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Abstract

Administered Incentive Pricing (AIP) of radio spectrum as advocated by

Smith/NERA (1996) and recently assessed by Indepen (2003) envisages an

incremental path towards efficient pricing, with revealed and stated prefer-

ence methods being used to reveal opportunity costs. We build on the latter

to develop and optimal pricing scheme that allows for consumer surplus, in-

terference constraints and their implications for productive efficiency, revenue

implications and market structure. We demonstrate the subtle relationship

between the interference constraints and the pricing and channel use decisions

of network operators. We proceed to show that the optimal AIP is higher in

sectors where spectrum can be shared and that it acts as Ramsey tax across

sectors of the economy, i.e., is inversely related to the elasticity of demand.

As a special case of our model we examine optimal pricing where the regula-

tor is constrained to ignore the revenue implications. Then optimal spectrum

prices are lower and the relationship between prices and the ability to share

spectrum is reversed.
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1 Introduction

Wireless communications services require radio spectrum as a factor of production.

The range of frequencies available is finite so this input, as for other inputs, is a

scarce resource. However, the nature of interference constraints that require dif-

ferent frequencies for some communications, but the possibility of the same shared

frequency for others, gives this input into production a unique characteristic which

has important implications in several areas of radio services. In this paper we focus

on one of these – administered spectrum pricing.1

Until recently spectrum was priced to recover the costs of administering licence

application and licencees. A drive towards more efficient use and valuation of spec-

trum led to Smith/NERA’s “administered incentive pricing” (AIP) scheme in 1996.

As a recent Indepen (2003) report makes clear, this attempts to price spectrum

on the basis of opportunity cost across its alternative uses—the original idea here

dates back to Levin (1970). The approach envisages an incremental path towards

efficient pricing, with revealed and stated preference methods being used to reveal

opportunity costs. Indepen (2004) provides a helpful summary of the assumptions

underlying this approach. In particular, markets are perfect (market structure is-

sues are not discussed) and spectrum allocation (or channel assignment) has already

taken place. These, of course, are potential weaknesses of an optimal pricing regime

that should aim to maximise welfare subject to various constraints (including those

relating to channel interference). In addition, the approach provides little help for

any regulator charged (as we understand Ofcom to be) with the task of encouraging

competition—oligopolistic equilibria must be addressed here.

In this paper we show how to combine the above generalisations in order to derive

an optimal price for spectrum. We incorporate interference constraints (using basic

graph theory) in the allocation of spectrum and show how this can affect downstream

1Other areas include the benefits of cooperation between users in mesh networks that may avoid

the tragedy of the commons in the licence-exempt sector, and the effects of spectrum trading (see

Jones et al. (2004)).
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retail prices. We also allow for oligopoly. Thus, the regulator in effect chooses

both a spectrum licence price and the number of firms in the industry. In this

setting, ‘optimal AIP’ must take account of consumer surplus, the reduction in tax

distortions resulting from licence revenue, productive efficiency and the effect on

market structure. We show that in such a setting, the optimal AIP is is higher in

sectors where spectrum can be shared and that it acts as Ramsey tax across sectors

of the economy, i.e., is inversely related to the elasticity of demand. As a special

case of our model we examine optimal pricing where the regulator is constrained to

ignore the revenue implications. Then optimal spectrum prices are lower and the

relationship between prices and the ability to share spectrum is reversed. Moreover

the Ramsey tax effect no longer applies. We show that the Smith/NERA AIP

provides a incremental approach to changing spectrum prices that takes into account

productive efficiency, but ignores the other effects that feature in our optimal pricing,

namely the consumers’ willingness to pay, revenue and imperfect competition.

The rest of the paper is organized as follows. Sections 2, 3 and 4 together

provide a general framework for spectrum pricing that combines the productive

and allocative efficiency aspects of spectrum allocation and therefore places the

market valuation of (non-auctioned)2 spectrum on a theoretically sound footing.3

We ask how a regulator can allocate spectrum when account is taken of the possible

interference between channels and sites. We show that the mathematical channel

assignment problem (between an exogenous set of demands) can be nested within

a wider economic channel allocation problem that endogenises these demands. The

regulator is assumed to allocate spectrum on the basis of prices charged to users

(i.e. firms). In what follows a licence fee for a given bandwidth of spectrum is a per-

2Auctions provide a mechanism for pricing spectrum when the regulator cannot tell how valuable

spectrum is to operators. In this paper we go back a stage and study the complete information

problem where there is no asymmetric information between the regulator and the firms. This

provides an essential benchmark against which to assess mechanisms for addressing asymmetric

information and it allows us to focus on hitherto neglected spatial aspects of spectrum allocation
3These sections draw upon, and develop, work in Leese et al. (2000).
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period rent paid to use the spectrum in a particular geographical location or over

several locations.4 We show how these prices are determined by interactions between

the economy (consumer demands, firms’ production decisions and the regulator’s

preferences) and the technical requirements of channel assignment.

Section 5 then applies this framework to network licence pricing for the analyti-

cally tractable case of a linear technology for which spectrum is a pure complement

and cannot be substitutes by capital or labour. We demonstrate the subtle relation-

ship between the interference constraints and the pricing and channel use decisions

of network operators and we derive results on optimal pricing referred to above. Sec-

tion 6 relaxes this assumption and provides an outline of how optimal prices could

be computed given a general production technology. Section 7 provides a compar-

ison between our scheme and the AIP of Smith-NERA. Finally section 8 provides

conclusions and an indication of possible future research.

2 The Channel Assignment Problem

Productive efficency implies the uses of inputs, including radio spectrum, to mini-

mize the cost of particular goods and services. This aspect involves both the alloca-

tion of spectrum to particular broad use categories (e.g., broadcasting, fixed-wireless

applications) and, within each use, the assignment of spectrum rights to particular

users within a particular frequency band. The latter channel assignment problem

involves the mathematical problem of how to assign channels to a competing, but

pre-determined, set of demands while satisfying co-site and inter-site constraints im-

posed by the need to avoid excessive interference so as to either minimize the span

required, or to use the maximum span and minimize some interference cost function

(Leese, 1998).

4Note that we assume linear spectrum prices. A more complicated access structure would be

for the regulator set a non-linear sliding scale of access charges.

We consider licences that apply to both a single market in a particular locality or to a network

of markets over many localities.
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Thus the channel assignment problem deals with the competing wishes to provide

sufficient radio coverage while at the same time avoiding unacceptable interference

between groups of transmitters (see Leese (1998)). The problem specification must

therefore include information about the requirements for spectrum across the sys-

tem, and also a set of constraints, designed to limit the interference levels, that a

channel assignment should respect. In the version of the problem used most widely

in practice, the spectrum requirements are given by specifying the number of dis-

tinct channels that each transmitter site requires. So, for instance, if there are n

transmitter sites, called T1, T2, . . . , Tn, then we have a corresponding set of demands

m1,m2, . . . , mn, where site Ti requires the assignment of mi distinct channels.

