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Abstract

This paper empirically assesses the performance of interest-rate monetary rules for

interdependent economies characterized by model uncertainty. We set out a two-bloc

dynamic stochastic general equilibrium model with habit persistence (that generates

output persistence), Calvo pricing and wage-setting with indexing of non-optimized

prices and wages (generating inflation persistence), incomplete financial markets and

the incomplete pass-through of exchange rate changes. We estimate a linearized form

of the model by Bayesian maximum-likelihood methods using US and Euro-zone data.

From the estimates of the posterior distributions we then examine monetary policy

conducted both independently and cooperatively by the Fed and the ECB in the

form of robust inflation-targeting interest-rate rules. Comparing the utility outcome

in a closed-loop Nash equilibrium with the outcome from a coordinated design of

policy rules, we find a new result: the gains from monetary policy coordination rise

significantly when CPI inflation targeting interest-rate rules are designed to account

for model uncertainty.
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1 Introduction

The emergence of the new micro-founded open-economy models (NOEM) has led naturally

for the literature to revisit the economics of monetary policy interdependence. Following

the seminal contribution of Obstfeld and Rogoff (1996), a number of papers have stud-

ied spillover effects and the resulting gains from policy coordination for interdependent

economies using a rudimentary NOEM (e.g., Betts and Devereux (2000), Corsetti and

Pesenti (2001), Obstfeld and Rogoff (2002), Clarida et al. (2002a), Benigno and Benigno

(2003)). A consensus emerging from this body of work is that the coordination gains are

very small.

Our paper belongs to a more recent literature that reassesses the no gains result using

a more developed NOEM. We examine inflation-targeting monetary rules that are robust

in the face of model uncertainty and are operational in the sense that a zero-lower-bound

(henceforth, ZLB) constraint on the nominal interest rate is observed. We develop a

two-bloc NOEM with traded and non-traded sectors, habit persistence (that generates

output persistence in the model), Calvo pricing with indexing of non-optimized prices

(generating inflation persistence), imperfect financial markets and the incomplete pass-

through of exchange rate changes. Wage stickiness is introduced using an analogous form of

staggered wage setting. We estimate a linearized form of the model by Bayesian maximum-

likelihood methods using US and Euro-zone data.1

We first assess the gains from coordination in the absence of model uncertainty. Both

cooperative and non-cooperative optimized IFB targeting rules are computed. Compar-

isons between the outcomes under these two sets of rules provide an empirical assessment

of the coordination gains. As in Batini et al. (2005), Batini et al. (2006) and Levine et al.

(2008), we then proceed to use the estimated posterior densities of parameters to design

IFB rules that are robust in two senses: they guarantee stable and unique equilibria for all

parameter combinations and, in addition, use the posterior parameter density functions

to minimize an expected loss function of the central bank subject to this estimated model

uncertainty.2

The rest of the paper is set out as follows: section 2 describes our model, the steady

1Coenen et al. (2007) set out a similar model, but without non-traded sectors. In a calibrated model

they find only small gains, of the order of a 0.05% permanent increase in steady-state consumption.
2We assume model consistent expectations throughout in the sense that two monetary authorities and

the private sector all agree on the ‘true’ model drawn from the distribution. Frankel and Rockett (1988)

and Holtham and Hughes Hallett (1992) study policy coordination where the central banks may believe

in different models. Levine et al. (2008) examine policy rules in a single economy where the private sector

and the central bank may believe in different models.
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state and the linearization about the latter.3 Section 3 describes the estimation method-

ology and results. Sections 4 and 5 describes our procedures for approximating the op-

timization problems in a linear-quadratic form and for imposing an approximate ZLB

constraint. Section 6 provides results for optimized IFB rules where model parameters

are known with certainty. Section 7 tackles the case where there is parameter uncertainty

and inflation-targeting rules are designed to be robust. Section 8 summarizes our main

results.

