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Abstract

Treating spectrum of different bandwidths as essentially distinct inputs

needed for possibly different types of services has formed the core of spectrum

analysis in academic research so far. New technological advances, such as

cognitive radio, now allow us to move away from this inflexibility and to

open up the new possibility of making different spectrum bands compatible.

Spectrum, it is envisaged, is to become divisible and homogeneous. Auctions

for this case have not been previously analyzed. By suitably adapting the

Anglo-Dutch spectrum auction of Binmore and Klemperer (2000) and the

split-award procurement auction of Anton and Yao (1989) and combining

the adapted versions, we set out an ‘Anglo-Dutch split-award auction’ for

divisible and homogeneous radio spectrum. An important feature of the game

is a post-auction stage where the firms who have acquired some spectrum

compete in the production of radio services. The equilibrium of the complete

information game is completely characterized and important differences with

the procurement auction highlighted. Finally, we compare the performance

of our auction mechanism with a complete information form of the Binmore

– Klemperer mechanism.

JEL Classification: L10, L50, L96
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1 Introduction

The study of Flexible Spectrum Management, typified by the E2R programme,

focuses on technical mechanisms to increase the efficiency of spectrum usage. The

pursuit of technical efficiency has been parallelled by a world-wide shift towards the

greater reliance of market mechanisms to achieve a parallel objective of allocative

efficiency. This paper examines one such mechanism - the spectrum auction - which

has been increasingly relied upon in the United States, the United Kingdom and

elsewhere in Europe.1

In this paper we consider a particular form of auction mechanism that is par-

ticularly relevant for the new telecommunications services sector in the EU, namely

the spectrum allocation among a small number of firms, who then compete in the

downstream market for the delivery of various services. While our focus is on maxi-

mizing license revenues, the spectrum allocation mechanism we are going to propose

starts from a base level importance attached to consumer welfare. Simply put, this

means each firm in the downstream market will have a minimum market share and

a monopoly situation does not arise.

While the important theoretical contribution by Milgrom (2000) has rightly

placed auctions in the limelight in engineering spectrum allocations, and quite a

few papers deal with spectrum auctions,2 only three papers explicitly address auc-

tions with some downstream market interaction possibility (Jehiel and Moldovanu,

2001; Janssen, 2006; Janssen and Karamychev, forthcoming). None of these papers

consider, however, the textbook style imperfect competition oligopoly model that

perhaps captures better the market interaction. To fill this gap in the literature, we

allow for a quantity setting oligopoly competition in the market interaction stage

after spectrum has been allocated.

Our basic auction-and-market-interaction model extends the pure auction model

1See Bourse et al (2007) for a comprehensive overview of EU spectrum policy.
2See Jehiel and Moldovanu (2003) for a comprehensive survey of how auctions have been used

by various countries for spectrum allocations. The survey also offers some guidance to related

papers by academic researchers. See also Klemperer (2002).
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– an Anglo-Dutch auction – initially proposed for the sale of the British 3G tele-

com licenses. This auction method is outlined in detail by its two main advocates,

Professor Ken Binmore and Professor Paul Klemperer in Binmore and Klemperer

(2002). Briefly, the Anglo-Dutch auction first selects n+1 bidders out of m bidders,

m > n+1, using an ascending bid auction (alternatively known as English auction)

for the right to further bid in a second-round auction for n licenses. The price thus

rises until n + 1 bidders remain. In the second round, each remaining bidder sub-

mits a sealed bid at or above the price at which the first-round bidding had stopped;

the top n bidders in the second-round bidding win the licenses and pay either their

respective bids or the n-th highest bid.3 When the winning bidders pay their re-

spective bids, the procedure is known as first-price auction; when the bidders pay

n-th highest bid, it is a simple extension of what is known as second-price auction

(or Vickrey auction).

Binmore and Klemperer highlighted three aspects as the auction’s principal ob-

jectives: efficiency of spectrum assignment, promotion of competition, and realiza-

tion of the full economic value.4 Efficiency meant awarding the licenses to bidders

with the best business plans, which in turn was expected to translate into relatively

higher valuations for the licenses. It is well known, however, that efficiency, revenue

maximization and promotion of competition often do not go hand-in-hand; some

compromise is expected. Both Binmore–Klemperer recommended auction and the

auction mechanism in this paper follow this principle of balance of objectives.

At this stage we like to note some special features of the particular auction

that was originally proposed for the British telecom licenses, because some of these

features motivate us to adapt/modify the Anglo-Dutch auction the way we do (as

3Actually, there was also a third stage involved because of the heterogeneity of the licenses. The

third stage was another auction known as ‘simultaneous ascending price auction,’ used in the sale

of spectrum by the US FCC. In this auction, multiple bidders bid for various units of the licenses

in rounds. The bidding would go on until there are two final rounds of bidding in which no new

bids are submitted for any of the licenses. The licenses are then disposed to the highest bidders in

the last active phase, with each winning bidder paying what they had bid in the last active phase.
4A total of four licenses had been auctioned off.
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detailed further below). First of all, the licenses were heterogenous and had differ-

ent amounts (and types) of spectrum associated with each license, and which were

chosen by the licensing authority (although in imperfect anticipation of the likely

market demands that are going to prevail). This heterogeneity – both in quantity

and quality – is likely to involve some inevitable inefficiency given that various bid-

ders have diverse interests. As for volumes of spectrum per license, any ad hoc

specification by the licensing authority would leave unexploited many other possi-

ble specifications that the bidders as a whole (or even the majority of the bidders)

might have strictly preferred.5 We therefore aim to disentangle the “lumpiness” of

the licenses by treating spectrum as a perfectly divisible commodity and letting the

bidders themselves express their preferences for the continuum of this divisible unit.

We do this simplification by dispensing with the heterogeneity of the spectrum’s

quality; we will assume all spectrum is identical in that they are inputs to generate

the same (or similar) type of service. Thus, in the product market we consider

interactions between firms producing a homogeneous good. Finally, we model the

spectrum commodity as an essential ingredient to produce the final output (or ser-

vice) by assuming a Leontief-type production technology (see section 2 for details).