There are several ways of specifying these constraints. The commonest usual

route, which reflects the use of protection ratios in the radio community, is to have

a set of constraints each relating to either a single transmitter site (called co-site

constraints), or a pair of transmitter sites (called inter-site constraints). To be

explicit, suppose the channels are labelled by integer values, corresponding to their

positions in the frequency spectrum. Then the co-site constraints require that if f
(i)
1

and f
(i)
2 are different channels both assigned to some transmitter site Ti then

|f (i)
1 − f

(i)
2 | ≥ κi

for some specified minimum channel separation κi. Likewise, the inter-site con-

straints require that if f (i) and f (j) are channels assigned to two different transmitter

sites Ti and Tj, respectively, then

|f (i) − f (j)| ≥ κij

for some specified minimum channel separation κij (equal to κji). The constraints

are therefore completely specified by the numbers κi and κij, which are usually

written in the form of a matrix, called the constraint matrix. The κi make up the

diagonal entries and the κij the off-diagonal entries.

The final part of the problem specification is the objective, for which there are

two natural choices. The first and most widely studied to date is the minimum
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span problem, in which the aim is to find an assignment satisfying all spectrum

requirements and all interference constraints, for which the span, defined as the

difference between the highest and lowest channels used, is as small as possible.

This would tend to be the concern of spectrum regulators and system designers. The

second possibility, which we adopt in this paper, is the fixed spectrum problem, in

which a maximum span is given (corresponding to the amount of spectrum available)

and the aim is to assign channels to as many spectrum requirements as possible,

within the given span and without violating any constraints. This would tend to

be the concern of system operators, as they attempt to manage existing services.

A variant on the fixed spectrum problem would assign channels to all spectrum

requirements and try to minimize the number of violated constraints.

The above specification assumes that the transmitter locations and powers are

fixed (they are effectively taken account of by the constraint matrix). More general

formulations could have locations and powers as extra variables, to be optimized

along with the channels, but there has been very little theoretical work on such

problems to date.

The channel assignment problem has exercised many researchers over many

years. The standard formulation includes, as a special case, the celebrated graph-

colouring problem. A graph in this context is a collection of abstract ‘nodes’, some

pairs of which are joined by ‘edges’. The colouring problem is to attach a colour to

each node in such a way that a pair of joined nodes should receive different colours

and the total number of colours used should be as small as possible. The smallest

number of colours needed is called the chromatic number of the graph. If we think

of the nodes as transmitter sites and the colours as channels then we have precisely

a minimum span channel assignment problem, in which all the mi are 1, and the κij

are 1 if the nodes Ti and Tj are joined and 0 otherwise. (Since only one channel is

required at each site, the values given to the co-site constraints κi are immaterial.)

In physical terms, we are modelling only co-channel interference, with the edges in

the graph indicating the rough location of potential coverage blackspots.
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We now relate this very general formulation of the channel assignment and graph

colouring problems to an economic model that explains demands for channels in

terms of cost and market conditions. Each ‘transmitter site’ or node in the graph

incorporates a local market consisting of an oligopoly of firms producing a service

which we assume to be homogeneous. A spatial interpretation of nodes or sites is to

regard them as equal cells (e.g. squares) comprising the region under consideration.

A ‘transmitter site’ then consists of all the transmitters used by the firm, and it is

possible that firms can share transmitters, perhaps charging an access price. We

propose this as our ‘core’ economic model.

Each member of the oligopoly requires radio channels to provide the service. In

each cell a local oligopoly provides a local service. Each firm within this market

purchases a licence from the regulator to use a number of channels which depends

on the volume of service. The proximity of firms implies that no channel re-use is

possible within a cell and we assume that there is only co-channel interference (i.e.

κi = 1; κij = 0 or 1). The demands for radio channels in each market is the sum

of individual demands of the firms in that market. We model these demands in the

next section.

Each cell can now be given a colour and a shared colour indicates the possibility

of ‘channel re-use’ or ‘sharing’ between these regions. Figures 1 and 2 illustrate this

description of the channel assignment problem using a 4-node graph. The chromatic

number of the graph in Figure 1. Figure 2 is the coloured map using two colours.

Numbers inside circles are market demands and in our example demand increases

as we proceed from West to East. Because diagonal squares can share channels the

total demand of 60 channels can be serviced by a minimum of 40 distinct channels:

say, 1-10 in market A, 11-30 in market B of which 11-20 can be re-used in market

C. In market D 1-10 can be re-used from market A leaving a further distinct group

of channels, say 31-40, to complete the radio channel requirements of these four

markets, given the constraint matrix.
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3 The Core Economic Model

We now turn to details of the core economic model. We consider a single local market

with N competing firms providing a homogeneous service at a market price P .5 Firm

k produces output qk, k = 1, 2, · · ·, N and output Q =
∑N

k=1 qk. The demand curve

is given by Q = D(P ); D′(P ) < 0 and we assume that limP→∞ PD(P ) = 0. In

what follows we write the inverse demand curve as P = D−1(Q) = P (Q) for short.

Units of output are customer-minutes of some service requiring radio channels as an

input per unit of time (say, the financial year).

Dropping the firm subscript for now, on the supply side labour (L), capital (K)

and radio spectrum (Z) combine as inputs to produce output given a production.

Let us first consider the following very general CES production function which we

later specialize for reasons of tractability:

q = T
[
γ1L

η + (1− γ1)[γ2Z
ξ + (1− γ2)K

ξ]η/ξ
] 1

η (1)

where T is a total factor productivity, a measure of technical efficiency. In (1) we

have grouped capital and spectrum together with an elasticity of substitution equal

to 1
1−ξ

. The elasticity of substitution between labour and the grouped inputs Z and

K is 1
1−η

. Then if spectrum and capital are substitutes, but labour is a complement

to the other inputs we would choose ξ ∈ (0, 1) and η < 0.

Alternatively we could model spectrum as a complement to the other two sub-

stitutable inputs by grouping inputs as follows:

q = T
[
γ1Z

η + (1− γ1)[γ2L
ξ + (1− γ2)K

ξ]η/ξ
] 1

η (2)

In the limit as η and ξ tend to 0, both (1) and (2) tend to the Cobb-Douglas form

q = TLθ1Zθ2Kθ3 ;
3∑

i=1

θi = 1

Given a production function in one of these forms and given factor prices (w, r, a)

per unit of labour, capital and spectrum respectively, we can formulate a minimum

5Later we introduce sectors and in each sector we allow firms to provide the service across a

number of local markets.
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cost function per unit of output c(w, r, a) in the standard way. Associated factor de-

mands per unit of output are L(w, r, a), K(w, r, a) and Z(w, r, a). Standard analysis

gives ∂L
∂w

, ∂K
∂r

, ∂Z
∂a

< 0. We assume that each firm is a price taker in factor markets

and in the market for licences which incorporates all local markets such as the one

modelled in this section. We assume that the price elasticity of demand in the mar-

ket, ε(Q) = −PdQ
QdP

, is constant with respect to total output Q. We assume that ε > 1

for reasons which will become apparent.

