
råáp=== = = ======råáîÉêëáíó=çÑ=pìêêÉó

Discussion Papers in Economics

Department of Economics
University of Surrey

Guildford
Surrey GU2 7XH, UK

Telephone +44 (0)1483 689380
Facsimile +44 (0)1483 689548
Web www.econ.surrey.ac.uk

ISSN: 1749-5075

OPTIMAL CONTROL IN NONLINEAR MODELS: A

GENERALISED GAUSS-NEWTON ALGORITHM WITH
ANALYTIC DERIVATIVES

By

Richard G. Pierse
 (University of Surrey)

DP 09/06

Optimal control in nonlinear models: a
generalised Gauss-Newton algorithm with

analytic derivatives

Richard G. Pierse
Department of Economics

University of Surrey, Guildford GU2 7XH, U.K.

February 24 2006

Abstract

In this paper we propose an algorithm for the solution of optimal
control problems with nonlinear models based on a generalised Gauss-
Newton algorithm but making use of analytic model derivatives. The
method is implemented in WinSolve, a general nonlinear model solu-
tion program.

1 Introduction

In recent years, Newton methods have largely replaced �rst-order techniques
as the primary solution method for non-linear deterministic economic mod-
els. As argued in Juillard et al. (1998), Newton techniques are faster and
more robust than �rst-order techniques such as those based on Gauss-Seidel
iterations and, as is well known, are quadratically rather than just linearly
convergent. Newton methods require the evaluation of �rst order model
derivatives. In models without any forward-looking behaviour by agents,
the model equations can be solved recursively, period-by-period, requiring,
in each period from 1 to T , the solution of an n � n linear system of �rst-
order derivatives (n being the number of current-dated endogenous variables).
When the model contains forward-looking variables, the system of equations

1

is no longer recursive and so must be stacked into a simultaneous system of
nT equations. This system can be very large and solving it e¢ ciently requires
use of sparse solution techniques. The most widely used algorithm, due to
La¤argue (1990), Boucekkine (1995) and Julliard (1996) and known as the
L-B-J algorithm, makes use of the special block-band structure of the Jaco-
bian matrix to solve the equations e¢ ciently by Gaussian block pivoting on
matrices of order n�n. The model derivatives required for Newton methods
can be computed numerically using �nite-di¤erence numerical techniques but
more often automatic derivatives are used. Automatic derivative techniques
(see Rall (1981) or Griewank (2000)) apply analytic derivative formulae to
compute �rst (and higher order) derivatives as a by-product of evaluation
of the (parsed) model equations. Automatic derivatives are generally much
cheaper to compute than numeric derivatives and are more accurate. Com-
puter packages such as Dynare (Juillard, 1996), Troll (Hollinger, 1996) and
WinSolve (Pierse, 2002) all implement stacked-Newton as the default algo-
rithm for solving deterministic forward-looking models. In the current version
of Dynare, the �rst order model derivatives are calculated numerically but
both Troll and WinSolve implement automatic derivatives.
Given the prevalent use of Newton methods to solve economic models, it

is also natural to consider them in the solution of optimal control problems
with an economic model. A control problem involves the minimisation of a
(typically quadratic) loss function subject to the equations of the model. The
optimiser is assumed to be able to choose values for a set of (exogenous) con-
trol variables in order to achieve the targets de�ned by the loss function. The
�rst order conditions for the control problem involve the derivatives of the
loss function with respect to the control variables. These �rst order condi-
tions can be found by solving a set of nT linear equations involving the model
Jacobian matrix stacked over time. When the model has no forward-looking
variables, it may be possible to solve this problem recursively, period by pe-
riod, as long as the matrix of derivatives of current period target variables
with respect to current period control variables is square and non-singular.
However, when the model contains forward-looking variables or the control
variables only a¤ect the target variables with a lag, solving the full system
of nT linear equations is required. Given the size of this system, solving the
problem e¢ ciently requires the use of sparse solution techniques.
In this paper, an algorithm is developed utilising the block-band struc-

ture of the Jacobian matrix to solve the �rst order equations of the control
problem e¢ ciently by Gaussian block-pivoting in a way similar to that used

2

in the L-B-J algorithm. This method is then applied in an implementation
of the Gauss-Newton solution method using analytic derivatives computed
using techniques of automatic di¤erentiation. This algorithm has been imple-
mented in the current version ofWinSolve, a user-friendly computer package
for solving general nonlinear models, described in Pierse (2002)1.
The structure of the paper is as follows: Section 2 brie�y describes

the stacked-Newton solution method and the L-B-J algorithm. Section 3
discusses the (generalised) Gauss-Newton algorithm for solving non-linear
quadratic minimisation problems and develops an algorithm for computing
the �rst order conditions of the problem. Finally, some conclusions are drawn.