The case of divisible, homogeneous spectrum has not been previously analyzed.

The two aspects – homogeneity and divisibility – are of course closely related. Treat-

ing spectrum of different bandwidths as essentially two distinct inputs needed for

possibly different types of services formed the core of spectrum analysis in academic

research so far. But with the new technological possibility of making different spec-

trum bands compatible6 This new and the possibility of servicing more customers

with better spectrum capacity, with the latter becoming increasingly feasible due

5This, in itself, need not be a bad thing for the licensing authority. As it is commonly known,

given the number of licenses to be awarded, restricting to exogenous, and possibly heterogenous,

quantity allocations in licenses (as opposed to endogenously determined allocation per license) may

limit collusion among bidders; see Anton and Yao, 1989; Klemperer, 2002; Janssen, 2006.
6In particular, these new possibilities are associated with cognitive radio–see Qinetic (2006) and

the E2R programme.
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to allowance for spectrum trading by various firms, makes the analysis of allocation

of a continuum of spectrum shares very much relevant. If spectrum can be traded

by license holders according to individual demand conditions, then consideration of

an initial variable allocation of spectrum based on bidders’ individual bids is not an

unrealistic mechanism.

Given divisible spectrum, rather than a discrete number of (possibly heteroge-

nous) licenses, we will consider the split-award auction mechanism that is often used

for government procurement of a fixed volume of certain services and formally an-

alyzed by Anton and Yao (1989). In the split-award procurement auction, bidders

submit sealed bids for their respective shares in the service contract and the gov-

ernment (or the auctioneer) chooses the split that maximizes the sum total of bids.

We adapt this split-award mechanism in one of the stages comprising the spectrum

assignment problem.

In summary, our spectrum assignment game involves fours stages. The govern-

ment has a fixed amount of spectrum to be allocated. In stage 1, a given number

of potential firms participate in an ascending price auction to win a minimum pre-

specified amount of the available spectrum and to be able to further bid for additional

spectrum in a subsequent sealed-bid auction. All but two firms are eliminated in

the ascending price auction and the remaining two firms pay the final dropout price,

earn the pre-specified minimum spectrum and then proceed to stage 2. In stage

2, the two firms submit bids for various shares of the remaining spectrum, and in

stage 3 the government chooses the split that maximizes the total bids. Finally in

stage 4, the two firms compete in the service provision market and their outputs are

constrained, through a Leontief production technology, by the amount of spectrum

won in the ascending price and split-award auctions. We call this procedure the

Anglo-Dutch, split-award auction. More formal description of this game appears in

section 3.

The differences between the Anglo-Dutch auction of Binmore and Klemperer and

the auction mechanism we propose in this paper are several. First, the spectrum
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licenses in our context allow for a continuum of shares as opposed to a discrete

number of licenses and this requires a different auction technique in the form of

split awards. Second, the ascending bid auction of Binmore and Klemperer ensures

a minimal starting bid for the eventual n+ 1 bidders who participate in the sealed-

bid auction stage for n discrete licenses. In contrast, the ascending bid stage of our

auction selects two firms for a guaranteed minimal amount of spectrum each with

the possibility of additional spectrum; importantly, the option values of acquiring

additional spectrum at some price do get reflected in the bidders’ strategies during

the ascending price auction, thus the ascending bid stage serves both for screening

and surplus extractions. The minimal spectrum awarded to the two firms through

the ascending bid auction also ensure that the market never degenerates into a

monopoly. The basic principles behind Binmore–Klemperer method and our auction

method are, however, similar – generate high overall revenues for the government

and ensure some necessary competition in the downstream market for consumer

welfare.

The rest of the paper is organized as follows. Section 2 presents the downstream

market interaction. In section 3, we formally outline the spectrum assignment game,

followed by an analysis of the game in section 4. In section 5, we illustrate our results

from section 4 using a simple linear market demand and quadratic cost curves.

Section 6 concludes.

2 The Anglo-Dutch, Split-Award Spectrum Auc-

tion Game

The spectrum manager will award a given volume of spectrum, x, in two phases:

first, a number of potential competitors will be screened down to two who both

are given a threshold amount of spectrum z; then the same two firms compete

for any share of the remaining spectrum, x − 2z. The initial screening and then

disbursement of spectrum follows a combination of Anglo-Dutch auction mechanism
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of Binmore–Klemperer and the split-award auction mechanism of Anton–Yao. The

precise mechanism, to be referred as Γ, is as follows:

Stage 1. m interested firms, who all know each others’ cost functions and the

common market demand function, take part in an ascending bid auction. Bids

rise continuously until all but two firms drop out. Denote the bid at which

(m − 3)rd firm drops out by ξ. The two surviving firms, denoted as firm 1

and firm 2, pay each ξ for a guaranteed amount of spectrum, z, and then they

proceed to compete in stage 2.

Stage 2. Firms 1 and 2 submit sealed bids (p1(α), p2(α)), ∀α ∈ [0, 1] where α

denotes firm 1’s share of x− 2z and 1 − α denotes firm 2’s share.

Stage 3. The government chooses the split α∗ to maximize the total bids:

g(α) ≡ p1(α) + p2(α). (1)

Any ties resulting in the highest total bids will be broken using uniform prob-

ability. The bidders pay their submitted bids for the split chosen by the

government.

Stage 4. Given their spectrum capacity constraints r1 = z + α∗(x − 2z) and

r2 = z + (1 − α∗)(x− 2z), the two firms then go into the market competition

stage and produce the spectrum services, q1 and q2. The market price is

determined according to a downward-sloping inverse market demand function

P = D(Q) where Q = q1 + q2. The two firms finally realize their profits less

respective sum total of bids in the two auctions, ξ + p1(α
∗) and ξ + p2(α

∗). ||

We need to solve the extensive form game Γ backwards. Initially we focus on the

last three stages of the game for any two firms selected in stage 1. The analysis of this

subgame will follow closely Anton and Yao’s analysis of a split-award procurement

auction; our split-award spectrum bidding game is a mirror image of Anton and

Yao’s procurement auction. Restriction to two firms for the stage 2 bidding, is to

keep the analysis tractable: with two firms, each firm’s bidding depends only on its
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own share as it also uniquely determines the other firm’s share; for more than two

firms each firm’s bidding strategy would depend not only on its own share but also

on other firms’ shares. We do not believe the extra complications due to more than

two firms would alter the main message of our paper qualitatively.