The sequence of actions is as follows:

1. The regulator sets the licence price for spectrum

2. Firms compete in the market given the licence prices and other factor prices.

The appropriate equilibrium concept is a subgame perfect equilibrium found by

backward induction. We assume a Cournot-Nash equilibrium at stage 2 of the

game. Thus in setting the licence price at stage 1 the regulator acts as a Stackelberg

Leader. The next two sub-sections solve for stage 2 of the game, considering in

turn the cases of an exogenous number of firms and then an endogenous number

determined by a free entry zero-profit condition.

3.1 A Symmetric Equilibrium with an Exogenous Number

of Firms

. Given the core model, profits for the kth firm are

Πk = Πk(qk, w, r, a) = [P − ck(w, r, a)]qk − F (3)

The firm’s problem is to choose qk to maximize Πk.

Write total output Q = qk + q̃k. In a market-clearing equilibrium this is equated

with total demand D(P ). Then in a Cournot-Nash equilibrium firm k takes the

output of all other firms, q̃k, as given along with the inverse demand curve P =

D−1(Q) = D−1(qk + q̃k) and the access price. Note that firms then act strategically

with respect to other firms’ choices of output. However at stage 2 of the game, as

8



followers in a leader-follower game they are price-takers with respect to the access

price a. This rules out strategic bidding for licences which the auction literature

considers.

Firm k maximizes profits given by (3) with respect to qk given q̃k, a and the

market-clearing condition P = D−1(Q) = D−1(qk + q̃k) where we recall that P =

D−1(Q) is the inverse demand curve. The first-order condition for profit-maximization

is then

P ′qk + P − ck(w, r, a) = 0 (4)

and the second-order condition is

2P ′ + qkP
′′ < 0 (5)

Rearrangement of (4) gives the familiar mark-up pricing result for an oligopolist

P =
ck(w, r, a)

1− qk

εQ

(6)

where ε = ε(Q) = −PdQ
QdP

is the elasticity of demand. As the number of firms

increases the price tends to the marginal cost (including the marginal cost of the

channel), ck(w, r, a). Since we assume that firms are identical, Q = Nqk = Nq,

ck(w, r, a) = c(w, r, a) say. Then (6) becomes

P =
c(w, r, a)

1− 1
εN

= P (a,N) (7)

say. Note that since factor prices w, r are exogenous in the model (determined by

the general equilibrium in which the market model is embedded) we omit them as

arguments in the price function (7). εN > ε > 1 ensures the price is always positive

and is also a second-order condition for profit-maximization. To see this write a

constant elasticity demand curve as

Q = AP−ε (8)

Differentiating twice with respect to Q we have

P ′′ =
(ε + 1)(P ′)2

P
(9)
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Substitute for P ′′ in (5) and also put qk = q = Q/N . Then using P ′ < 0 and

ε = −P dQ
Q dP

, a little algebra gives the second order condition as

ε >
1

2N − 1
(10)

Since 2N − 1 ≤ 1 for N ≥ 1, clearly ε > 1 is sufficient for (10) to be satisfied.

The intuition behind this condition is that if the elasticity of demand is too low,

then firms can allow the market price and profits to increase indefinitely by reducing

output.

In an N-identical firm Cournot-Nash equilibrium output of each firm is given by

q = Q/N = D(P (a,N))/N with corresponding profits:

Π = Π(a,N) = [P (a, n)− c(w, r, a)]D(P (a,N))/N − F (11)

This leads to our first proposition:

Proposition 1

Assume ε > 1. Then profits Π(a,N) decreases with respect to a and N .

Proof: See Appendix.

The intuition behind the proposition is as follows. An increase in the licence

price increases cost and with that the retail price. Demand falls and if the elasticity

of demand is greater than unity, revenue falls resulting in an decrease in profits. An

increase in the number of firms reduces the mark-up and has two opposing effects

on profits: the price falls increasing total revenue; but this revenue is now shared

between more firms. With a constant elasticity of demand ε > 1 the latter dominates

and profits per firm fall.

3.2 A Free Entry Symmetric Equilibrium

Up to now we have taken the number of firms N as exogenous. There are two

ways of making N endogenous. The first, is to make N a policy variable, chosen by

the regulator when she issues the channel licences. The second, considered in this
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subsection, is to assume that there are no barriers to entry except a participation

constraint that profits cannot be negative. Firms will then enter up to the point at

which profits become negative.

The number of firms in equilibrium is given by N∗ which, given the licence price,

satisfies6

Π(a,N∗) = 0 (12)

Since from Proposition 1, Π(a,N) is decreasing in N and becomes negative for large

N, if we assume that a monopolist would enjoy positive profits (ie Π(a, 1) > 0), then

there exists a unique N∗(a) satisfying (12). Furthermore differentiating (12) with

respect to a and using proposition 1 we have

dN∗

da
= −

∂Π
∂a
∂Π
∂N

< 0 (13)

From Proposition 1, Π(0, 1) > Π(a, 1) > 0. Also from limP→∞ PD(P ) = 0,

Π(a, 1) becomes negative for sufficiently large a. Hence even for a monopolist there

exists an access price that would force profits below zero and drive the firm out of

business.

Associated with N∗(a) the total demand for channels m(a) in the market is given

by

m∗(a) = N∗(a)Z(a) (14)

Differentiating (14) with respect to a we have:

dm(a)

da
=

dN∗

da
Z(a) + N∗(a)

dZ

da
(15)

Since dN∗
da

< 0 and dZ
da

< 0 we arrive at dm(a)
da

< 0. We can now gather our results

together as:

Proposition 2

(1) Given the access price a, and the total demand D(P ) there exists an

unique number of firms N∗(a) providing this service.

(2) N∗(a) decreases with a.

6Note that free entry will lead to suboptimal duplication of fixed costs. See Perry (1984).
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(3) There exists a sufficiently high access price that drives all firms out

of business.

(4) Total demand for channels m∗(a) decreases with a.

The final result here is the crucial one. Demand falls as access prices increase

through two effects. First for a given number of firms, the price increases as firms

raise prices with rising costs. Second, higher access prices force some firms out of

business leaving the remaining ones with more market power. They then use this

greater market power to raise their mark-up over the higher costs.

4 Optimal Spectrum Pricing

Now consider p sectors of the economy using radio spectrum and providing a ho-

mogeneous service. We assume services across sectors are neither substitutes nor

complements. In each sector i = 1, 2, · · ·, p there are `i local markets such as the one

considered previously in the core model. Assume that there is no substitution by

consumers between products provided in each sector. The assignment of spectrum

is subject to interference constraints discussed in Section 3.1. Each local market

requires a number of transmitters which are too close to share radio channels. We

can treat these transmitters as one node in our previous discussion so a node rep-

resents both a market and a cluster of transmitters which can be considered as one

transmitter on one site. The spectrum allocation problem can now be embedded in

the following wider economic allocation problem:

1. Calculate the total demand for radio channels in each local market j = 1, · · ·, `i

for each sector i = 1, 2, · · ·, p. Because there is no substitutability nor comple-

mentarity across sectors, assuming the same across markets demand in local

market j of sector i will depend only the price Pij evaluated according to the

previous section.
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2. We choose a standard measure of social welfare function W of the form:

W =

p∑
i=1

`i∑
j=1

Sij + (1 + Λ)R +

p∑
i=1

`i∑
j=1

Πij (16)

where Sij is the consumer surplus in market j of sector i defined by:

Sij =

∫ ∞

Pij

Dij(p)dp, (17)

R is the revenue from access prices given by

R =

p∑
i=1

qi∑
j=1

mij(aij)aij, (18)

In (16), 1 + Λ is the cost of public funds where Λ > 0 captures the distor-

tionary effects of taxes that would otherwise be required in the absence of

this revenue. Another interpretation of (16) is as a regulator’s objective func-

tion that incorporates obligations imposed by law. Under UK and EU law

pricing of spectrum must be limited to spectrum management considerations

and must not be used as an instrument for raising taxes. This suggests that

regulators must ignore the revenue term in (16) and therefore choose Λ = −1.