2 Stacked Newton and the L-B-J algorithm

Consider solution of the general nonlinear set of deterministic equations

f(yt;yt+1; � � � ;yt+q;yt�1; � � � ;yt�p;xt;�) = 0 ; t = 1; � � � ; T (1)

where yt is an n� 1 vector of endogenous variables in time period t, xt is an
m� 1 vector of current and lagged exogenous variables, f is an n� 1 vector
valued function and � is a vector of parameters, p is the longest lag in the
model and q is the longest lead. This system represents a set of n nonlinear
equations over T time periods. Stacking the equations over all time periods
produces a set of nT equations. The Jacobian matrix of this stacked system
has a special structure and looks like

J =

266666666666664

J1 F11 � � � Fq1
B12 J2 F12 � � � Fq2
...

. � � � . . .

Bpp � � � B1p Jp
. . . � � � . . .

. . . � � � � � � FqT�k
. . . � � �

...
. . . � � � . . . JT�1 F1T�1

BpT � � � B1T JT

377777777777775
(2)

1A free trial version is available for download from the Internet at web address
www.econ.surrey.ac.uk/winsolve.

3

where

Jt =
@f

@y0t
; Fit =

@f

@y0t+i
; Bit =

@f

@y0t�i

are all matrices of dimension n� n.
The Stacked Newton method applies Newton�s method (Newton (1686))

to the stacked system. This involves iterating on the set of nT equations

J(ys � ys�1) = �f(ys�1) (3)

where ys is the nT � 1 vector of stacked values of the endogenous variables
in iteration s. Iterations start from an initial guess at the solution, y0, and
terminate when a convergence criterion such as

max
j

�����ysj � ys�1j

ys�1j

����� < "
has been satis�ed, for some small value of ".
Each iteration of Newton�s method involves the solution of a set of nT

equations and, when either n or T is big, the nT � nT Jacobian matrix J
will be very large. Since the cost of solution of a set of k linear equations,
using standard techniques such as the LU decomposition, is roughly of order
O(k3), (see Du¤ et al. (1986) or Judd (1998)), this cost can quickly become
prohibitive. Even the storage of the full Jacobian matrix in computer memory
can be a problem: for example with nT = 5000, 182 megabytes of memory
is required, and with nT = 10000, 728 megabytes.
It can be seen from (2) that the structure of the Jacobian matrix is very

sparse with many zero elements. A solution to both the storage and compu-
tational problems is to take account of the known sparsity of the Jacobian
matrix. Two approaches are possible. One approach, suggested by Arm-
strong et al. (1998) is to make use of general sparse matrix solution methods
as described in Du¤ et al. (1986) and implemented by AERE Harwell in the
MA28 library (Du¤ (1977))2. These methods use the known sparsity pattern
of a matrix to reduce the required storage by storing only non-zero elements,
and to eliminate redundant calculations involving zero elements.
An alternative approach is the L-B-J algorithm, originally suggested by

La¤argue (1990) and re�ned by Boucekkine (1995) and Julliard (1996). This
approach explicitly takes account of the special block-band structure of the

2The NAG library also includes similar versions of these routines.

4

Jacobian matrix (2) to solve the equations e¢ ciently by Gaussian block piv-
oting on matrices of dimension n � n. The method proceeds in two stages.
In the �rst stage, the Jacobian matrix is transformed into an upper block-
triangular structure, by eliminating the blocks below the diagonal by the
recursion

subtract Bjt � rows of block t� j from rows of block t

from j = p�; p� � 1; � � � ; 1, where p� = min(p; t � 1) and then replacing the
block on the diagonal by the identity matrix by the operation

premultiply rows of block t by the inverse of the diagonal block J�t

where J�t is the diagonal block Jt after transformation by the set of Gaussian
eliminations.
The algorithm proceeds, period by period from t = 1 through to t = T .

Note that the only blocks that need to be stored are those corresponding to
the lead coe¢ cients Fit, i = 1; � � � ; q: This means that storage is reduced from
nT � nT to nT � nq. This can be reduced further by dropping any columns
in Fit, corresponding to variables that never appear with a lead. Note also
that the last step in this stage is the solution of an n�n system of equations
in the transformed Jacobian block J�t . Since this matrix will itself usually
be sparse, the general sparse solution methods of Du¤ et al. (1986) can be
applied to this step. (This combination of general sparse matrix techniques
with the L-B-J algorithm is used in the implementations of the algorithm in
the computer packages Troll and WinSolve.)
Finally, in the second stage of the procedure, the upper block-triangular

structure is solved recursively, going backwards in time from period T to
period 1.

