows that the saddle-path condition for a unique stable rational expectations

solution is that the number of roots inside the unit circle of the complex plane is 3 and

the number outside the unit circle is max (2, j).

In the analysis that follows we focus on integral rules with characteristic equation

(30).20 To identify values of (j, Θ) that involve exactly three roots of equation (30) we

graph the root locus of (Θ, z) pairs that traces how the roots change as Θ varies between

0 and ∞. All the graphs can be drawn by following the rules set out in Appendix A of

BLP. Other parameters in the system, including the feedback horizon parameter j in the

IFB rule, are kept constant. We generate separate charts, each conditioning on a different

horizon assumption. Each chart shows the complex plane (indicated by the solid thin

line),21 the unit circle (indicated by the dashed line), and the root locus tracking zeroes

of equation (30) as Θ varies between 0 and ∞ (indicated by the solid bold line). The

arrows indicate the direction of the arms of the root locus as Θ increases. Throughout

we experiment with both a ‘high’ and a ‘low’ λ
µ , as defined after (29). The economic

interpretation of these cases is that the high λ
µ case corresponds to low ξ (i.e., more

flexible prices) and low σ
1−h (low risk aversion and habit formation).

The term inside the square brackets in equation (30) corresponds to no nominal interest

rate feedback rule (i.e., an open-loop interest rate policy). Then rule (28) is switched off

and so the lagged term it−1 disappears from our model; the system now requires exactly

two stable roots for determinacy. Figure 1 plots the root locus which, in this case, is just a

set of dots: namely, the roots of the polynomial in the square brackets of (30). Note that

depending on the value of λ/µ, the position of these roots varies, and in the flexible price,

low interdependence case where λ
µ is high, there are complex roots indicating oscillatory

dynamics. The diagram shows that there are too many stable roots in both cases (i.e. 3

instead of 2), which implies that with no interest rate feedback rule, there will always be
20The corresponding analysis for non-integral rules is to be found in BLP.
21In this plane, the horizontal axis depicts real numbers, and the vertical axis depicts imaginary numbers.

If a root is complex, i.e. z = x + iy, then its complex conjugate x − iy is also a root. Thus the root locus

is symmetric about the real axis.
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1−1 1−1

(i) low λ/µ(i) low λ/µ (ii) high λ/µ(ii) high λ/µ

Figure 1: Position of zeroes with no Interest Feedback Rule.

indeterminacy in the system.

If the nominal interest rate rule is switched on and now feeds back on current rather

than expected inflation, i.e. j = 0, then the root locus technique yields a pattern of zeroes

as depicted in Figure 2. Integral control brings about a lag in the short-term nominal

interest rate and the system is now stable if it has exactly three stable roots (as we now

have three predetermined variables in the system). The figure demonstrates that if Θ > 0

one arm of the root locus starting originally at z = 1 exits the unit circle, turning one root

from unity to unstable so that there are now three – as required – instead of four stable

roots and the system has a determinate equilibrium. As Θ → ∞, there are roots at ±i∞,

two roots at 0, and one at µh/(φ̃ + µ), the latter shown as a square.

Thus we conclude that for a rule feeding back on current inflation, the system exhibits

determinacy if and only if Θ > 0. For higher values of j ≥ 1 we can draw the sequence

of root locus diagrams shown in Figures 3 and 4. Our diagrams show that an arm of the

root locus re-enters the unit circle for some high Θ > 1 and indeterminacy re-emerges.

Therefore Θ > 0 is necessary but not sufficient for stability and determinacy. Our results

up to this point are summarized in proposition 1:

Proposition 1 : For an integral rule feeding back on current inflation (j = 0),

Θ > 0 is a necessary and sufficient condition for stability and determinacy.

For higher feedback horizons (j ≥ 1), Θ > 0 is a necessary but not sufficient

condition for stability and determinacy.

17



1−1 1−1

(i) low λ/µ(i) low λ/µ (ii) high λ/µ(ii) high λ/µ

Figure 2: Integral Control IFB Rule on Current Inflation: Position of Zeroes

as Θ Changes.

Now let Θ̄(j) be the upper critical value of Θ for the system for a feedback horizon j.

Figure 3 shows that for the case j = 1 indeterminacy occurs when this portion of the root

locus enters the unit circle at z = −1. The critical upper value for Θ = Θ̄(1) when this

occurs is obtained by substituting z = −1 and j = 1 into the characteristic equation (30)

to obtain:

Θ̄(1) = 2
[
1 +

2(1 + h)(1 + β)(1 + γ)µ
λ(φ̃ + µ(1 + h))

]
(31)

One important thing to note looking at this expression for a 1-period ahead IFB integral

rule is that Θ̄ > 2 and that the problem of indeterminacy lessens for high h, γ and σ, and

low λ and φ̃. Notice from the definition of λ after (30) that low λ is associated with a high

degree of price stickiness.

Proceeding on to j-period ahead IFB rules, for j ≥ 2 the analysis is more difficult. For

j = 2, Figure 4 shows that indeterminacy occurs when the root locus enters the unit circle

at z = cos(ψ) + isin(ψ) for some ψ ∈ (0, π
2 ). A similar reasoning applies to j > 2. All our

results up to this point are analytical using topological reasoning, but now the threshold

Θ̄(j) for j ≥ 2 must be found numerically. Given j, write the characteristic equation as

max(5,j+3)∑
k=1

ak(Θ)zk = 0 (32)
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1−1 1−1

(i) low λ/µ(i) low λ/µ (ii) high λ/µ(ii) high λ/µ

Figure 3: Integral Control IFB Rule on 1-Period Ahead Expected inflation:

Position of Zeroes as Θ Changes.