In what follows we retain a general social\objective function of the form (16)

and substitute Λ > 0 or Λ = −1 after the optimization exercise.

3. The social planner can now maximize (16) with respect to access prices aij, i =

1, . . . , p, j = 1, . . . , `i and the numbers of firms providing each service in each

market, Nj, j = 1, p, subject to the engineering constraints discussed in Sec-

tion 3.1 and the spectrum resource constraint.

p∑
i=1

`i∑
j=1

mij(aij) ≤ Zmax (19)

Licences are provided for a limited number of firms. In general profits will

therefore not be driven down to zero by the process of free entry, and total

profits must be included in the social welfare of a utilitarian regulator.
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4. If the spectrum regulator is not responsible for market structure she would

maximize (16) with respect to spectrum prices only subject to a free-entry

equilibrium condition

Πij(aij, Nij) = 0 ; i = 1, · · ·, p ; j = 1, · · ·, `i (20)

and the engineering constraints and total spectrum constraint.

5. In principle the welfare maximizing regulator should choose different spectrum

prices in each market to reflect different demand and cost conditions and the

nature of the inter-market interference constraints. However practical concerns

may dictate that the same spectrum price is administered in a sector (i.e.,

aij = ai). Indeed, if channel trading between markets is allowed, arbitrage

would constrain the regulator in this way.

6. In this very general set-up the number of firms varies across markets in each

sector. We can think of these firms as local operators, each firm providing a

service in a single market. An alternative is to consider each firm as a network

operators providing a homogeneous service across all markets in the sector.

Then in sector i and market j we have that Nij = Ni. This assumption is

adopted in the example that follows.

5 Optimal Spectrum Pricing with Linear Tech-

nology

To illustrate this framework we examine the optimal network licence price across

sectors consisting of Ni network operators providing a service across `i local markets.

Firms and markets are identical except for the interference constraints. Firms have

access to a band of radio channels which can be used in all `i markets, interference

constraints permitting. For each channel they pay a fixed licence price ai payable to

the regulator per unit of time. No channel sharing is possible within a local market.
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First consider the case of `i = 3 in a particular sector i. There are now four

interference graphs to consider. The two most straightforward are two homogeneous

cases: a complete graph which has edges between every pair of nodes and the other

extreme of a graph with no edges. Less straightforward and more interesting are

the inhomogeneous cases of a single edge graph and graph with two edges shown in

Figure 3.

We first focus on the pricing and output decisions of network operators given the

licence price in a particular sector. Until we come to examine sector-specific prices

in subsection 5.4 below we drop the sector subscript i. To simplify the analysis in

the following subsections, we modify the core economic model by specializing the

production function to:

q = [γ1L
η + (1− γ1)K

η]
1
η ; z ≥ q (21)

Thus we consider a linear technology for spectrum for which spectrum is a pure

complement and cannot be substituted by capital or labour; output q is produced

using a Leontief technology. Without loss of generality we can choose units such that

one unit of ‘output’ requires one radio channel and output capacity equals the total

number of channels available. Thus for firm k to produce output qkj per period in a

particular local market j = 1, 2, 3, it requires Zk ≥ zkj ≥ qkj radio channel licences

where Zk is the total spectrum held and zkj are the channels available to firm k in

market j. These will depend on the nature of the interference graph. We assume

that the licence fee a is independent of the firm and its location. Total costs include

a set-up cost F so total costs for firm k are given by

Ck({qkj}, Zk, a) = F + aZk + c

3∑
j=1

qkj (22)

where c = c(w, r) is the cost function associated with the CES production function

of labour and capital in (21).

As set out above, the sequencing of events is that the regulator first sets the

licence price for spectrum in a particular sector i and second, firms compete in the
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market given the licence price a and other factor prices. Proceeding by backward

induction, given factor prices (w, r) firm k chooses labour and capital to minimize

the cost c(w, r)qkj of producing output qkj in market j = 1, 2, 3. By choice of units

and Leontief production this requires qkj radio channels in market j. Prices in each

market are Pj to reflect the radio environment. The firm purchases a licence for Zk

radio channels at a price a. Taking the relevant interference graph into consideration,

this permits the firm to use zkj ≤ Zk channels in market j. In a Cournot-Nash

equilibrium in each market, firm k then chooses outputs qkj and radio channels Zk

to maximize profits

Πk =
3∑

j=1

(Pj − c)qkj − aZk − F (23)

given the channel availability constraint

qkj ≤ zkj ≤ Zk (24)

and given the output of other firms q̃kj in markets j = 1, 2, 3.

5.1 Homogeneous Graphs

These are the most straightforward cases. For the graph with no edges, all channels

are available in each market and therefore zkj = Zk. Let λj ≥ 0 be the shadow price

associated with the constraint (24). Then firm k maximizes a Lagrangian

Lk = Πk −
3∑

j=1

λj(qkj − Zk) (25)

with respect to qkj, Zk, {λk} given the corresponding decisions of other firms. The

first order condition are for j = 1, 2, 3

qkj : (Pj − c) + qjP
′
j − λj = 0 (26)

Zk : −a +
3∑
j

λj = 0 (27)

CS : λj(qkj − Zk) = 0 (28)
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Equation (26) equates the marginal return from providing output in each market

with the shadow price of spectrum in that market. Equation (27) equates the price of

spectrum with the network shadow price. (42) are the Kuhn-Tucker complementary

slackness conditions. If a constraint does not bind the corresponding shadow price

takes a zero value.

The solution for this homogeneous case is very simple. By symmetry λj =

λ = a
3

> 0 and the constraints bind. Proceeding as before in a symmetric Nash

equilibrium, the Lerner price in all markets is given by

Pj = P =
c + a

3

1− 1
εN

(29)

Output is given by Q = AP−ε in each market, profits Π(a,N) = (P − c− a
3
) Q

N
− F

per market. Then either a free-entry condition Π(a,N) = 0 or a regulator’s choice

of the number of firms to be allowed licences determines N .

The other homogeneous case where all nodes are joined is very similar. Now

given Zk, zkj = Zk

3
channels are available per market. By a similar analysis we then

arrive at the price in each market given by

Pj = P =
c + a

1− 1
εN

(30)

Effectively firms are now paying more for their spectrum because they cannot share

the costs across markets, so from Proposition 1 profits in this case are lower and

less firms will enter this market in free entry equilibrium.