The procedure for calculating the equilibrium bids are set out in Anton and Yao

(1989), and adapted to our spectrum sale setting in section 4. These form a Nash

equilibrium at the bidding stage of the game.

The important feature of the second stage bidding game is the minimal informa-

tion requirement on the part of the government, who needs to observe only the bids

by the two firms. Note also that the government’s objective function is a balance

between revenue maximization and guaranteeing consumer welfare through some

minimal competition in the downstream market. This is achieved by deciding that

only x−2z spectrum will be distributed through the split-awards auction; by giving

at least z spectrum to each of two firms, the downstream market never becomes a

monopoly.

3 Stage 4: The Downstream Market

We consider a single local market with a small number of firms with some market

power and providing a homogeneous service at a market price P . In this section,

the number of firms, n, is unspecified. In the sections to follow, we will consider

n = 2.

Firm i produces output qi, i = 1, 2, · · ·, n and the total output Q =
∑n

i=1 qi.

The inverse demand curve is given by P = D(Q); D′(Q) < 0. Units of output are

customer-minutes of some service requiring radio channels as an input.

To keep the analysis simple we consider a decreasing returns to scale Leontief

technology

qi = min[ri, ψ(y)] (2)

where y is a vector of other inputs such as base-stations and labour. Thus output of
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firm i is constrained by the volume ri of radio channel licences issued to firm i. We

assume that firm i has acquired the spectrum at a price pi. Costs include a set-up

cost Fi, so total costs are given by

TCi(qi, ξ, pi, Fi) = Fi + ξ + pi + Ci(qi), (3)

where Ci(·) depends exogenously on the given factor prices for inputs y with C ′
i(·) >

0, C ′′
i (·) > 0.

In a constrained Cournot-Nash equilibrium, firm i faces a capacity constraint

qi ≤ ri. Given fixed costs and previous bid prices, it then maximizes gross profits

at stage 4 given by

πi = Pqi − Ci(qi) (4)

subject to the capacity constraint, taking the output of all other firms,
∑n

j 6=i qj = q̃i,

as given. Notice that licensing costs, ξ + pi, are now part of fixed costs and only

affect the firm’s participation constraint at stage 1.

To carry out this constrained optimization programme, define the Lagrangian

Li = πi + λi(ri − qi) + µiπi (5)

where λi ≥ 0 and µi ≥ 0 are Lagrangian multipliers associated with constraints

ri ≥ qi and πi ≥ 0 respectively. The Kuhn-Tucker first-order conditions for a

maximum are:

(1 + µi) [P + qiD
′(Q) − C ′

i(qi)] = λi (6)

µiπi = λi(ri − qi) = 0. (7)

The left-hand-side of equation (6) is defined as (1+µi)f(qi). At stage 4 we must have

that πi > 0 so that µi = 0. Further, if f(qi) > 0 then λi > 0, which in turn implies

qi = ri so that firm i uses all its acquired channels producing at full-capacity. If on

the other hand f(qi) = 0, then the capacity constraint need no longer be binding

so that qi ≤ ri and there might be spare radio channels and capacity.7 In this last

case, qi is given by (6) with µi = λi = 0.

7It is not possible to have f(qi) < 0 at an optimal choice of qi because (6) would be violated.
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The Cournot-Nash equilibrium of the production stage of the game (subsequently

referred to as programme CNE) is then given by solving

[P + qiD
′(Q) − C ′

i(qi)] = λi, i = 1, 2, . . . , n

λi(ri − qi) = 0, i = 1, 2, . . . , n

πi = Pqi − C(qi) i = 1, 2, . . . , n

Q =

n∑

i=1

qi

P = D(Q)

which gives 2n + 2 equations in qi, λi, Q and P , given ri, ξ and pi, i = 1, 2, . . . , n.

4 Stages 2 and 3: Equilibrium bids

In this section, we characterize various properties of equilibrium bidding in stage 2

of the game Γ. Since a number of our results draw upon Anton–Yao’s equilibrium

characterization, most of the results will be stated without formal proofs.

4.1 Monotone bidding

The firms’ duopoly profits (excluding the spectrum costs) for the split, α, will be

denoted by πi(α), i = 1, 2. We assume that π′
1(·) ≥ 0, π′′

1(·) ≤ 0 and π′
2(·) ≤

0, π′′
2 (·) ≤ 0. That is, having a greater share of the available spectrum can do no

harm to a firm’s profits and the marginal impact (on profits) is weakly decreasing.8

We are going to present some equilibrium properties of the bid functions (p1(α), p2(α)).

We will assume that the firms adopt, in equilibrium, (weakly) monotone bid func-

tions: p∗1
′(α) ≥ 0, p∗2

′(α) ≤ 0 ((*) to denote equilibrium). We assume monotone

bidding to make the equilibrium analysis tractable. But there is also the obvious

intuition in favor of monotone bidding. Define total revenue by

g(α) = p1(α) + p2(α). (8)

8This assumption may not be as innocuous as it may sound. With more spectrum available, a

firm may not be able to convince its rival that it will not expand output along the reaction curve.
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Lemma 1. (Price equivalence) Suppose that (p∗1(α), p∗2(α)) is a Nash equilibrium in

(weakly) monotone bidding, and let g∗ be the associated total revenue to the govern-

ment. Then, the equilibrium bids satisfy g∗ = p∗1(1) = p∗2(0).

Proof. Suppose the claimed equality fails to hold. Then one of the bid prices must

be smaller than g∗ as g∗ is the total revenue to the government at the optimal choice.

If p∗2(0) < g∗, then the outcome α = 0 is not optimal for the government.