3 Gauss-Newton and analytic derivatives

Consider solution of the nonlinear quadratic optimisation problem

min
u
L =

1

2
(y � y�)0W(y � y�) + 1

2
(u� u�)0Q(u� u�) (4)

subject to the set of non-linear model equations

f(yt;yt+1; � � � ;yt+q;yt�1; � � � ;yt�p;ut; zt;�) = 0 ; t = 1; � � � ; T: (5)

5

Here the model is as before except that the exogenous variables xt have now
been separated into k control variables ut and (m� k) other exogenous vari-
ables zt. In the quadratic loss function (4) y� and u� represent desired values
of the target variables and controls respectively andW and Q represent pos-
itive semi-de�nite block diagonal matrices of weights of dimension nT � nT
and kT � kT respectively.
The Gauss-Newton algorithm is an iterative procedure based on a second

order Taylor approximation to the original problem in which the Hessian
matrix

@2L

@u@u0

is approximated by the expression

@2L

@u@u0
=
@y

@u

0
W
@y

@u
+Q (6)

which drops all terms involving second order model derivatives. The rationale
for this is that, in the neighbourhood of a solution when y and u are close
to their targets of y� and u�, then all these second order terms will be close
to zero.
The nT�kT matrix @y

@u
in (6)of the derivatives of the endogenous variables

with respect to the controls is de�ned implicitly by the set of linear equations

J
@y

@u
= � @f

@u
: (7)

The Gauss-Newton step in iteration s for updating the guess of u from the
previous iteration, us�1, is de�ned by�

@y

@u

0
W
@y

@u
+Q

�
(us � us�1) = �@y

@u

0
W(y � y�)�Qus�1 (8)

The advantage of the Gauss-Newton algorithm compared with other,
more general, (e.g. quasi-Newton) methods for solving the minimisation
problem (4) subject to (5) is that it only uses �rst order derivatives. Under
certain circumstances, it can be shown to be quadratically convergent and,
when the model (5) is linear, it converges in a single iteration. However,
in other circumstances the Gauss-Newton step may not always be a descent
direction. In these cases a modi�ed version of the method is the Levenberg-
Marquardt algorithm (Marquardt (1963)) which ensures that the step taken
is always in a descent direction.

6

When the model to be solved is forward-looking and the solution is by
a stacked Newton method, then it is straightforward to augment the L-B-J
algorithm to de�ne the derivative matrix @y

@u
by solving the set of equations

(7). All that is required is that the matrix of derivatives of the model equa-
tions with respect to the control variables @f

@u
is computed along with the

standard �rst order derivatives @f
@y
. When automatic derivative methods are

being employed and the number of control variables is small relative to the
number of endogenous model variables (as is usually the case), then the ad-
ditional cost of this is trivial. Then, exactly the same recursions need to be
applied to the matrix @f

@u
in (7) as are applied to the vector f(y) in (3) in the

L-B-J algorithm. Having solved for the derivatives @y
@u
, the Gauss-Newton

step can then be de�ned by solving the system of equations (8). This is a
linear system of order kT � kT and so will usually be of much lower order
than nT � nT system (7). However, sparse methods may also be applied
here if necessary.
In e¢ cient implementation of model solution methods, some automatic

equation ordering is often used to reduce the size of the simultaneous equa-
tions block. Purely input variables that do not depend on the simultaneous
variables (and so can be determined before the simultaneous equations are
solved) can be eliminated. So can output variables that do not feed back into
the simultaneous variables (and so can be determined after the simultane-
ous equations have been solved). It is important in the context of computing
derivatives of targets with respect to controls to note that targets may well be
output variables while control variables might well in�uence targets through
input variables. Thus, the derivatives @f

@y
do need to be computed for all

model equations and not just those in the simultaneous equations block.
Finally, although the algorithm outlined here has been developed pri-

marily in the context of optimal control where the model to be solved is
forward looking, it can equally well be applied to the case of control with
purely backward looking models. In this case, the marginal cost of the extra
computations is greater since model solution with backward-looking models is
usually done recursively. However, this disadvantage may still be outweighed
by the speed of the Gauss-Newton method compared to other nonlinear con-
trol methods. In particular, for a linear model, the Gauss-Newton method
will converge in a single iteration whereas other nonlinear optimisation meth-
ods may still take many iterations.