5.2 A Graph with Two Edges

In Figure 6 let markets j = 1, 2, 3 be at nodes A, B and C. Then for firm k if all Zk

channels are available in market 1 and qk1 ≤ Zk are used, then zk2 = zk3 = Zk − qk1

are available in markets 2 and 3. Then firm k maximizes a Lagrangian

Lk = Πk − λ1(qk1 − Zk)− λ2(qk2 − Zk + qk1)− λ3(qk3 − Zk + qk1) (31)
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with respect to qkj, Zk, λk given the corresponding decisions of other firms. The

first order condition are

qk1 : (P1 − c) + q1P
′
1 −

3∑
j

λj = 0 (32)

qk2 : (P2 − c) + q2P
′
2 − λ2 = 0 (33)

qk3 : (P3 − c) + q3P
′
3 − λ3 = 0 (34)

Zk : −a +
3∑
j

λj = 0 (35)

CS : λkj(qkj − zkj) = 0 (36)

The solution to these conditions sees market 1 releasing spectrum for the other two

markets k so λ1 = 0. Spectrum is fully utilized in markets 2 and 3 so λ2, λ3 > 0.

In symmetric Cournot-Nash equilibria, following the same reasoning as before we

arrive at equilibrium prices:

P1 =
c + a

1− 1
εN

(37)

P2 = P3 =
c + a

2

1− 1
εN

(38)

Thus we can see that prices are lower in markets where spectrum can be shared.

In a sector characterized by two-edged graphs prices will be lower in some markets

than in sectors with complete graphs but profits will be higher (again by appeal to

Proposition 1). It follows that in the less congested sector (in the radio interference

sense) higher profits will encourage more entry and markets will be more competitive.

5.3 A Graph with One Edge

In market 1 (node A) all channels are available so zk1 = Zk. In markets 2 and 3

channels can be shared and zk2 = zk3 = Z
2
. Now firm k maximizes a Lagrangian

Lk = Πk − λ1(qk1 − Zk)− λ2(qk2 − Zk

2
)− λ3(qk3 − Zk

2
) (39)
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with respect to qkj, Zk, λk given the corresponding decisions of other firms. The

first order condition are for j = 1, 2, 3

qkj : (Pj − c) + qjP
′
j − λj = 0 (40)

Zk : −a + λ1 +
1

2
(λ2 + λ3) = 0 (41)

CS : λkj(qkj − zkj) = 0 (42)

We first solve for a Type I equilibrium where all constraints bind (λj > 0, j=1,2,3).

By symmetry we know that λ2 = λ3. From the first order conditions, the solution

then satisfies

P1 =
c + λ1

1− 1
εN

(43)

P2 = P3 =
c + a− λ1

1− 1
εN

(44)

D(P1) = 2D(P2) where D(P ) = AP−ε (45)

λ2 = λ3 = a− λ1 (46)

Solving this set of equations for P1, P2, λ1 and λ2, a little algebra gives

P1 =
1

(1 + 2ε)

[
2c + a

1− 1
εN

]
(47)

P2 = P3 =
2ε

(1 + 2ε)

[
2c + a

1− 1
εN

]
(48)

λ1 =
c(1− 2ε) + a

1 + 2ε
(49)

λ2 = λ3 =
(2ε − 1)(a + c)

(1 + 2ε)
(50)

It follows from this solution that λ2 = λ3 > 0 if ε > 1 which we have already

imposed, but that λ1 > 0 imposes a condition on the licence price

a > c(2ε − 1) (51)

If (51) does not hold then we must have a Type II equilibrium where the capacity

constraint in market 1 does not bind and there is are spare radio channels. Then

19



λ1 = 0 and

P1 =
c

1− 1
εN

(52)

P2 = P3 =
c + a

1− 1
εN

(53)

λ2 = λ3 = a (54)

These results for a single edge graph in particular highlight the subtle relationship

between the interference constraints and the pricing and channel use decisions of

network operators. Iff the regulator sets a sufficiently high licence price such that

(51) holds all channels will be fully utilized in each market. The drawback is that

prices will be higher directly through the effect of the licence price on the retail

Lerner index and indirectly through higher concentration in a free-entry equilibrium.

The mathematical framework developed for analyzing these examples can be

used to develop software capable of handling much larger problems. However the

small node-number examples considered here are sufficient to demonstrate that the

spatially distributed aspects of channel assignment problems provide new challenges

for analysis that go beyond standard economic treatments.

5.4 The Optimal Licence Price

We now turn to the regulator’s choice of an optimal licence price for a particular

sector i (recall we have suppressed the sector i subscript in the preceding analysis).

We consider a free entry equilibrium where firms enter until profits are driven down

to zero. For analytical convenience, we confine ourselves to homogeneous graphs,

but unlike the previous section we now generalize the analysis to any number of

local markets `i in sector i. Furthermore as in the previous section we continue to

consider network operators providing a homogeneous service across `i local markets

in sector i, but with homogeneous graphs the regulator’s problem is identical if

we assume local operators.7 Ni network operators or firms are identical in each

7Let aL be the licence price for local operators. Putting a = `aL we then arrive at an identical

optimization problem described below.

20



sector i and demand Zi radio channels at a licence price ai to now be determined.

The revenue in sector i is therefore NiZiai and since graphs are homogeneous, retail

prices and identical in a particular sector across local markets; i.e., Pij = Pi. Putting

Sij = Si =
∫∞

Pi
Di(P )dP the regulator’s problem set out in general form in section 3

now becomes one to maximize with respect to a = (a1, a2, · · ·, ap) the social welfare

function

W = W (a) =

p∑
i=1

`i

∫ ∞

Pi

Di(P )dP + (1 + Λ)

p∑
i=1

NiZiai (55)

subject to
p∑

i=1

NiZi ≤ Zmax (56)

and the interference constraints implied by the graphs.

Confining ourselves to homogeneous graphs, there are two types of sectors to

consider. Those with graphs consisting of `i nodes all connected to each other are

referred to as sectors without spectrum re-use. Then the demand for spectrum is

NiZi = `iDi(Pi) and from the previous sub-section the retail price set by the firm is

given by Pi = ci+ai

1− 1
εiNi

. Graphs consisting of ` nodes without any edges are referred to

as sectors with spectrum re-use. Then the demand for spectrum is NiZi = Di(Pi) and

from the previous sub-section the retail price set by the firm is given by Pi =
ci+

ai
`i

1− 1
εiNi

.

Define ki = 1 for sectors without spectrum re-use and ki = 1
`i

for sectors with

spectrum re-use. Then (55) can be written as

W = W (a) =

p∑
i=1

`i

[∫ ∞

Pi

Di(P )dP + (1 + Λ)kiDi(Pi)ai

]
(57)

where

Pi =
ci + kiai

1− 1
εiNi

(58)

The regulator maximizes (57) with respect to a subject to the spectrum resource

constraint
p∑

i=1

ki`iDi(Pi) ≤ Zmax (59)

and the interference constraints. Within sectors these are that channels cannot be

shared between firms in a local market but within the firm, as a network operator,
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it can share between markets in sectors with spectrum re-use (ki = 1
`i

), but not in

sectors without spectrum re-use (ki = 1). Within sectors the regulator then assigns

different channels to each firm and imposes constraints across markets if appropriate

(though firms, not wanting to cause interference between their own sites, might self-

impose such constraints). Given the licence price firms then compete making entry

(or exit) decisions and resulting in a retail price in each sector given by (58). Between

sectors we assume that harmonisation agreements prevent the possibilities of sharing

spectrum.