Let ǫ = g∗ − p∗2(0) > 0, and consider firm 1’s bid as follows:

p1(α) =







p∗1(α) − ǫ
2
, if α > α∗

p∗1(α) − ǫ
3
, if α = α∗

0, if α < α∗,

(9)

where α∗ is an optimal choice for the government in the original equilibrium. In

fact, given that the government’s optimal choice can be random (with ties in total

bids over multiple values of α), we take α∗ to be the best ex-post equilibrium choice

from the point of view of firm 1.

Below we will argue that given firm 2’s equilibrium bidding, p∗2(α), the modified

bidding strategy p1(α) in (9) will imply α∗ is the unique new optimal choice for

the government at which firm 1 receives strictly higher payoff than his best ex-post

payoff in the original equilibrium.

First observe that p∗1(0) = p∗2(1) = 0, as a firm cannot be expected to submit a

positive bid for a zero share in the split. Next, p∗1(α
∗) = g∗−p∗2(α

∗) ≥ g∗−p∗2(0) = ǫ,

given that α = 0 is not an optimal choice originally and the equilibrium bid functions

are weakly monotonic. This implies p1(α) = p∗1(α) − ǫ
2
> p∗1(α

∗) − ǫ
2
> 0 for α > α∗

(the first inequality follows because p∗1(.) is monotonically increasing), and similarly

p1(α
∗) = p∗1(α

∗) − ǫ
3
> 0.

Now, using (9) obtain

p1(α) + p∗2(α) =







p∗1(α) + p∗2(α) − ǫ
2
, if α > α∗

p∗1(α) + p∗2(α) − ǫ
3
, if α = α∗

p∗2(α), if α < α∗,

(10)
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which implies α∗ is the new unique optimal choice for the government for the mod-

ified bidding p1(α) by firm 1.

Finally, firm 1 is strictly better off compared to his best ex-post outcome in the

original equilibrium (p∗1, p
∗
2), because all that is different in this new unique optimal

choice of α∗ is that firm 1 pays a strictly lower price p∗1(α) − ǫ
3

(rather than p∗1(α))

for the same split α = α∗. Thus, p∗1 is not a best response – a contradiction. Hence,

it must be that p∗2(0) = g∗. The case for p∗1(1) < g∗ is analogous. Q.E.D.

4.2 Efficiency and Monopoly Outcomes

Staying with the duopoly case, the analogy of joint production costs in the procure-

ment auction of Anton and Yao is joint operating profits

B(α, z, x) = π1(α, z, x) + π2(α, z, x) (11)

where πi(α, z, x) are operating profits for firm i = 1, 2 at stage 4 given a split [α, 1−α]

of the spectrum offered at stage 2, x− 2z, and x is the total spectrum available for

the market. Then for z ∈ [0, x
2
] we have

π1(1, z, x) > 0 , π2(1, z, x) ≥ 0 with π2(1, 0, x) = 0 (12)

π1(0, z, x) ≥ 0 with π1(0, 0, x) = 0 , π2(0, z, x) > 0 (13)

p1(0, z, x) = p2(1, z, x) = 0. (14)

To ease the notation in what follows we abbreviate B(α, z, x) to simply B(α) and

similarly pi(α, z, x) to pi(α) for i = 1, 2 (as in the previous section).

Then the case where all the spectrum is available at stage 2, z = 0, is the

spectrum auction counterpart of the model of Anton and Yao. In what follows let

firm 1 be the low cost firm with c1 < c2 and 0 < d1 < d2 for the decreasing returns

to scale case, d1 < d2 < 0 for the increasing returns to scale case. Then B(1) > B(0)

and the counterpart of proposition 1 in Anton and Yao with z ≥ 0 is:

Proposition 1. Suppose x and z ∈ [0, x
2
] are given. Suppose also that B(1) > B(α)
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for all α ∈ [0, 1). Then α = α∗ = 1 is the unique bidding equilibrium that satisfies

g∗ = B(1) = p∗1(1) = p∗2(0)

Π∗
1 = B(1) − B(0) > 0

Π∗
2 = π2(1, z, x) ≥ 0 for z ≥ 0

where net9 and operating profits, Πi and πi respectively, are related by

Πi(α) = πi(α) − pi(α) ; i = 1, 2. (15)

It follows from definitions (8), (11) and (15) that the sum of net profits is given by

Π1(α) + Π2(α) = π1(α) + π2(α) − (p1(α) + p2(α)) = B(α) − g. (16)

4.3 Implicit Price Collusion and Split-Award Outcomes

Now in contrast to Proposition 1, suppose that there exists α ∈ [0, 1) such that

Suppose B(1) < B(α). Then the following proposition mirrors the procurement

auction of Anton and Yao.

Proposition 2. Let N = {α | B(α) ≥ B(1), α ∈ (0, 1)} be the set of outcomes for

which joint operating profits are greater than the monopoly profits of the low cost

firm 1. Then N is the set of split-award equilibria. These equilibria α∗ ∈ N are

characterized by:

g∗ ∈ [B(0) +B(1) − B(α∗), B(0)] (17)

Π∗
1 ∈ [B(α∗) −B(0), B(1) − g∗] (18)

Π∗
2 ∈ [B(0) − g∗, B(α∗) −B(1)]. (19)

Propositions 1 and 2 completely characterize the equilibria at stage 2 of the game.

In Proposition 2, (17) determines the revenue which from (16) determines total net

profits. Then (18) and (19) determine the division of total profits between the two

bidders. Given net profits and operating profits given at stage 4, the equilibrium bid

9Our definition of ‘net’ profits excludes the bid price paid at stage 1.
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prices are then determined and we have therefore characterized for both firms their

equilibrium bid prices and net profits at stage 2. Following AY for B(1) < B(α) the

equilibria satisfies the following corollary:

Corollary. Let α ∈ N . Then the minimum for the revenue, and the maxima for

joint total profits and individual total profits, occur at the split-award outcome for

which joint operating profits are maximized.