7

4 Conclusions

A new algorithm has been suggested for the solution of nonlinear quadratic
optimal control problems using a (generalised) Gauss-Newton method with
analytic model derivatives and applying e¢ cient sparse matrix methods to
solve e¢ ciently for the derivatives of target variables with respect to controls.
This algorithm has been implemented in version 3 of the software package
WinSolve. Three alternative nonlinear methods were used for comparison:
a version of the same algorithm using purely numerical �rst order deriva-
tives, a quasi-Newton algorithm, (again using numerical �rst order deriva-
tives) based on the Broydon-Fletcher-Goldfarb-Shanno variant of Davidon,
Fletcher and Powell (Davidon (1959), Fletcher and Powell (1963), Broydon
(1970), Fletcher (1970) and Shanno (1970)) and Powell�s (1964) conjugate
directions algorithm, which doesn�t use derivatives.
In general, implementation of the algorithm proved to be a success. In

comparison with the numerical derivative version of the same algorithm, the
version using automatic derivatives was always much faster to converge, of-
ten by a factor of three or four times. When solving linear or nearly linear
forward-looking models, both versions of the Gauss-Newton outperformed
the other algorithms. However, when attempting to solve problems with
very non-linear models, especially when starting from bad initial values, the
Gauss-Newton algorithm was outperformed by the quasi-Newton method
and on occasion failed to converge at all. This suggests that, even with the
Marquardt modi�cation, the algorithm is less robust than one that builds
up information on the Hessian matrix. On the other hand, the Powell algo-
rithm was always the slowest to converge, suggesting that some derivative
information is important in optimisation problems involving a large number
of variables.

References

[1] Armstrong, J., Black, R., Laxton, D. and Rose, D. (1998), �A robust
method for simulating forward-looking models�, Journal of Economic
Dynamics and Control, 22, 489�501.

[2] Boucekkine, R. (1995), �An alternative methodology for solving nonlin-
ear forward-looking models�, Journal of Economic Dynamics and Con-
trol, 19, 711�734.

8

[3] Broydon, C.G. (1970), �The convergence of a class of double-rank min-
imisation algorithms: 1. General considerations�, Journal of the Institute
of Mathematics and its Applications, 6, 76�90.

[4] Davidon, W.C. (1959), �Variable metric method for minimisation�, Re-
search and Development Report ANL-5990, US Atomic Energy Com-
mission, Argonne National Laboratories.

[5] Du¤, I.S. (1977), �MA28 �a set of Fortran subroutines for sparse un-
symmetric linear equations�, Report AERE R8730, HMSO, London:UK.

[6] Du¤, I.S., Erisman, A.M. and Reid, J.K. (1986), Direct Methods for
Sparse Matrices, Oxford University Press, Oxford: UK..

[7] Fletcher, R. (1970), �A new approach to variable metric algorithms�, The
Computer Journal, 13, 317�322.

[8] Fletcher, R. and Powell, M.J.D. (1963), �A rapidly convergent descent
method for minimisation�, The Computer Journal, 6, 163�168.

[9] Griewank, A. (2000), Evaluating Derivatives: Principles and Techniques
of Algorithmic Di¤erentiation, Society for Industrial and Applied Math-
ematics (SIAM), Philadelphia, PA, USA.

[10] Hollinger, P. (1996), �The stacked-time simulator in TROLL: a robust
algorithm for solving forward-looking models�, mimeo, Intex Solutions,
Needham, MA, USA.

[11] Judd, K.L. (1998), Numerical Methods in Economics, The MIT Press,
Cambridge, MA, USA.

[12] Juillard, M. (1996), �DYNARE: a program for the resolution and sim-
ulation of dynamic models with forward variables through the use of
a relaxation algorithm�, CEPREMAP working paper No. 9602, Paris,
France.

[13] Juillard, M., Laxton, D., McAdam, P. and Pioro, H. (1998), �An al-
gorithm competition: �rst-order iterations versus Newton-based tech-
niques�, Journal of Economic Dynamics and Control, 22, 1291�1318.

9

[14] La¤argue, J-P. (1990), �Résolution d�un modèle macroéconomique avec
anticipations rationnelles�, Annales d�Economie et de Statistique, 17,
97�119.

[15] Marquardt, D.W. (1963), �An algorithm for least-squares estimation of
nonlinear parameters�, Journal of the Society for Industrial and Applied
Mathematics, 11, 431�441.

[16] Newton, I. (1686), Philosophiae Naturalis Principia Mathematica, trans-
lation by A. Motte (1729), revised by F. Cajori (1934), University of
California Press, Berkeley, CA, USA.

[17] Pierse, R.G. (2002), �WinSolve: a users� guide�, available at
http://www.econ.surrey.ac.uk/winsolve/.

[18] Powell, M.J.D. (1964), �An e¢ cient method for �nding the minimum
of a function of several variables without calculating derivatives�, The
Computer Journal, 7, 155�162.

[19] Rall, L.B. (1981), Automatic Di¤erentiation: Techniques and Applica-
tions, Springer Verlag, Berlin, Germany.

[20] Shanno, D.F. (1970), �Conditioning of quasi-Newton methods for func-
tion minimisation�, Mathematics for Computation, 24, 647�656.

10