To carry out the regulator’s optimization problem define a Lagrangian

L = W (a)− µ(

p∑
i=1

ki`iDi(Pi)− Zmax) (60)

where µ is a Lagrange multiplier associated with the spectrum resource constraint

(i.e., the shadow price of spectrum). Writing (58) Pi = Pi(ai, Ni(ai)) as in 3.2.1, the

first order condition with respect to ai is

−Di(Pi)
dPi

dai

+ (1 + Λ)ki

(
Di(Pi) + aiD

′(Pi)
dPi

dai

)
= µkiD

′(Pi)
dPi

dai

(61)

The left-hand-side of (61) is the marginal benefit from a marginal increase in the

spectrum price from increased revenue (the second term) minus the marginal cost

from a drop in consumer surplus (the first term). The right-hand-side is the marginal

cost of spectrum evaluated at its shadow price µ.8

To proceed with the analysis we need to evaluate dPi

dai
using the free-entry con-

dition Πi = `iPiDi(Pi

εiN2
i

− Fi = 0 (using (A.1) from the appendix). Differentiating

Pi = Pi(ai, Ni(ai)) we have

dPi

dai

=
∂Pi

∂ai

+
∂Pi

∂Ni

dNi

dai

(62)

The first term on the right-hand-side of (62) is the direct effect of an increase in the

licence price on the retail price. The second term is an indirect effect arising from

8Notice that the expression for the optimal licence price in each sector depends only on demand

and supply conditions in that sector and the shadow price of spectrum, not on conditions in other

sectors. The reason for this convenient decomposition is the assumed absence of any substitutability

or complementarity of services between sectors.
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the exit of firms as the cost spectrum rises. Differentiating the free-entry condition

a little algebra gives

dNi

dai

= −(εi − 1)(εiNi − 1)

(2εiNi − 1− εi)

Ni∂Pi

Pi∂ai

< 0 (63)

for εi > 1 which we have assumed throughout. Substituting into (62) we can now

write
dPi

dai

= ρi
∂Pi

∂ai

(64)

where we have defined

ρi = ρi(εi, Ni) =
2(εiNi − 1)

(2εiNi − 1− εi)
(65)

Note that as Ni → ∞ and markets become competitive, ρi → 1. Given Ni, as εi

varies in the range εi ∈ [1,∞] then ρi ∈
[
1, 2Ni

2Ni−1

]
.

Dividing (61) by Di(Pi) and using εi = −PidDi

DidPi
and (64) we can, after some

algebra, write the first-order condition as

ai =
µεiρi

(
1− 1

εiNi

)
+ ci

ki

(
(1 + Λ)

(
1− 1

εiNi

)
− ρi

)

ρi + (1 + Λ)(εiρi − 1)
(
1− 1

εiNi

) (66)

This relationship along with the free-entry condition

Πi =
`iPiDi(Pi)

εiN2
i

− Fi = 0 (67)

the Kuhn-Tucker complementary slackness condition

µ(

p∑
i=1

kiDi(Pi)− Zmax) = 0 (68)

and the retail price equation (58) gives four equations for Ni, ai, Pi and µ at the

optimum, given parameters εi, ci, ki, Λ and Ai. This completes the solution for the

optimal licence price.

From (66) an important result linking the optimal licence price to the extent of

congestion captured by our parameter ki is apparent. Given the number of firms Ni

(66) says that the optimal price falls as congestion increases and the ai(Ni) shifts
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downwards Furthermore since from (58), congestion effectively increases the spec-

trum price per unit of output, so the downward-sloping free-entry relationship Ni(a)

shifts to the left. These two effects are illustrated in figure 4. We summarize this

result as:

Proposition 3.

Assuming linear technology for spectrum and homogeneous graphs, ce-

teris paribus the optimal licence price in sectors without spectrum re-use

is lower than that in sectors with spectrum re-use.

The result that the inability to re-use spectrum is not accompanied by a ‘conges-

tion tax’ consisting of a higher spectrum licence price may seem counter-intuitive.

The reason why a higher licence price is not necessary to reduce demand for spectrum

in sectors without spectrum re-use is that network operators perform this function

by raising the retail price. This is illustrated in figures 5 and 6 for the cases where

spectrum is scarce (µ > 0) and where it is not (µ = 0) respectively.9 If spectrum is

scarce the retail price rises as ki rises from ki = 1
`i

for homogeneous graphs without

edges (where spectrum can be shared across local markets) to ki = 1 for homoge-

neous graphs with every node connected where no channel sharing is possible. For

example if `i = 5 we need to compare ki = 1
5

and ki = 1 for cases of sectors with

spectrum re-use and without spectrum re-use respectively. As we move from these

two cases, if µ > 0 and spectrum is scarce then in our illustrative example the retail

price more than doubles, the number of firms drops from 5 to 3. The regulator

who is equally concerned for the welfare of consumers in sectors with and without

spectrum re-use, cushions the effect of the latter by lowering and not raising the

licence price in that sector relative to the sector where spectrum re-use is possible

(a drop from around 2.5 to 2.2 in our example). If spectrum is plentiful (µ = 0) we

can see from (66) that aiki and therefore from (58) the retail price is independent

of the parameter ki. It follows from the free-entry condition that this must also be

true of Ni and therefore ai is simply proportional to 1
ki

, as in apparent in figure 6.

9Baseline parameter values are ci = Ai = 1, Λ = 0.3, εi = 2 and `i = 3. Fixed entry costs Fi are

chosen so that at baseline parameter values in sectors without spectrum re-use (ki = 3), Ni = 4.
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A number of simpler expression for special cases provide useful insights. First

let Ni become large. Then for this competitive case since ρ → 1, (66) becomes

ai →
µεi + ci

ki
Λ

(1 + Λ)εi − Λ
(69)

From this result it follows that for Λ > 0, dai

dεi
< 0 a result that is confirmed numer-

ically in figure 7 for any Ni. The result that the licence price is inversely related to

the elasticity of demand is a familiar property of a Ramsey price from the regula-

tion literature that applies to optimal spectrum licence pricing as long a taxes are

distortionary (Λ > 0). To summarize:

Proposition 4.

For large Ni the inverse elasticities rule of Ramsey prices and taxes apply:

the optimal license price in a sector is inversely related to the elasticity

of demand. Numerical results suggest this may hold for small Ni.

Finally if in addition to Ni being large, Λ = 0 and there are no distortionary

effects from taxation, then ai = µ and the optimal licence price is simply equal to the

shadow price of spectrum and independent of all the characteristics that distinguish

the sectors.