5 Stage 1: The Initial Ascending Bid Auction

Consider m > 2 interested firms who take part in an ascending bid auction. We

assume a quadratic cost function

Ci(qi) = ciqi + diq
2
i , i = 1, 2 (20)

and that cost parameters can be ranked so that

c1 < c2 < c3 · ·· < cm (21)

d1 < d2 < d3 · ·· < dm. (22)

Then for both increasing returns di < 0 and decreasing returns di > 0 we have that

C ′
1(q) < C ′

2(q) < C ′
3(q) · · · < C ′

m(q) for all q ≥ 0 ;

C1(q) < C2(q) < C3(q) · · · < Cm(q) for all q ≥ 0.

Denote by Πi(α
∗(i, j)) where i 6= j and i, j ∈ (1, 2, · · ·m) the net profit to

firm i earned in the downstream market when i and j enter stage 2 bidding and

subsequently win a share α∗(i, j) of the spectrum on offer. What dropout bid a firm

chooses at any point in the ascending bid auction would depend on its expectation

of the sequence of dropouts in the game from that point onwards. In particular, if a

firm i were to continue in the auction (rather than drop out immediately), it must

choose to do so expecting to win the auction with another firm j and making non-

negative net profits, Πi(α
∗(i, j)) ≥ 0, from stage 2 onwards. This requires solving
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the extensive form game of dropouts explicitly. Given the clear ranking of firms in

terms of both marginal and total costs, there will be a similar clear ranking in terms

of of profits:

Πi(α
∗(i, j)) > Πj(α

∗(i, j)), for any {i, j} pair such that i < j ;

Πi(α
∗(i, j)) > Πj(α

∗(i, j)) > · · · > Πk(α
∗(i, k)), for any {i, j, · · · , k}

such that i < j < · · · < k . (23)

Given (23), it can be verified that the following is an equilibrium sequence of

dropout bids:

bm < bm−1 < · · · < b3 < b2 < b1, (24)

with bm = Πm(α∗(1, m))

bm−1 = Πm−1(α
∗(1, m− 1))

· · ·

b3 = Π3(α
∗(1, 3))

b2 = Π2(α
∗(1, 2))

b1 = Π1(α
∗(1, 2)).

In fact, in any equilibrium firms 1 and 2 will always win and their dropout bids are

given uniquely as in (24). The reasoning for the dropout decisions is standard –

same as why truthful bidding is an equilibrium in a private-value, English auction.

Thus, firms 1 and 2 win the ascending bid stage and both pay the entry fee

ξ = Π3(α
∗(1, 3)), (25)

and proceed to stage 2 bidding.10

10We assume that firm 3 will drop out at Π3(α
∗(1, 3)) even though it can continue up to just

below Π2(α
∗(1, 2)) and then drop out because the latter strategy does not yield firm 2 any chance

of a win in which it would make positive profit. In fact, under incomplete information about rival

firms’ costs (as opposed to the complete information assumption made in this paper), a firm will

never bid above its true valuation (i.e., profit).
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6 Comparison with Binmore–Klemperer Auction

How does our auction mechanism perform relative to Binmore– Klemperer mech-

anism? In one respect, such comparison may not even be appropriate due to an

important difference. The division of Binmore–Klemperer mechanism into ascend-

ing bid auction and sealed-bid auction was designed in view of the incomplete in-

formation among the bidders about each others’ valuations: ascending bid auction

ensured that the top few bidders would participate in the sealed-bid stage and thus

ensuring the spirit of efficiency, whereas sealed-bid stage kept alive the chance of

a relatively ‘weak’ type firm to be the ultimate winner and thereby prompting the

‘stronger’ types to bid aggressively; also sealed-bid would have minimized the chance

of collusion. In a complete information setup (where firms know each others’ cost

functions and thus valuations from various split awards), which we assume (partly for

tractability reasons), Binmore–Klemperer mechanism reduces to a solitary sealed-

bid auction; their ascending-bid stage no longer gives any added value as only the

‘best’ two firms (best in terms of cost efficiency, given a ranking of firms is possible)

would be in a position to win any spectrum, with the third-best firm disciplining

the top two firms’ bids in the sealed-bid stage.11

Despite removing one main ingredient of Binmore–Klemperer mechanism – the

incomplete information among bidders – a complete-information analogue of Binmore–

Klemperer mechanism may still offer an important benchmark with respect to which

our mechanism can be assessed. With this objective, below we analyze a reduced-

form Binmore–Klemperer mechanism, which is a sealed-bid first-price auction in-

volving top three firms who each bid for one of two identical licenses, with each

license awarding half the overall amount of spectrum, x.12

11The idea is that the dropout bid of a weaker firm in the ascending-bid stage can always be

improved by a stronger firm, because the stronger firm can expect to achieve at least as much

profit as a weaker firm in the subsequent sealed-bid stage.
12Allowing the licenses to be heterogeneous would have required analysis of a much more compli-

cated auction. Our objective is to offer at least one comparison to assess our mechanism. Also, we

restrict to first-price auction for the reduced Binmore–Klemperer game, rather than Vickrey-type
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By analogy with Πi(α
∗(i, j)) defined in the previous section, denote by πi(i, j),

where i 6= j and i, j ∈ {1, 2, 3}, the operating profit to firm i from operation in

the downstream market when i and j win the licenses (that award each half the

spectrum). We assume the following inequalities (without verification) that are

quite intuitive:

π1(1, 2) > π2(1, 2) > π3(1, 3) (26)

π1(1, 3) > π3(1, 3) (27)

π1(1, 3) > π2(2, 3) (28)

π2(2, 3) > π3(2, 3) > π3(1, 3). (29)

Proposition 3. Consider a sealed-bid first-price auction involving firms 1, 2 and

3 who bid for one of two identical licenses, with each firm having an ‘exit option’ if

its bid is the joint lowest with at least another firm’s bid. When there is a tie and

none of the firms whose bids are tied exercise their exit options, then each tied firm

is chosen to be a winner with equal probability. Suppose

π1(1, 2) > π3(2, 3) (30)

and π2(1, 2) > π3(2, 3). (31)

Then

(b1, b2, b3) = (π3(2, 3), π3(2, 3), π3(2, 3)) (32)

is an equilibrium, in which firm 3 exercises its ‘exit option’ while firms 1 and 2 win

a license each and pay their bids.