1−1 1−1

(i) low λ/µ(i) low λ/µ (ii) high λ/µ(ii) high λ/µ

Figure 4: Integral Control IFB Rule on 2-Period Ahead Expected inflation:

Position of Zeroes as Θ Changes.
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noting that some of the ak are dependent on Θ. The root locus meets the unit circle at

z = cos(ψ) + isin(ψ). Using De Moivre’s theorem zk = cos(kψ) + isin(kψ) and equating

real and imaginary parts we arrive at two equations which can be solved numerically for

Θ̄ and ψ. We can summarize these analytical results as:

Proposition 2: For j-period ahead integral IFB rules, j ≥ 1, there exists a

range Θ ∈ [0, Θ̄(j)] with Θ̄(j) > 0 such that the model is stable and determinate.

These results for integral IFB rules contrast with those for non-integral rules (29)

studied in BLP. There we found that proposition 1 is modified to a generalized ‘Taylor

principle’: θ > 1 is necessary and sufficient for a j = 1 IFB non-integral rule, but only

necessary for j > 1. For non-integral rules as j increases a more interesting result emerges,

namely there is always some lead J such that for

j > J =
1

1 − ρ
+

(1 − β)(1 − γ)σ
λ(φ̃ + σ)

(33)

there is indeterminacy for all values of θ.22 This comparison between integral and non-

integral rules shows the benefit of the former in avoiding the problem of indeterminacy.

Then there is always at least a ‘minimal control’ with the feedback coefficient Θ very close

to zero that is sufficient to achieve stability and determinacy.23 However with non-integral

rules for sufficiently high j > J no such IFB rule is available.

To get a feel for these results we provide numerical results for threshold values θ̄ for

non-integral rules and Θ̄ for integral rules. Tables 1a-1c set parameter values at their

median values for models G, GH and Z respectively. For non-integral rules we set ρ = 0.8.

Threshold ρ j = 1 j = 2 j = 3 j = 4 j = 5 j = 6

θ̄(j) 0.8 222 24 5.5 1.8 1.3 indeterminacy

Θ̄(j) 1 51 7.4 2.2 1.0 0.62 0.43

Table 1a. Critical upper bounds for θ̄(j) and Θ̄(j) for Model G.

22There are some conditions for this result to hold discussed in BLP. Numerical results indicate these

conditions hold for all realistic values of the parameters, and certainly those estimated in section 2.
23The utility outcome of a j-period ahead minimal control for high j may however be very poor, as we

shall see later.
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Threshold ρ j = 1 j = 2 j = 3 j = 4 j = 5 j = 6

θ̄(j) 0.8 102 12 3.4 1.7 1.0 indeterminacy

Θ̄(j) 1 23 3.6 1.2 0.68 0.46 0.34

Table 1b. Critical upper bounds for θ̄(j) and Θ̄(j) for Model GH.

Threshold ρ j = 1 j = 2 j = 3 j = 4 j = 5 j = 6

θ̄(j) 0.8 119 19 3.2 1.6 1.00 indeterminacy

Θ̄(j) 1 23 5.1 1.2 0.57 0.40 0.31

Table 1c. Critical upper bounds for θ̄(j) and Θ̄(j) for Model Z.

These numerical results confirm the predictions of our theory. For each model the

indeterminacy problem becomes more acute as the horizon j increases imposing a tighter

constraint on the range of IFB rules available. For non-integral rules with ρ = 0.8, the

maximum horizon J is just over 5 quarters as predicted by (33). In accordance with

proposition 2, for integral rules as j increases there is always some feedback coefficient on

expected inflation 0 < Θ < Θ̄ such that the IFB rule yields stability and determinacy. For

j ≥ 3, model Z with inflation and output persistence is most prone to indeterminacy.

3.2 Weakly Robust IFB Rules

We are now in a position to identify weakly robust rules; i.e., those IFB rules that guarantee

stability and determinacy. Weakly M-robust rules give stability and determinacy across

parameter specifications corresponding to median values in models G, GH and Z. Weakly

P-robust rules give stability and determinacy for all possible parameter specifications

across a large number of draws.

Consider first non-integral rules. Regions to the south-west of each contour corre-

sponding to a choice of IFB horizon j in Figure 5 shows the regions for parameters ρ and

θ that yield weakly M-robust rules. Figure 6 is based on 10000 draws of parameter com-

binations across all possible models using the estimated posterior parameter distributions

of section 2.5. Regions to the south-west of each contour then represent 100% confidence

regions of determinacy for this sample and give rules that are weakly P-robust. For both

M-robustness and P-robustness, the declining size of this region as the forward horizon
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Figure 5: Non-integral Rules: Regions of Weak M-Robustness.
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Figure 6: Non-integral Rules: Regions of Weak P-Robustness.
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j increases confirms the earlier theoretical results that show that IFB rules with unique

and stable equilibria are increasingly constrained in the choice of (ρ, θ) with a qualitative

change taking place between j = 1 and j = 2.