Up to this point we have reported results for the case where the regulator maxi-

mizes a social welfare function with Λ > 0 that (correctly) assumes there are welfare

benefits from the revenue from licence fees. We now assume that the regulator is

constrained by law to ignore these benefits. Our general framework handles this

case if we put Λ = −1. The competitive case where Ni is large is straightforward to

analyze. Then (69) becomes

ai → µεi − ci

ki

(70)

It is now apparent that the relationship between the optimal licence price under this

constraint and both the spectrum re-use parameter ki and the elasticity of demand

εi is now the opposite of that reported in propositions 3 and 4. In other words these

results depend critically on revenue generation considerations. Thus we have the

proposition:

Proposition 5
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If the regulator adopts an objective function that ignores the welfare

benefits of revenue from licence fees the the constrained optimal licence

price in sectors without spectrum re-use is now greater. For large Ni,

the constrained optimal licence price in sectors with spectrum re-use is

positively related to the elasticity of demand.

Figure 8 for Λ = −1 demonstrates the first part of this result and corresponds

to figure 4 for Λ = 0.3. Figure 9 for Λ = −1 that the relationship between he

constrained optimal licence and the elasticity of demand becomes ambiguous for the

oligopoly case.

5.5 The Incorporation of Costs of Adjusting Licence Prices

A feature of the administered incentive pricing (AIP) scheme discussed and com-

pared with our optimal pricing scheme in a later section is that it is incremental,

gradually adjusting towards a more efficient allocation of the spectrum. This feature

can be introduced into optimal pricing by incorporating adjustment costs of chang-

ing the licence price. The optimization problem now is no longer static. Let a∗ be

the vector of optimal prices that solves the static problem set out in the previous

section. Consider the intertemporal welfare loss function

Ω =
∞∑

t=1

βt

p∑
i=1

[(a∗i − ai)
2 + Φ(ai(t)− ai(t− 1))2] (71)

where β ∈ (0, 1] is a discount factor. This welfare loss expresses the idea that the

regulator would prefer to be at the static optimal set of prices but is subjected to

costs of change prices proportion to (∆a(t))2 where ∆ai(t) = ai(t) − ai(t − 1) is

the change in the licence price over the interval [t− 1, t] in sector i. As the cost of

adjustment parameter Φ → 0 we approach the previous problem where the regulator

instantaneously jumps to the static optimum a = a∗.

At time t = 1, the regulator now minimizes Ω with respect to a given historical

prices a(0). The first-order condition for a minimum in sector i is given by

−(a∗i − ai(t)) + Φ(ai(t)− ai(t− 1)− Φβ(ai(t + 1)− ai(t)) = 0 (72)
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Let âi(t) = ai(t)−a∗i be the deviation of the licence price about the static optimum.

Then the first-order condition can be written as

βΦâi(t + 1)− (1 + Φ(1 + β))âi(t) + Φâi(t− 1) = 0 (73)

To solve this second-order difference equation take z-transforms to give the char-

acteristic equation

βΦz2 − (1 + Φ(1 + β))z + Φ = 0 (74)

It is straightforward to show that this has two positive roots z1 < 1 and z2 > 1. The

system is therefore saddle-path stable with solution

âi(t) = zt
1âi(0) (75)

Figure 10 illustrates this adjustment process with costs of adjustment by plotting

the solution (75) for a low cost, medium cost and high cost cases. For the sector in

question the optimal static spectrum price as assumed to be unity and the initial

price is zero. As one would expect as costs of adjustment are lowered, the speed

of adjustment to the static optimum increases. More generally this section shows

how a rational regulator facing adjustment costs would act in an incremental fashion

moving quickly or slowly toward the static optimum, depending on the size of the

costs of adjustment, so mimicking the adjustment process advocated by AIP.

6 Optimal Pricing with General Technology

In the previous subsection for reasons of tractability we confined ourselves to linear

technology where there was no scope for substituting spectrum for other factors of

production. Now we sketch out how optimal pricing may be formulated for more

general production technologies which do allow for alternative spectrum saving ways

of producing services such as those expressed by production functions (1) or (2). The

total costs of producing qi output in sector i with spectrum costing ai now becomes

Ci(qi, ai) = Fi + ci(wi, ri, kiai)qi (76)

27



where ci(wi, ri, kiai) is the cost per unit of output and kiai is the effective cost of

spectrum for network operators. By Shephard’s Lemma we have that the demand

for spectrum in sector i is given by

Zi =
∂Ci

∂ai

= `ikic3i
Di(Pi)

Ni

(77)

where c3i = ∂ci(wi,ri,x)
∂x

.

We can now generalize the regulator’s problem expressed by (57) to (59) for

linear technology to the maximization with respect to a of

W = W (a) =

p∑
i=1

`i

[∫ ∞

Pi

Di(P )dP + (1 + Λ)kic3i(wi, ri, kiai)Di(Pi)ai

]
(78)

where

Pi =
ci(wi, ri, kiai)

1− 1
εiNi

(79)

subject to the spectrum resource constraint

p∑
i=1

kic3i(wi, ri, kiai)Di(Pi) ≤ Zmax (80)

and the interference constraints.

To implement this procedure we require either a production function for the

service using spectrum is required or the cost function (76). Empirically the latter

is usually the preferred method of estimating factor demands using, for example,

translog functional forms. Unlike the previous case of linear technology the first

order conditions are not analytically tractable and would require numerical solution

using an estimated or calibrated production or cost function.10

7 AIP versus Optimal Prices

We are now in a position to compare the ‘Administered Incentive Prices’ (AIP)

proposed by Smith-NERA (1996) with optimal prices. To examine the latter assume

10Even for the simplest non-linear technology, a Cobb-Douglas production function, the first-

order condition corresponding to (66) is a high-order polynomial in the licence price ai.
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there are 2 sectors (p = 2) with cost functions per unit of output (in value terms)

for the representative firm:

ci(w, r, a) = wLi(w, r, a) + rKi(w, r, a) + aZi(w, r, a) ; i = 1, 2 (81)

If firms are unconstrained in the choice of inputs then ci(w, r, a) are the minimum

costs chosen by the firms given factor prices (w, r, a). Suppose however that the

licence price is too low to clear the market so at least one of the firms is short of the

spectrum it needs to achieve this minimum cost. Suppose firm 1 is short of spectrum

but firm 2 is unconstrained. Consider a small incremental increase in spectrum for

firm 1, ∆Z1 which it substitutes for ∆L1 of labour and ∆K1 of capital. i.e., the

change in cost is

∆c1 = −w∆L1 − r∆K1 + a∆Z1 < 0 (82)

whereas for the unconstrained firm 2 the change in cost is

∆c2 = w∆L2 + r∆K2 − a∆Z1 > 0 (83)

since ∆Z2 = −∆Z1 and firm 2 has minimized costs before the reallocation. | ∆c1 | is
the Smith-NERA ‘opportunity cost’ or what society forgoes by allocating spectrum

to sector 2 rather than sector 1.

According to the Smith-NERA methodology, licence prices are based on available

estimates of the costs of alternative uses of the radio spectrum. Initial valuations

and the subsequent modifications take qualitative factors affecting spectrum use into

account. With relevant data largely unavailable for estimating marginal profit val-

ues, the Smith-NERA (1996) study turned to an approach based marginal values of

the costs of alternatives. One of the more straight forward cases is that of terrestrial

fixed links. For this sector the a number of methods of relieving excess demand

for spectrum in fixed links bands including: installing narrowband equipment, mov-

ing to higher frequencies, moving to cable and releasing spectrum from other uses

sharing the same bands.