Proof. First we claim that in any equilibrium firm 1 must win a license. Sup-

pose not, so that firms 2 and 3 win licenses. This implies b3 ≤ π3(2, 3), because

otherwise firm 3 will incur losses that it can avoid by submitting zero bid. But

then firm 1 can deviate from its original bid b1 by submitting b̂1 = π3(2, 3) + ǫ <

min{π1(1, 2), π1(1, 3)} where ǫ > 0 and is sufficiently small; π3(2, 3) + ǫ < π1(1, 2)

auction, because our split-award mechanism involves pay-your-own-bid by the firms.
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given (30), and π3(2, 3)+ǫ < π1(1, 3) given (28) and the first inequality of (29). Thus,

by deviating firm 1 would win a license and make a positive profit; a contradiction.

Similarly, firm 2 also must win a license in any equilibrium. Suppose not, so that

firms 1 and 3 win licenses. This implies b3 ≤ π3(1, 3), because otherwise firm 3 will

incur losses that it can avoid by submitting zero bid. But then firm 2 can deviate

from its original bid b2 by submitting b̂2 = π3(1, 3)+ǫ̂ < min{π2(1, 2), π2(2, 3)} where

ǫ̂ > 0 and is sufficiently small; π3(1, 3) + ǫ̂ < π2(1, 2) given the second inequality in

(26), and π3(1, 3) + ǫ̂ < π2(2, 3) given (29). Thus, by deviating firm 2 would win a

license and make a positive profit; a contradiction.

Next we claim that in equilibrium firm 1 and firm 2’s bids must be tied: b1 = b2.

If not, suppose b1 > b2. Then clearly firm 1 can slightly lower its bid and still exceed

firm 2’s bid, thus ensuring that it wins a license and pays less overall and thereby

making a higher net profit. On the other hand, if b2 > b1 then by a similar logic firm

2 can slightly lower its bid, retain its license-winning position and make a higher

net profit.

It remains to verify that (32) is indeed an equilibrium. Given that b3 = π3(2, 3) =

bj , it is clearly optimal for firm i to bid bi = π3(2, 3) where i 6= j and i, j 6= 3 (by

(30) and (31)). Also, given b1 = π3(2, 3) = b2, firm 3 does no worse by bidding

b3 = π3(2, 3) and subsequently exercising its exit option. Note that if firm 3 were

not to exercise its exit option, it may well end up with firm 1 (because of the tie-

breaking rule), in which case it would make losses. Q.E.D.

Firm 3’s bid puts a floor to the top two firms’ bids. Actually, firm 3 need not

actively participate in bidding. So long as the licensing authority can bring in firm

3 at a “small cost” (by offering some direct inducement) to participate in the sealed-

bid auction, firms 1 and 2 will end up bidding π3(2, 3) even in the two-bidder auction

involving firms 1 and 2.
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7 The Case of Linear Demand and Quadratic Costs

We now study the split award and Binmore-Klemperer auctions for particular func-

tional forms for demand and costs. In particulat we assume that D(Q) is linear and

c(qi) quadratic. Thus,

P =







a− bQ, Q < a
b
;

0, Q ≥ a
b
.

(33)

We first examine the split award auction for the special case of the game where

z = 0 so that it is possible for on firm to emerge as the monopoly producer. We first

consider a symmetric n-firm equilibrium at stages 2 and 3 and then an asymmetric

duopoly.

7.1 Split Award Auction: Symmetric Case for z = 0

Let Πi = πi − pi where π are operating profits excluding spectrum costs. At the

production stage the firm then maximizes πi with respect to qi. Let πNE
i and πM be

the operating profits per firm for in the CNE and a (one site) monopoly respectively.

The following Lemma is crucial for the existence of a split award equilibrium:

Lemma 2. There exists an amount x of spectrum and a split award such that in

the production stage of the game,

n∑

i=1

πNE
i > πM

j , for some j ∈ {1, 2, . . . n}

i.e., for the duopoly case B(α) > B(1) for some α ∈ [0, 1). (34)

Proof. We prove this for identical firms. First we work out the unconstrained CNE

for this case. Each firm then puts Q = q + Q̃ and takes the output of others, Q̃ as

given. Maximizing π = Pq − c(q) = (a− b(q + Q̃)q − ca− dq2, this gives a reaction

function

q =
a− bQ̃− c

2(b+ d)
. (35)
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In a symmetric CNE, Q̃ = (n− 1)q which leads to equilibrium total output

QNE = nqNE =
a− c

b+ 1
n
(b+ 2d)

(36)

PNE =
bc + a(b+2d)

n

b+ 1
n
(b+ 2d)

. (37)

It follows that as the number of firms gets large, price tends to marginal cost. At

the other extreme if n = 1, we arrive at the monopoly output

QM =
a− c

2(b+ d)
< QNE . (38)

To prove the Lemma set x = QNE so that the demand for spectrum in the

CNE is just met without any spare capacity. The spectrum manager must compare

the total operating profits in this equilibrium with an equal split (since all firms are

identical) with that under under monopoly where some spectrum is left spare. Total

operating profits are then

πM = (a− c)QM − (b+ d)(QM)2 ≡ πM(QM ) (39)

nπNE = n[(a− c)qNE − (bQNEqNE + d(qNE)2)

= (a− c)QNE −

(

b+
d

n

)

(QNE)2

= πM(QNE) + d

(

1 −
1

n

)

(QNE)2. (40)

It follows that nπNE > πM if and only if

d >
πM(QM) − πM(QNE)

(
1 − 1

n

)
(QNE)2

≡ F (d). (41)

F (d) > 0 for n ≥ 2, because πM(Q) reaches its maximum at Q = QM . (41) says

that the Lemma holds if there exists a fixed point for the function F (d), say d∗ and

if d > d∗. No doubt, with a bit of effort, one can show generally that F (d) has a

fixed point. Below we produce a numerical example for which this is the case.