Consider next integral rules. Weakly M-robust rules can be identified from tables 1a-1c

by picking out the minimal thresholds Θ̄(j) across the three models. For weakly P-robust

we pick out the minimal thresholds based on 10000 draws of parameter combinations as

before. The results in table 2 confirm that the requirement of M-robustness, and especially

P-robustness, increasingly constrain the IFB rule as j increases.

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6

M-Robustness: Θ̄(j) 23 3.6 1.2 0.57 0.40 0.32

P-Robustness: Θ̄(j) 7.0 2.0 0.37 0.36 0.30 0.25

Table 2. Integral Rules: Critical upper bounds for Θ̄(j).

4 Optimal Policy and Optimized IFB Rules without Model

Uncertainty

Without model uncertainty, the policy problem of the central bank at time t = 1 is to

choose in each period t = 1, 2, 3, ··· an interest rate it so as to minimize a standard expected

loss function that depends on the variation of the output relative to an an output target

ot = ynt + k, inflation and the change in the nominal interest rate24:

Ω0 = E0

[
1
2

∞∑
t=0

βt
c

[
(yt − ot)2 + bπ2

t + c(it − it−1)2
]]

(34)

where βc is the discount factor of the central bank. The term k is ambitious target for

output that exceeds the natural level of output. It arises because the natural level of output

is not efficient (owing to mark-up pricing in a monopolistically competitive intermediate

goods sector, market power in the labour market and habit persistence).
24Notice this is a central bankers’ loss function, not a welfare function. It describes the actual policy

objectives banks have (or are instructed to have) rather than what they should have.

23



4.1 Optimal Policy with and without Commitment

We first compute the optimal policies where the policy maker can commit, and the optimal

discretionary policy where no commitment mechanism is in place.25 In our linear-quadratic

framework optimal policies (including those for optimal IFB rules) conveniently decompose

into deterministic and stochastic components. Let target variables in (34) be written as

sums of a deterministic stochastic components such as yt = ȳt + ỹt where all variables are

expressed in deviation form about the baseline zero-inflation deterministic steady state of

the known model. Then the expected loss function decomposes as

Ω0 =
1
2

∞∑
t=0

βt
c

[
(ȳt − ōt)2 + bπ̄2

t + c(̄it − īt−1)2 + E0

[
(ỹt − õt)2 + bπ̃2

t + c(̃it − ĩt−1)2
]]

= Ω̄0 + Ω̃0 (35)

say. The policymaker can then design an optimal policy consisting of an open-loop tra-

jectory that minimizes Ω̄0 subject to the deterministic model plus a feedback rule that

minimizes Ω̃0 subject to a stochastic model expressing stochastic deviations about the

open-loop trajectory. By the property of certainty equivalence for full optimal policies,

but not optimized simple rules, the feedback rule is independent of both the initial values

of the predetermined variables and the variance-covariance matrix of the disturbances.

The optimal policy under commitment provides a benchmark with which to compare

the loss in other policy rules. We use the optimal discretionary policy with k = 5% to

calibrate b to result in an annual inflationary bias (the long-run inflation rate) of 5%. This

gave b = 2.5, 1.5, 0.85 for models G, GH and Z respectively. The discount factor of the

central bank was set at βc = 0.988 which corresponds to an annual discount rate of 5%.

We then set the weight c just sufficiently high to avoid a negative interest rate anywhere

along the trajectory of the optimal policies. This required cG = cGH = 3, cZ = 2. Figures

7 and 8 show the deterministic component of inflation and the nominal interest rate for

model G and demonstrate that these calibration requirements are met for bG and cG.
25Full details of the procedures used to compute optimal policies and optimized IFB rules are provided

in Appendix B.
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Policy for model G. k = 5%.
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4.2 Optimized IFB Rules

We now turn to optimized IFB rules and optimal Taylor-type rules feeding back on either

current inflation alone or on inflation and the output gap. The general form of the rule

that covers integral and non-integral IFB as well as the Taylor-type rules is given by

it = ρit−1 + ΘEtπt+j + Θy(yt − ynt) ; ρ ∈ [0, 1], Θ, Θy > 0, j ≥ 0 (36)

In all the results from this point onwards we focus exclusively on stabilization policy

by putting k = 0 so there is no deterministic component of policy in response to an

ambitious output target.26 Given the estimated variance-covariance matrix of the white

noise disturbances, an optimal combination (Θ, ρ) can be found for each rule defined by

the time horizon j ≥ 0, and for the Taylor rule, and optimal combination (Θ, Θy, ρ). The

results are shown in tables 3 to 6 for the estimated models G, GH and Z of section 2.5.

The Taylor rule is for j = 0 only.