2 The Model

There are two asymmetric unequally-sized blocs with the different household preferences

and technologies. In each bloc there are traded and non-traded sectors and the relative

size of the sectors can differ. The model is set up so as to incorporate two large blocs

and a small open economy embedded in a world economy within one framework. We

first assume complete asset markets before modifying the model to incorporate imperfect

markets. The exchange rate is perfectly flexible. The consumption index in each bloc

is of Dixit-Stiglitz nested CES form with domestic and foreign components consisting of

a basket of differentiated goods produced in each bloc. Goods producers and household

suppliers of labor have monopolistic power. Wages and nominal domestic prices of both

domestically produced and imported goods are sticky. Following Devereux and Engel

(2002) we introduce heterogenity in the way goods are exported. Some firms are local

currency pricers (LCPs) and market directly to the overseas markets which creates a

departure from the law of one price. Other firms are producer currency pricers (PCPs,)

setting prices in their own currency. To keep the model at manageable ‘medium’ size

(and in common with much of the New Keynesian DSGE literature) labour is the only

input. Apart from this feature, as each bloc tends to its closed economy limit and we shut

down the open-economy aspects it resembles the single closed economy model of Smets

and Wouters (2003a), but without capital.4

3Levine et al. (2007a) gives a fuller description of the model, its estimation and simulation properties.
4It follows that ‘consumption’ should in fact be interpreted as total private expenditure with the risk

aversion parameter, σ interpreted accordingly (see Woodford (2003), page 352.)
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2.1 Households

There are ν households in the ‘home’ bloc and ν∗ households in the ‘foreign’ bloc. A

representative household r in the home bloc maximizes

Et

∞
∑

t=0

βtU

(

Ct(r) − HC,t,
Mt(r)

Pt
, Lt(r), Gt, UC,t, UM,t, UL,t

)

(1)

where Et is the expectations operator indicating expectations formed at time t, β is the

household’s discount factor, UC,t, UM,t and UL,t are preference shocks Ct(r) is an index

of consumption, Lt(r) are hours worked, HC,t represents the habit in consumption, or

desire not to differ too much from other households, and we choose HC,t = hCt−1, where

Ct = 1
ν

∑ν
r=1 Ct(r) is the average consumption index, h ∈ [0, 1). When h = 0, σ > 1 is the

risk aversion parameter (or the inverse of the intertemporal elasticity of substitution)5.

Mt(r) are end-of-period nominal money balances and Gt is exogenous per capita real

government spending assumed to be exclusively on non-traded domestic output. An anal-

ogous symmetric intertemporal utility is defined for the ‘foreign’ representative household

and the corresponding variables (such as consumption) are denoted by C∗

t (r), etc.

The representative household r must obey a budget constraint:

PtCt(r) + Et[Qt,t+1Dt+1(r)] + Mt(r) = (1 − Tt)Wt(r)Lt(r) + Dt(r) + Mt−1(r)

+ (1 − Tt)Γt(r) + TRt (2)

where Pt is a Dixit-Stiglitz price index defined in (17) below, Dt+1(r) is a random variable

denoting the payoff of the portfolio purchased at time t and Qt,t+1, the stochastic discount

factor, is the period-t price of an asset that pays one unit of domestic currency in a

particular state of period t + 1 divided by the probability of an occurrence of that state

given information available in period t. Wt(r) is the wage rate, Tt the income tax rate

and Γt(r) are dividends from ownership of firms.6 Finally TRt are lump-sum transfers to

households by the government net of lump-sum taxes

Assume the existence of nominal one-period riskless bonds denominated in domestic

currency with nominal interest rate It over the interval [t, t + 1]. Then arbitrage consid-

erations imply that Et[Qt,t+1] = 1
1+It

. In addition, if we assume that households’ labour

supply is differentiated with elasticity of supply η, then (as we shall see below) the demand

5When h 6= 0, σ is merely an index of the curvature of the utility function.
6The tax rate Tt can be interpreted as a total tax wedge (see Levine et al. (2006)).
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for each consumer’s labor supplied by ν identical households is given by

Lt(r) =

(

Wt(r)

Wt

)

−η

Lt (3)

where Wt =
[

1
ν

∑ν
r=1 Wt(r)