In the figure we have set b = c = 1, a = 2 and n = 2, 3, 5. The corresponding

fixed points are dn. In each case for d > dn the Lemma holds. Note that dn is

an increasing function of n. The intuition is that as N increases then so do the

monopoly operating profits, thus increasing the extent of diminishing returns that

would make the gains from output sharing dominate in a CNE.
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Figure 1: Fixed Points of F (d)

7.2 Split Award Auction: Asymmetric Duopoly for z = 0

Now we have to solve for the full CNE allowing for the capacity constraints set

out in section 2. Solving this problem and noting that bids at zero output satisfy

p1(0) = p2(1) = 0 we have reaction functions.

0 ≤ q1 = min [αx, (a− c1 − bq2)/(2(b+ d1))] (42)

0 ≤ q2 = min [(1 − α)x, (a− c2 − bq1)/(2(b+ d2))] . (43)

Then unused spectrum, q̂1 and q̂2 respectively, is given by

q̂1 = αx− q1 (44)

q̂2 = (1 − α)x− q2. (45)

Figures 2 and 3 illustrate these results.13 In these figures we put x equal to the

total output in the unconstrained NE so that the spectrum manager is allowing for

13We set a = 3, b = 1, c1 = 0.5, c2 = 0.85, d1 = 0.1, d2 = 0.2.
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this output with an appropriate split. Joint operating profits for any (α, x, z) are now

denoted by B(α, x, z). From figure 2 there is a collusive split award equilibrium at

α∗ = 0.94 and in figure 2 we see that firm 1 has spare capacity at this split. There are

other possible non-collusive split award equilibria at which B(α, x, 0) ≥ B(1, x, 0).

In this example these exist for α ∈ [0.9, 1]. The existence of spare spectrum in

equilibrium highlights an important difference between the procurement and spectrum

sale problems. In the former the scale of output is given, but in the latter the quantity

of service provided depends on the equilibrium split.

7.3 Split Award Auction: Asymmetric Duopoly for z > 0

With z = 0 we have seen that a split-award equilibrium only exists if there is

sufficiently decreasing returns to scale. Now consider the case of z > 0 in which case

the capacities at the production stage of the game are given by

r1 = z + α(x− 2z) ∈ [z, x− z] ; r2 = z + (1 − α)(x− 2z) ∈ [z, x− z]. (46)

First consider the unconstrained Nash equilibrium which is the outcome at this

stage of the game provided that x−z is sufficiently large. From the reaction functions

(42) and (43) this is given by

qNE
1 =

2(a− c1)(b+ d2) − b(a− c2)

4(b+ d1)(b+ d2) − b2
(47)

qNE
2 =

2(a− c2)(b+ d1) − b(a− c1)

4(b+ d1)(b+ d2) − b2
. (48)

The question we now pose is whether there exists some α ∈ [0, 1) such that for

some values of x and z < x
2
, and parameters a, b, ci > 0 and di ≥ 0 or di ≤ 0 we

have that B(α, z, x) ≡ π1(α, z, x)+π2(α, z, x) > B(1, z, x)? The key to showing that

this in fact can happen is to assume that x and z are chosen so that

qNE
2 < z ≤ r2 = z + (1 − α)(x− 2z) (49)

qNE
1 > x− z ≥ r1 = z + α(x− 2z). (50)
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Then firm 2 is unconstrained and firm 1 is constrained for all α ∈ [0, 1]. It follows

from the reaction function of firm 2 that the equilibrium is given by

q1 = z + α(x− 2z) (51)

q2 =
(a− c2 − bq1)

2(b+ d2)
(52)

P = a− b(q1 + q2) (53)

πi = (P − ci)qi − diq
2
i , i = 1, 2. (54)

To make the analysis more tractable, first consider the case of constant returns

to scale, di = 0, i = 1, 2. Then joint operating profits and the price are given by

B(α, x, z) =
q1
2

(P − 2c1 + c2) +
(P − c2)(a− c2)

2b
. (55)

Hence as α and therefore q1 rise we have

dB(α, x, z)

dα
∝
dB(α, x, z)

dq1
=

1

2
(P − 2c1 + c2) +

[
q1
2

+
a− c2

2b

]
dP

dq1
. (56)

The first term on the right-hand-side is positive and represents the effect of increasing

output by giving the more efficient firm 1 more capacity. The second term is negative

and represents the effect on joint profits of a fall in the price. A little algebra gives

dB(α, x, z)

dα
∝
dB(α, x, z)

dq1
=

1

2
(2(c2 − c1) − bq1). (57)

Substituting for q1 from (51) we arrive at the following proposition:

Proposition 4. For constant returns to scale, a collusive split-award equilibrium

exists at α = α∗ where

α∗ =
2(c2 − c1) − bz

b(x− 2z)
, (58)

provided (49) and (50) hold and c2, c1, b, z and x are such that α∗ ∈ (0, 1).

7.4 Numerical Illustration and Comparison of Auctions

In Figures 4 to 6 we illustrate these results for the Split Award Auction. We first

assume constant returns to scale (d1 = d2 = 0) and as before choose a = 3, c1 = 0.5,
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c2 = 0.85, b = 1. Then qNE
1 = 0.63 and qNE

2 = 0.40. Then choose z = 0.44 and

x = 1.01 so that qNE
2 < z, qNE

1 and x > 2z. Then the conditions for proposition

4 are satisfied and from (58), α∗ = 0.2 which is confirmed in the figure. Figure 5

now allows for decreasing returns to scale by putting d1 = 0.1 and d2 = 0.2 with

remaining parameters unchanged. Now the firms benefit by shifting capacity more

to the more efficient firm and the split award equilibrium rises to α∗ = 0.53.

Figure 6 adds revenue to figure 4 with and without the initial bidding stage.