A number of interesting observations emerge from these tables. First, from the output

equivalent loss (relative to the optimal commitment outcome) of ‘minimal control’, the

closest saddle-path stable rule using current inflation to no feedback rule at all, we see

that there are significant though not dramatic gains from stabilization of between 0.5%-

1.0% across the three models. Second, the output equivalent loss from optimal discretion

indicate only small stabilization gains from commitment if the latter policy rule is imple-

mentable. By far the main gain from commitment is the elimination of the inflationary

bias which has been ruled out in these results by putting k = 0. Third, if the policymaker

can commit using a simple rule, the best one in this respect is a Taylor integral rule,

and this realizes a large part of the potential stabilization gain. Third, for each model

we search for optimized rules within those that satisfy the determinacy conditions on ρ

and θ for non-integral rules and on Θ for integral rules. Our theory has shown that this

requirement severely constrains the range of possible stabilizing rules as the horizon j in-

creases and as a result compared with the Taylor rule, IFBj rules perform increasingly less

well. In our results the transition from IFB3 to IFB4 is particularly dramatic involving

an output equivalent loss of between 1% (for model G) and 55% (model Z). This is what
26Since the IFB rule assumes a commitment mechanism, the policymaker in principle should be able to

implement a policy it = īt plus a feedback component such as (28) or (36) relative to īt, where the latter

is the optimal deterministic trajectory found in the previous section.
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our theory leads us to expect from table 1 since the determinacy requirement imposes the

tightest constraint on model Z.

Rule ρ Θ Θy Loss Function % Output Equivalent

Minimal Feedback on πt 1 0.001 0 39.1 0.93

IFB0 1 1.43 0 2.27 0.03

Taylor Rule 1 0.81 1.00 1.86 0.02

IFB1 1 3.99 0 2.63 0.04

IFB2 1 5.00 0 3.19 0.05

IFB3 1 2.17 0 9.78 0.21

IFB4 1 1.02 0 44.0 1.05

Optimal Commitment n.a. n.a. n.a 1.07 0

Optimal Discretion n.a. n.a. n.a 2.98 0.05

Table 3. Model G: Optimal Rules and Optimized Simple Rules Compared.27

Rule ρ Θ Θy Loss Function % Output Equivalent

Minimal Control πt 1 0.001 0 30.3 0.72

IFB0 1 1.40 0 1.44 0.02

Taylor Rule 1 0.77 1.00 1.37 0.02

IFB1 1 5.00 0 1.61 0.02

IFB2 1 3.59 0 2.70 0.05

IFB3 1 1.23 0 21.3 0.50

IFB4 1 0.66 0 147 3.56

Optimal Commitment n.a. n.a. n.a 0.64 0

Optimal Discretion n.a. n.a. n.a 1.78 0.03

Table 4. Model GH: Optimal Rules and Optimized Simple Rules Compared.
27IFBj denotes a j-period ahead IFB rule. Let Ω=loss from rule, ΩO =loss from optimal rule with

commitment. A 1% permanent fall in the output gap leads to a reduction in the loss function of 1
2(1−βc)

= 41

in our calibration. The % output equivalent loss is then a measure of the degree of sub-optimality of each

Rule and is defined as Ω−ΩO

41
× 100. Optimized simple rules were restricted to the ranges ρ ∈ [0, 1] and

Θ ∈ [1, 5].
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Rule ρ Θ Θy Loss Function % Output Equivalent

Minimal Feedback on πt 1 0.001 0 22.45 0.54

IFB0 1 1.25 0 0.88 0.01

Taylor Rule 1 1.25 0.11 0.88 0.01

IFB1 1 2.96 0 1.16 0.02

IFB2 1 5.0 0 1.45 0.02

IFB3 1 1.17 0 28.03 0.67

IFB4 0.87 0.40 0 2314 54.8

Optimal Commitment n.a. n.a. n.a 0.45 0

Optimal Discretion n.a. n.a. n.a 0.93 0.01

Table 5. Model Z: Optimal Rules and Optimized Simple Rules Compared.

5 Robust IFB Rules with Model Uncertainty

5.1 Theory

In this section we consider model uncertainty in the form of uncertain estimates of the

non-policy parameters of the model, Θ = (β, γ, ξ, φ, σ, h, ρa, ρb, ζ, η, κ, σ2
at, σ

2
gt). Suppose

the state of the world s is described by a model with Θ = Θs expressed in state-space

form as ⎡
⎣ zs

t+1

Etx
s
t+1

⎤
⎦ = As

⎡
⎣ zs

t

xs
t

⎤
⎦+ Bsist + Cs

⎡
⎣ εgt+1

εat+1

⎤
⎦ (37)

os
i = Es

⎡
⎣ zs

t

xs
t

⎤
⎦ (38)

where zs
t−1 = [as

t , g
s
t , c

s
t−1, c

s
n,t−1, π

s
t−1] is a vector of predetermined variables at time t and

xt = [cs
t , π

s
t ] are non-predetermined variables in state s of the world. In (37) and (38) it is

important to stress that variables are in deviation form about a zero-inflation steady state

of the model in state s. For example output in deviation form is given by ys
t = Y s

t −Ȳ s

Ȳs
where

Ȳ s is the steady state of the model in state s defined by parameters Θs and ist = it − īs

where the natural rate of interest in model s, īs = 1
βs − 1.
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For M-robustness, in general one sets up a composite model of outputs from each of

the states s = 1, 2, · · ·, n corresponding to the rival models and minimizes the expected

loss across these states using estimated posterior probabilities. Because each model is

linearized about a different steady state, we must now set up the model in state s in terms

of the actual interest rate, not the deviation about the steady state. Then augmenting

the state vector to become zs
t = [1, as

t , g
s
t , c

s
t−1, c

s
n,t−1, π

s
t−1] we still have a state have a

state-space form (37) and (38) and we minimize

Ω0 =
1
2

∞∑
t=0

βt
c

n∑
s=1

ps

[
(ȳs

t − ōs
t )

2 + bs(π̄s
t )

2 + cs(̄it − īt−1)2

+ E0

[
(ỹs

t − õs
t )

2 + bs(π̃s
t )

2 + cs(̃it − ĩt−1)2
] ]

(39)

For P-robustness (39) is replaced with the average expected utility loss across a a large

number of draws from all models constructed using both the posterior model probabilities

and the posterior parameter distributions for each model.