1−η
]

1

1−η and Lt =
[

1
ν

∑ν
r=1 Lt(r)

η−1

η

]

η
η−1

are the average wage

index and average employment respectively.7

Let the number of differentiated traded goods produced in the home and foreign blocs

be nH and nF respectively and the number of differentiated non-traded goods be nN and

n∗

N respectively. Let n = nH + nN and n∗ = nF + n∗

N be the corresponding total numbers

of goods in the two blocs. Each good is produced by a single firm and we assume that the

the ratio of households to firms are the same in each bloc, i.e., ν
n = ν∗

n∗ . It follows that n

and n∗ (or ν and ν∗) are measures of size. Then the per capita consumption index in the

home bloc is given by

Ct(r) =

[

w
1

µ

NCN,t(r)
µ−1

µ + (1 − wN )
1

µ CT,t(r)
µ−1

µ

]
µ

µ−1

(4)

where µ is the elasticity of substitution between non-traded and traded goods,

CN,t(r) =





(

1

nN

) 1

ζN
nN
∑

f=1

CN,t(f, r)(ζN−1)/ζN





ζN/(ζN−1)

(5)

and

CT,t(r) =

[

w
1

µT CH,t(r)
µT −1

µT + (1 − w)
1

µT CF,t(r)
µT −1

µT

]

µT
µT −1

(6)

where µT is the elasticity of substitution between home and foreign traded goods,

CH,t(r) =





(

1

nH

)
1

ζT
nH
∑

f=1

CH,t(f, r)(ζT −1)/ζT





ζT /(ζT −1)

(7)

CF,t(r) =





(

1

nF

)
1

ζT





θ∗nF
∑

f=1

CF,t(f, r)(ζT −1)/ζ)T +

(1−θ∗)nF
∑

f=1

CF,t(f, r)(ζT −1)/ζT









ζT /(ζT −1)

(8)

where CN,t(f, r) denotes the home consumption of the non-traded good of household r,

CH,t(f, r) and CF,t(f, r) denote the home consumption of traded variety f produced in

blocs H and F respectively, ζN and ζT are the elasticities of substitution between varieties

7Note that if we normalize ν = 1 then as is more customary in the literature we can write Wt ≃
[

∫ 1

0
Wt(r)

1−ηdr
] 1

1−η
. However here we need to impose different sized blocs with the foreign number of

households ν∗ 6= ν.
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in each bloc (note that we impose equality between blocs for the traded elasticity, i.e.,

ζ∗T = ζT ), and

w =
nHω

nHω + nF (1 − ω)
(9)

In (9) ω ∈ [12 , 1] is a parameter that captures the degree of ‘bias’ in the home bloc. If

ω = 1 we have autarky, while the lower extreme of ω = 1
2 gives us the case of perfect

integration. If blocs are of equal size then nH = nF , w = ω and consumption only

favours home consumption if there is home bias.8 In the absence of home bias w = nH

nH+nF

and domestic/foreign consumption decisions depend only on relative size. As µ → 1 and

wN → 0 we approach a one-sector model with a Cobb-Douglas utility function Ct(r) =

CT,t(r) = w−w(1 − w)−(1−w)CH,t(r)
wCF,t(r)

1−w as in Clarida et al. (2002b).

If PH,t(f), PF,t(f) are the prices in domestic currency of the good produced by firm

f in the relevant bloc, then the optimal intra-temporal decisions are given by standard

results:

CH,t(r, f) =

(

PH,t(f)

PH,t

)

−ζT

CH,t(r) ; CF,t(r, f) =

(

PF,t(f)

PF,t

)

−ζT

CF,t(r) (10)

CH,t(r) = w

(

PH,t

PT,t

)

−µT

CT,t(r) ; CF,t(r) = (1 − w)

(

PF,t

PT,t

)

−µT

CT,t(r) (11)

CN,t(r) = wN

(

PN,t

Pt

)

−µ

Ct(r) ; CT,t(r) = (1 − wN )

(

PT,t

Pt

)