In figure 6 we set the marginal cost of the third firm at c3 = 0.9, compared with

c2 = 0.85. The bid as defined in section 5 is ξ = 0.005 which sees the regulator

acquiring over half the joint operating profits. However this results is critically

dependent on how contestable the market is and in particular how close c3 is to c2.

c3 Π3(α
∗(1, 3)) α∗(1, 3) SA Revenue BK Revenue

0.90 0.0025 0.6 0.8500 0.6546

0.95 0.0012 0.8 0.8487 0.6067

1.00 0.0004 0.9 0.8479 0.5704

1.05 0 1.0 0.8475 0.5375

Table 1. Comparisons of Revenues from Split Award (SA) and

Binmore-Klemperer (BK) Auctions

Table 1 shows what happens as the market becomes less contestable as c3 rises

and we compare the revenues for the Split Award and Binmore-Klemperer auctions,

the latter with an even split. For the former we see that the initial bid price falls

sharply until at c3 = 1.05 it disappears altogether and then stage 1 adds no more to

the revenue. From (17), (25) and (32) 1 the total revenue split for the split award

(SA) auction and Binmore-Klemperer (BK) auctions are given by

SA Revenue = Π3(α
∗(1, 3))

︸ ︷︷ ︸

Stage 1 Revenue

+B(0) +B(1) −B(α∗(1, 2))
︸ ︷︷ ︸

Stage 2 Revenue

(59)

BK Revenue = π3(2, 3) (60)

It is difficult to compare these revenues analytically, but table 1 provides a numerical

comparison for this particular set of parameters with x−2z chosen so as to result in
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a split award outcome. The results suggest that the SA auction results in a higher

revenue than the BK auction. For this example this is not the result of the first stage

bid of the SA which does not increase revenue a lot. Rather it comes about because

of the ability of the auctioneer to extract a sizable proportion of total operating

profits in a collusive split equilibrium at stage 2 of the game.

The higher revenue however comes at a cost. In the SA equilibrium in our

example with constant returns to scale it is required that the efficient firm 1 is

constrained for all possible splits but the inefficient firm 2 is not (conditions (49)

and (50)) In the collusive equilibrium we then have more spectrum allocated to the

unconstrained inefficient firm, some of which is subsequently unused. This means

that the BK auction with an equal split imposed results in higher output and a lower

price. To assess the welfare implications of this we calculate the consumer surplus

(CS) given by

CS =

∫ a

P

(
a− P

b

)

dP =
1

b

[
1

2
(a2 + P 2) − aP

]

(61)

c3 CSSA RSA PSSA CSBK RBK PSBK

0.90 0.6700 0.8500 0.0022 0.7057 0.6546 0.2465

0.95 0.6700 0.8487 0.0035 0.7057 0.6067 0.2944

1.00 0.6700 0.8479 0.0043 0.7057 0.5704 0.3307

1.05 0.6700 0.8475 0.0047 0.7057 0.5375 0.3636

Table 2. Comparisons of Welfare in Split Award (SA) and

Binmore-Klemperer (BK) Auctions

Figure 7 compares the price and consumer surplus for the SA and BK auctions

using (61). Table 2 provides a welfare breakdown for various marginal costs of

the third firm, c3, into consumer surplus (CS), revenue (R) and producer surplus

(PS) defined as total operating profits for the two firms minus total spectrum costs

(equals revenue). These results highlight a further important difference between the
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mechanisms: the revenue in the BK auction is totally dependent on the efficiency

of the third firm whereas in the SA auction even in the absence of a competitive

third firm the auctioneer can still extract substantial revenue at stage 2. Total social

welfare (CS+R+PS) is higher for the BK auction unless we allow for a shadow cost

of public funds arising from the distortionary impact of alternative forms raising

revenue from taxes (see Laffont and Tirole (1993)). If however the auctioneer is only

concerned with consumer surplus plus revenue, the SA auction is clearly preferable

in our example.

8 Conclusions

Treating spectrum of different bandwidths as essentially two distinct inputs needed

for possibly different types of services has formed the core of spectrum analysis in

academic research so far. The E2R approach to spectrum allocation is to move

away from this inflexibility and to open up the new technological possibility of

making different spectrum bands compatible. Spectrum, it is envisaged, is to become

divisible and homogeneous. Auctions for this case have not been previously analyzed.

Our analysis has shown that the split-award spectrum auction for homogeneous

divisible spectrum closely resembles the mirror image of the Anton–Yao procurement

auction, but with one important difference: whereas for procurement, the scale of the

the project (i.e., the output in the downstream market is given), for the allocation

of spectrum the total output of radio services using spectrum as an input depends

on the strategic interaction of the producers. In particular we have found split-

award equilibria in which spectrum is under-utilized despite being chosen to be just

sufficient to service the unconstrained Nash equilibrium in the final market stage of

the game.

We have completed the characterization of the equilibria of both the splt award

(SA) and Binmore-Klemperer (BK) auction for the complete information case. We

have shown that a split-award collusive equilibrium exists for certain certain config-

urations of parameters. The comparison with the BK auction suggests that the split
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award auction can deliver both significantly higher revenue and higher revenue plus

consumer surplus. Furthermore the revenue in the BK auction is totally dependent

on the competition from the most efficient third firm that drops out in the bidding

stage.

There a number of interesting areas for future research including: a generalization

of the analysis to the case of incomplete information; a study of other government

objectives that include considerations of expected consumer and producer surpluses

in addition to revenue; the consideration of substitution in the production stage

between spectrum and other inputs and finally the introduction of a further fourth

stage of bilateral trading in the game.
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Figure 3: z=0 and Decreasing Returns to Scale: Spare Spectrum Capacity,

q̂1 and q̂2.
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Figure 4: z > 0 and Constant Returns to Scale: Total Operating Profits
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Figure 5: z > 0 and Decreasing Returns to Scale: Total Operating Profits,

B(α, x, z)
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Figure 6: z > 0 and Constant Returns to Scale: Total Operating Profits

and Revenue B(α, x, z) and g. c3 = 0.9
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Figure 7: z > 0 and Constant Returns to Scale: Price and Consumer

Surplus. c3 = 0.9
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