In (39) the output target in state s of the world is given by os
t = ys

nt + ks where

the ambitious output target ks depends on s. In fact we will continue to assume that

the central bank has no ambitious output targets and set ks = 0 in its loss function.

However with model uncertainty there is still a deterministic component of policy arising

from differences in the natural rate of interest compatible with zero inflation in the steady

state, īs = 1
βs − 1.28 A non-integral rule specifying it = īs in the long-run will only result

in zero inflation in model s. From the consumers’ Euler equation (4) in model r with

βr > βs, implementing the rule designed for model s with ī = īs = 1
βs − 1 gives a steady

state inflation rate π̄r that is no longer zero but given by

βr(1 + īs)
(1 + π̄r)

=
βr

βs(1 + π̄r)
= 1 i.e., π̄r =

βr

βs
− 1 > 0 (40)

Our robust non-integral rule designed for any model specifies a natural zero inflation rate

of interest īR, corresponding to a discount factor βR = 1
1+īR

to result in an expected

long-run inflation rate across models of zero. This implies βR is determined by

n∑
s=1

ps

[
βs

βR
− 1
]

⇒ βR =
n∑

s=1

psβs (41)

28In fact estimated differences in βs between models s = G, GH, Z are not great, so the point we make

here is only potentially important.
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That is, βR is the expected value of βs across the model variants. The need to specify

a natural rate of interest, īR, only applies to non-integral rules. By contrast, a further

benefit of integral rules is that the economy is automatically driven to a zero-inflation

steady state whatever the state of the world without having to specify īR.

There is one final consideration first raised by Levine (1986) that is usually ignored

in the literature. Up to now we have assumed that private sector expectations Etx
s
t+1 are

state s model-consistent expectations. In other worlds in each state of the world the pri-

vate sector knows the state and faces no model uncertainty. In a more general formulation

of the problem we can relax this assumption and assume that both the policymaker and

the private sector faces model uncertainty. Suppose that in state s of the world the latter

believes model s′ with probability qss′ . Then Etx
s
t+1 must be replaced by the composite

expectation
∑n

s′=1 qss′Etx
s′
t+1 and the composite model no longer decomposes into indepen-

dent systems. In the results that follow we bypass this complication and confine ourselves

to model-consistent expectations in each state of the world.

5.2 Strongly Robust IFB Rules

Rule ρ Θ

M-Robust IFB0 1 1.40

P-Robust IFB0 1 1.61

M-Robust IFB1 1 3.93

P-Robust IFB1 1 4.37

M-Robust IFB2 1 3.59

P-Robust IFB2 1 1.85

M-Robust IFB3 1 1.17

P-Robust IFB3 1 0.24

M-Robust IFB4 0.92 0.41

P-Robust IFB4 1 0.24

Table 6. Strongly Robust IFB Rules.

We now present the strongly M-robust and P-robust IFB rules with horizon j = 0, ···, 4.

Table 6 reports these rules, which turn out to be of the integral type in almost all cases,

as our theory leads us to expect.
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Rule Model G Model GH Model Z

IFB0(G) 2.27 (0.03) 1.44 (0.02) 0.88 (0.01)

IFB0(GH) 2.27 (0.03) 1.44 (0.02) 0.88 (0.01)

IFB0(Z) 2.29 (0.03) 1.45 (0.02) 0.88 (0.01)

IFB0(M-Robust) 2.27 (0.03) 1.44 (0.02) 0.88 (0.01)

IFB1(P-Robust) 2.28 (0.03) 1.45 (0.02) 0.90 (0.01)

IFB1(G) 2.63 (0.04) 1.63 (0.02) 1.18 (0.02)

IFB1(GH) 2.66 (0.04) 1.61 (0.02) 1.18 (0.02)

IFB1(Z) 2.69 (0.04) 1.72 (0.03) 1.16 (0.02)

IFB1(M-Robust) 2.63 (0.04) 1.63 (0.02) 1.18 (0.02)

IFB1(P-Robust) 2.63 (0.04) 1.62 (0.02) 1.19 (0.02)

IFB2(G) 3.19 (0.05) indeterminacy 1.45 (0.02)

IFB2(GH) 3.66 (0.06) 2.70 (0.05) 1.61 (0.03)

IFB2(Z) 3.19 (0.05) indeterminacy 1.45 (0.02)

IFB2(M-Robust) 3.66 (0.06) 2.70 (0.05) 1.61 (0.03)

IFB2(P-Robust) 5.70 (0.11) 4.76 (0.10) 2.48 (0.05)

IFB3(G) 9.78 (0.21) indeterminacy indeterminacy

IFB3(GH) 17.3 (0.40) 21.3 (0.51) indeterminacy

IFB3(Z) 18.2 (0.42) 22.8 (0.54) 28.0 (0.67)

IFB3(M-Robust) 18.2 (0.42) 22.8 (0.54) 28.0 (0.67)

IFB3(P-Robust) 95.8 (2.31) 169 (4.12) 674 (16.4)