For terrestrial fixed links, using the spectrum valuation model, Smith-NERA

used the following three-step procedure :
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1. Establish what or who is the next best use/user of the spectrum: In lower

bands (e.g. below 2GHz) this might be mobile radio. In higher bands this

might be other fixed link users, satellite links etc.

2. Determine what can the next best use/user do if access to spectrum is denied

(a) Mobile: The options include move to different frequency band, use nar-

rowband equipment, implement more cells, change to different operator.

(b) Fixed Link: If all access to spectrum is denied then fixed link users

will be forced to move to cable. Otherwise, users can install narrowband

equipment or, where this is not feasible, move to a different frequency

band.

(c) Satellite Earth Station: Move to a different geographical area and

possibly a different country.

3. Take the minimum of these costs. Then the change in costs is our equation

(83).

This description of the theory and practice of AIP has two fundamental features:

first it is incremental based on observations of inefficient allocations. Second it is

solely concerned with the input side of efficiency and ignores the consumer willing-

ness to pay and the benefits of reducing distortionary taxes by other means. An

alternative suggested by our analysis is to use consumer surplus plus tax revenue

calculated using the shadow price of taxation forgone in sector 1 by allocating a unit

of spectrum to sector 2. Even if the revenue effects are ignored by putting Λ = −1,

the forgone benefit in terms of the consumer surplus will depend not only on the

lowering of cost but also its subsequent impact on the price through the mark-up

formula

P1 =
c1(w, r, a)

1− 1
ε1N1

= P1(w, r, a, N1) (84)

which depends on cost, the elasticity of demand ε1 and market structure through

the effect on N1. Writing the consumer surplus in sector 1 as S(P1) we have that
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S ′(P1) = −D(P1). Thus the effect of a lowering of costs by ∆c1 and an increase in

the number of firms by ∆N1 is given by

∆S1 = S ′(P1)∆P1 = D(P1)︸ ︷︷ ︸
demand effect



− ∆c1(

1− 1
ε1N1

)

︸ ︷︷ ︸
cost effect

+
c1∆N1

ε1N2
1

(
1− 1

ε1N1

)2

︸ ︷︷ ︸
market structure effect




(85)

Since ∆c1 < 0 and ∆N1 > 0 both the cost effect and the market structure effect on

the consumer surplus based notion of opportunity cost are positive. Note that (85)

corresponds to the objective function used to compute constrained optimal licence

prices by putting Λ = −1 in (16).

Comparing the Smith-NERA AIP given earlier with (85) as criteria for making

incremental changes to licence prices it is now apparent that of the three effects

present in the latter – demand, cost and market structure – only the cost effect

is taken into account by AIP.11 Thus we have developed a natural extension of

the Smith-NERA methodology that also takes into account imperfect competition,

the revenue effect (if so desired by the regulator), the willingness of consumers to

pay, the ability to substitute other factors of production for spectrum and costs of

changing spectrum prices.

8 Conclusions and Future Research

The objective of this paper has been to explore whether valuable light can be shed

on policy questions in the area of spectrum allocation by the combination of models

from information theory and economics. We have focused on several issues that

11Indepen (2004) acknowledge that in principle costs and benefits of reallocation of spectrum

through relaxing constraints imposed by harmonisation should be measured with respect to their

impact on consumer and producer surplus. Our free-entry condition drives the latter to zero and

so does not feature in the calculations. In that study costs are used as a proxy for the impact on

welfare only where suitable data on consumer surplus is lacking.
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we believe are central to existing work by economists in this area. Our approach

complements this literature by offering rigorous modelling of the issues identified,

whilst advancing it by the multidisciplinary approach adopted. We believe this

approach has yielded insights both for policymakers and for how the literature might

be developed in order to strengthen these.

Perhaps one way to test this claim is to consider whether a useful research agenda

has emerged from our work. We believe that this is the case. First, there are im-

portant questions of implementation—as we believe is also true of the existing AIP

methodology. In particular, the introduction of consumer surplus and foregone dis-

tortionary taxes leading to Ramsey-type licence prices places additional emphasis on

demand studies. The full implementation of our proposed procedure would require

estimation of cost functions sector-by-sector.

Second, an important development would follow naturally from our framework.

We focus on allocative and productive efficiency, thus ignoring dynamic (intertem-

poral) incentives/efficiency: in particular, for investment in spectrum-efficient tech-

nologies. In such a development, it would be socially optimal for investment to take

place in settings where interference graphs are dense—so as to free up spectrum for

re-use around the graph. Yet it seems almost certain that firms will not be able to

appropriate all of the gains from such investment, thus rendering their investment

decisions suboptimal. A natural way to encourage such investment would be to

charge high spectrum prices where interference is greatest but this conflicts with

the optimal static AIPs, as described above—recall Figure 7. Thus, the question of

encouraging static and dynamic efficiency needs significant future research, within

a model that explicitly incorporates aspects of the underlying engineering problem.
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A Proof of Proposition 1

Using (7) we may write (11) as

Π = Π(a,N) =
P (a,N)D(P (a,N)

εN2
− F (A.1)

Then, differentiating (A.1) partially with respect to a, we arrive at

∂Π

∂a
=

[PD′ + D]

εN2
(A.2)

Hence ∂Π
∂a

< 0 if PD′ + D < 0 ie ε > 1.

Similarly differentiating (A.1) partially with respect to N :

∂Π

∂N
=

∂P

∂N

1

εN2
[D + PD′]− 2PD

εN3
(A.3)

Again from (7) we have
∂P

∂N
= − P

N(εN − 1)
(A.4)

Combining (A.3) and (A.4) we arrive at

∂Π

∂N
= −P [(2N − 1)ε− 1]

N3(εN − 1)
(A.5)
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Since we assume that ε > 1 we have that (2N − 1)ε > N(ε − 1) > 0 for N ≥ 1. It

follows that ∂Π
∂N

< 0.
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Figure 1: A 4-Node Graph of 4 Markets

Figure 2: A Coloured Map of 4 Markets
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Figure 4: The Optimal Licence Price and Firm Numbers: Λ = 0.3, `i = 3,

µ = 3c. X=sector with spectrum re-use. Y=sector without spectrum

re-use.
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Figure 5: The Optimal Licence Price and Spectrum Re-Use: Λ = 0.3,µ = 3c.
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Figure 6: The Optimal Licence Price and Spectrum Re-Use: Λ = 0.3, µ = 0.
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Figure 7: The Optimal Licence Price and Elasticity of Demand (ε): Λ = 0.3,

µ = 3c, `i = 3.
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Figure 8: The Constrained Optimal Licence Price and Firm Numbers: Λ =

−1, `i = 3. X=sector with spectrum re-use. Y=sector without spectrum

re-use.
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Figure 9: The Constrained Optimal Licence Price Elasticity of Demand

(ε): Λ = −1, µ = 3c, `i = 3.
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Figure 10: Dynamic Adjustment. a∗i = 1; ai(0) = 0.
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