IFB4(G) 44.0 (1.05) indeterminacy indeterminacy

IFB4(GH) 72.3 (1.74) 147 (3.57) indeterminacy

IFB4(Z) 190 (4.61) 424 (10.3) 2246 (54.8)

IFB4(M-Robust) 154 (3.73) 345 (8.40) 2659 (64.8)

IFB4(P-Robust) 216 (5.24) 528 (12.9) 4536 (111)

Table 7. Value of Loss Function for Different Rules with Model Uncertainty29

The diagonal elements of table 7 gives the policymaker’s losses obtained previously in

tables 3 to 5 when the optimized rule designed for model s=G, GH, Z is implemented in

that model. Figures in brackets refer to output equivalent % losses. We refer to these

rules as IFBj(s) for horizon j. The off-diagonal entries show the loss outcome when the
29IFBj(s) denotes the outcome from the j-horizon IFB rule designed for model s. Each row then gives the

value of the loss function for models s = G, GH, Z. M-robust rules use the posterior model probabilities

pG = 0.56, pGH = 0.12 and pZ = 0.32. The % output equivalent losses are in brackets. Diagonal elements

correspond to losses in tables 2 to 5.
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rule designed for model s is implemented on model r 	= s. A striking pattern emerges

from this table: whereas the current inflation rule IFB0 and the IFB1 rule are remarkably

robust across models, this is no longer true for IFBj for j ≥ 2. IFB0 and IFB1 rules

designed for the wrong model perform well in terms of their stabilization properties and

the requirements of M-robustness or even P-robustness have little impact on policy design.

For IFBj rules with j ≥ 2 optimized rules designed for the wrong model can lead

to indeterminacy. M-robust and P-robust rules avoid this indeterminacy by design.30

However robustness comes at a cost especially as the horizon j goes beyond j = 2. For

j = 3, M-robustness imposes output equivalent costs of between 0.42 − 0.67% and for

j = 4 between 4 − 65%. The most stringent robustness criterion, P-robustness, comes at

a cost of over 100% output equivalent if an IFB4 rule is pursued and the world turns out

to be correctly represented by model Z.

6 Conclusions

Both our theoretical results on IFB rules in section 3 and our numerical results of that and

later sections indicate that they become increasing prone to the problem of indeterminacy

as the forward horizon increases from j = 2 to j = 4. As a consequence the stabilization

performance of optimized rules of this type worsens too. M-robust and P-robust rules

avoid indeterminacy in an uncertain environment, but at an increasing utility loss as rules

become more forward-looking.

In view of these results the question arises: why do central banks pursue forward-

looking targeting rules in the first place? Two main reasons for favouring such rules

are commonly cited. First, the delayed response of inflation to interest rate changes

obliges monetary authorities to react in a pre-emptive fashion to expected inflation in the

future. Second, by targeting inflation in the future in a simple and accountable fashion,

the central bank can respond to shocks whilst at the same time providing the private

sector with assurances that inflation will eventually return to its long-run target of zero

inflation, in our set-up. Of these two reasons only the second makes any sense in terms of

our analysis. Central banks can only target forecasts of future inflation and these can only
30In our computations a very large loss utility loss is assigned to rules that lead to instability or inde-

terminacy.
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be conditional on information available at the time the interest rate is set, i.e., the state

vector at time t in (24). By committing to a rule that feeds back on inflation j ≥ 1 periods

ahead, since this forecast can be expressed as a linear combination of these state variables,

the authority is severely constraining how the interest rate should in effect respond to this

information, and it is this constraint that lies at the heart of the poor performance of

these rules. It may well be the case that a long forward horizon is necessary to establish

the commitment to a low inflation target, but there is clearly a need for this credibility

argument to be formalized.
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A Computation of Policy Rules

The general model in deterministic form takes the form[
zt+1

xe
t+1,t

]
= A

[
zt

xt

]
+ Bwt (A.1)

where zt is an (n − m) × 1 vector of predetermined variables including non-stationary
processed, z0 is given, wt is a vector of policy variables, xt is an m × 1 vector of non-
predetermined variables and xe

t+1,t denotes rational (model consistent) expectations of

xt+1 formed at time t. Then xe
t+1,t = xt+1 and letting yT

t =
[

zT
t xT

t

]
(A.1) becomes

yt+1 = Ayt + Bwt (A.2)

Define target variables st by

st = Myt + Hwt (A.3)

and the policy-maker’s loss function at time t by

Ωt =
1
2

∞∑
i=0

λt[sT
t+iQ1st+i + wT

t+iQ2wt+i] (A.4)

which we rewrite as

Ωt =
1
2

∞∑
i=0

λt[yT
t+iQyt+iQyt+i + 2yT

t+iUwt+i + wT
t+iRwt+i] (A.5)

where Q = MT Q1M , U = MT Q1H, R = Q2 + HT Q1H, Q1 and Q2 are symmetric
and non-negative definite R is required to be positive definite and λ ∈ (0, 1) is discount
factor. The procedures for evaluating the three policy rules are outlined in the rest of this
appendix (or Currie and Levine (1993) for a more detailed treatment).

A.1 The Optimal Policy with Commitment

Consider the policy-maker’s ex-ante optimal policy at t = 0. This is found by minimizing
Ω0 given by (A.5) subject to (A.2) and (A.3) and given z0. We proceed by defining the
Hamiltonian

Ht(yt, yt+1, µt+1) =
1
2
λt(yT

t Qyt + 2yT
t Uwt + wT

t Rwt) + µt+1(Ayt + Bwt − yt+1) (A.6)
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where µt is a row vector of costate variables. By standard Lagrange multiplier theory we
minimize

L0(y0, y1, . . . , w0, w1, . . . , µ1, µ2, . . .) =
∞∑

t=0

Ht (A.7)

with respect to the arguments of L0 (except z0 which is given). Then at the optimum,
L0 = Ω0.

Redefining a new costate vector pt = λ−1µT
t , the first-order conditions lead to

wt = −R−1(λBT pt+1 + UT yt) (A.8)

λAT pt+1 − pt = −(Qyt + Uwt) (A.9)

Substituting (A.8) into (A.2)) we arrive at the following system under control[
I λBR−1BT

0 λ(AT − UR−1BT )

][
yt+1

pt+1

]
=

[
A − BR−1UT 0
−(Q − UR−1UT I

][
yt

pt

]
(A.10)

To complete the solution we require 2n boundary conditions for (A.10). Specifying z0

gives us n−m of these conditions. The remaining condition is the ’transversality condition’

lim
t→∞µT

t = lim
t→∞λtpt = 0 (A.11)

and the initial condition
p20 = 0 (A.12)

where pT
t =

[
pT
1t pT

2t

]
is partitioned so that p1t is of dimension (n − m) × 1. Equation

(A.3), (A.8), (A.10) together with the 2n boundary conditions constitute the system under
optimal control.

Solving the system under control leads to the following rule

wt = −F

[
I 0

−N21 −N22

][
zt

p2t

]
(A.13)

[
zt+1

p2t+1

]
=

[
I 0
S21 S22

]
G

[
I 0
−N21 −N22

][
zt

p2t

]
(A.14)

N =

[
S11 − S12S

−1
22 S21 S12S

−1
22

−S−1
22 S21 S−1

22

]
=

[
N11 N12

N21 N22

]
(A.15)

xt = −
[

N21 N22

] [ zt

p2t

]
(A.16)

where F = −(R + BT SB)−1(BT SA + UT ), G = A − BF and

S =

[
S11 S12

S21 S22

]
(A.17)
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partitioned so that S11 is (n − m) × (n − m) and S22 is m × m is the solution to the
steady-state Ricatti equation

S = Q − UF − F T UT + F T RF + λ(A − BF )T S(A − BF ) (A.18)

The cost-to-go for the optimal policy (OP) at time t is

ΩOP
t = −1

2
(tr(N11Zt) + tr(N22p2tp

T
2t)) (A.19)

where Zt = ztz
T
t . To achieve optimality the policy-maker sets p20 = 0 at time t = 0. At

time t > 0 there exists a gain from reneging by resetting p2t = 0. It can be shown that
N22 < 0, so the incentive to renege exists at all points along the trajectory of the optimal
policy. This is the time-inconsistency problem.

A.2 The Dynamic Programming Discretionary Policy

The evaluate the discretionary (time-consistent) policy we rewrite the cost-to-go Ωt given
by (A.5) as

Ωt =
1
2
[yT

t Qyt + 2yT
t Uwt + wT

t Rwt + λΩt+1] (A.20)

The dynamic programming solution then seeks a stationary solution of the form wt =
−Fzt in which Ωt is minimized at time t subject to (1) in the knowledge that a similar
procedure will be used to minimize Ωt+1 at time t + 1.

Suppose that the policy-maker at time t expects a private-sector response from t + 1
onwards, determined by subsequent re-optimisation, of the form

xt+τ = −Nt+1zt+τ , τ ≥ 1 (A.21)

The loss at time t for the ex ante optimal policy was from (A.8) found to be a quadratic
function of xt and p2t. We have seen that the inclusion of p2t was the source of the time
inconsistency in that case. We therefore seek a lower-order controller wt = −Fzt with the
cost-to-go quadratic in zt only. We then write Ωt+1 = 1

2zT
t+1St+1zt+1 in (A.20). This leads

to the following iterative process for Ft

wt = −Ftzt (A.22)

where

Ft = (Rt + λB
T
t St+1Bt)−1(UT

t + λB
T
t St+1At)

Rt = R + KT
t Q22Kt + U2T Kt + KT

t U2

Kt = −(A22 + Nt+1A12)−1(Nt+1B
1 + B2)

Bt = B1 + A12Kt

U t = U1 + Q12Kt + JT
t U2 + JT

t Q22Jt

J t = −(A22 + Nt+1A12)−1(Nt+1A11 + A12)
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At = A11 + A12Jt

St = Qt − U tFt − F T
t U

T + F
T
t RtFt + λ(At − BtFt)T St+1(At − BtF t)

Qt = Q11 + JT
t Q21 + Q12Jt + JT

t Q22Jt

Nt = −Jt + KtFt

where B =

[
B1

B2

]
, U =

[
U1

U2

]
, A =

[
A11 A12

A21 A22

]
, and Q similarly are partitioned

conformably with the predetermined and non-predetermined components of the state vec-
tor.

The sequence above describes an iterative process for Ft, Nt, and St starting with some
initial values for Nt and St. If the process converges to stationary values, F, N and S say,
then the time-consistent feedback rule is wt = −Fzt with loss at time t given by

ΩTC
t =

1
2
zT
t Szt =

1
2
tr(SZt) (A.23)

A.3 Optimized Simple Rules

We now consider simple sub-optimal rules of the form

wt = Dyt = D

[
zt

xt

]
(A.24)

where D is constrained to be sparse in some specified way. Rule can be quite general. By
augmenting the state vector in an appropriate way it can represent a PID (proportional-
integral-derivative)controller (though the paper is restricted to a simple proportional con-
troller only).

Substituting (A.3) into (A.5) gives

Ωt =
1
2

∞∑
i=0

λty
T
t+iPt+iyt+i (A.25)

where P = Q+UD +DT UT +DT RD. The system under control (A.1), with wt given by
(A.3), has a rational expectations solution with xt = −Nzt where N = N(D). Hence

yT
t Pyt = zT

t Tzt (A.26)

where T = P11 − NT P21 − P12N + NT P22N , P is partitioned as for S in (A.17) onwards
and

zt+1 = (G11 − G12N)zt (A.27)

where G = A + BD is partitioned as for P . Solving (A.27) we have

zt = (G11 − G12N)tz0 (A.28)
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Hence from (A.29), (A.26) and (A.28) we may write at time t

ΩSIM
t =

1
2
zT
t V zt =

1
2
tr(V Zt) (A.29)

where Zt = ztz
T
t and V satisfies the Lyapunov equation

V = T + HT V H (A.30)

where H = G11 − G12N . At time t = 0 the optimized simple rule is then found by
minimizing Ω0 given by (A.29) with respect to the non-zero elements of D given z0 using
a standard numerical technique. An important feature of the result is that unlike the
previous solution the optimal value of D, D∗ say, is not independent of z0. That is to say

D∗ = D∗(z0)

A.4 The Stochastic Case

Consider the stochastic generalization of (A.1)[
zt+1

xe
t+1,t

]
= A

[
zt

xt

]
+ Bwt +

[
ut

0

]
(A.31)

where ut is an n × 1 vector of white noise disturbances independently distributed with
cov(ut) = Σ. Then, it can be shown that certainty equivalence applies to all the policy
rules apart from the simple rules (see Currie and Levine (1993)). The expected loss at
time t is as before with quadratic terms of the form zT

t Xzt = tr(Xzt, Z
T
t ) replaced with

Et

(
tr

[
X

(
ztz

T
t +

∞∑
i=1

λtut+iu
T
t+i

)])
= tr

[
X

(
zT
t zt +

λ

1 − λ
Σ
)]

(A.32)

where Et is the expectations operator with expectations formed at time t.
Thus for the optimal policy with commitment (A.19) becomes in the stochastic case

ΩOP
t = −1

2
tr
(

N11

(
Zt +

λ

1 − λ
Σ
)

+ N22p2tp
T
2t

)
(A.33)

For the time-consistent policy (A.23) becomes

ΩTC
t = −1

2
tr
(

S

(
Zt +

λ

1 − λ
Σ
))

(A.34)

and for the simple rule, generalizing (A.29)

ΩSIM
t = −1

2
tr
(

V

(
Zt +

λ

1 − λ
Σ
))

(A.35)

The optimized simple rule is found at time t = 0 by minimizing ΩSIM
0 given by (A.35).

Now we find that
D∗ = D∗

(
z0 +

λ

1 − λ
Σ
)

(A.36)

or, in other words, the optimized rule depends both on the initial displacement z0 and on
the covariance matrix of disturbances Σ.
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1% 99%

ρi     B 0.75 0.15 0.538 0.981

θ     G 1.7 0.5 1.099 3.074

χ     G 0.15 0.1 0.044 0.473

φ     G 1.75 0.5 1.148 3.118

σ     G 1.5 0.8 0.609 3.952

γ     B 0.7 0.1 0.566 0.897

h     B 0.7 0.1 0.566 0.897

ρa     B 0.7 0.15 0.492 0.959

ρg     B 0.7 0.15 0.492 0.959

π*
    G 4 2 1.745 10.045

r*     G 2 1 0.872 5.023

sdg     IG1 1.7 inf 0.635 9.260

sde     IG1 1 inf 0.372 5.699

sda     IG1 1.7 inf 0.635 9.260

For all models, g  is calibrated to 0.22. Distributions: G 
(Gamma), B (Beta),  and ), IG1 ( Inverse Gamma-1).   ρ 
corresponds to the autoregressive coefficient of an AR(1) 
process. sd  stands for the standard deviation of the shocks. .Last 
two columns,  report the inverse cumulative distribution function 
of each prior ordinate for thepercentiles 0.01 and 0.99. 

Table1 : Priors for Baseline model

Percentiles 
Distribution Mean 

Standard 
Deviation 

B  Estimation Results
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G ( γ = 0 ) 

H ( h= 0)

GH ( γ =h= 0 )

Z

Table 3: Model Comparisons

Reversible MCMC of Dellaportas et al. (2002). 100,000 draws to obtain the 
proposal densities.  For the Metropolis step, Discarded the first 20,000 values and 
retained the remaining 180,000. Posterior odds P(m|data)  based on assigning each 
model equal prior probability.  Model proposal density assigns equal probability to 
the jump to any of four possible models, regardless of the current model in the 
chain. 

Posterior Odds, P( m | data ) 

0.56

0.32

0.09

Reversible Jump MCMC 

0.03