−µ

Ct(r) (12)

where aggregate price indices for domestic and foreign consumption bundles of traded

goods, and for consumption of non-traded goods are given by, respectively,

PH,t =





1

nH

nH
∑

f=1

PH,t(f)1−ζT





1

1−ζT

(13)

PF,t =





1

nF

nF
∑

f=1

PF,t(f)1−ζT





1

1−ζT

(14)

PN,t =





1

nN

nN
∑

f=1

PN,t(f)1−ζN





1

1−ζN

(15)

8The effect of home bias in open economies is also studied in Corsetti et al. (2002) and De Fiore and

Liu (2002).
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and the aggregate price indices PT,t and Pt are given by

PT,t = UROW,t

[

w(PH,t)
1−µT + (1 − w)(PF,t)

1−µT
]

1

1−µT (16)

Pt =
[

wN (PN,t)
1−µ + (1 − wN )(PT,t)

1−µ
]

1

1−µ (17)

where UROW,t is a price shock arising from trade with the rest of the world. Aggregate

nominal consumption is then given by

PtCt = PT,tCT,t + PN,tCN,t = PH,tCH,t + PF,tCF,t + PN,tCN,t (18)

We now need to distinguish between the pricing decisions of PCP and LCP firms. Let

a proportion θ of home firms export their goods as PCPs and the remaining proportion

1 − θ as LCPs. Similarly a proportion of foreign firms θ∗ are PCPs and 1 − θ are LCPs.

Let the average prices of these categories of firms are given respectively by

P p
F,t =





1

θ∗nF

θ∗nF
∑

f=1

PF,t(f)1−ζT





1

1−ζT

(19)

P ℓ
F,t =





1

(1 − θ∗)nF

(1−θ∗)nF
∑

f=1

PF,t(f)1−ζT





1

1−ζT

(20)

Then we have that

PF,t =
[

θ∗(P p
F,t)

1−ζT + (1 − θ∗)(P ℓ
F,t)

1−ζT

]
1

1−ζT (21)

The existence of a distributors of imports and local currency pricing means that the

law of one price does not hold i.e. aggregate prices of traded goods in home and foreign

blocs are linked by ΦH,t =
StP ∗

H,t

PH,t
6= 1 and ΦF,t =

StP ∗

F,t

PF,t
6= 1 necessarily, where P ∗

H,t and

P ∗

F,t are the foreign currency prices of the home and foreign-produced goods and St is the

nominal exchange rate. Let

P ∗

T,t = UROW,t =
[

w∗(P ∗

F,t)
1−µ∗

+ (1 − w∗)(P ∗

H,t)
1−µ∗

] 1

1−µ∗

(22)

be the foreign aggregate traded price index corresponding to (16). Then it follows that

aggregate relative traded prices
StP ∗

T,t

PT,t
, the ‘real exchange rate’ for traded goods, and the

terms of trade, defined as the domestic currency relative price of imports to exports,

Tt =
PF,t

PH,t
, are related by the relationship

RERT,t ≡
StP

∗

T,t

PT,t
=

[

w∗(ΦF,tT )1−µ∗

+ (1 − w∗)Φ1−µ∗

H,t

]
1

1−µ∗

[

w + (1 − w)T 1−µ
t

]
1

1−µ

(23)
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Thus if the law of one price holds for differentiated goods; i.e., ΦH,t = ΦF,t = 1, and µ = µ∗,

then the law of one price applies to the aggregate traded price indices iff w∗ = 1−w. The

latter condition holds if there is no home bias. If there is home bias, the real exchange

rate depreciates (
StP ∗

T,t

PT,t
rises) as the terms of trade improves.

For later use we require the the CPI real exchange rate RERt ≡
StP ∗

t

Pt
. The two real

exchange rates are related as follows. Let Nt =
PN,t

PT,t
be the relative price of non-traded

to traded goods in the home bloc with an analogous definition of N ∗

t for the foreign bloc.

Then

RERT,t =
RERt

P ∗

T,t

P ∗

t

PT,t

Pt

=
RERt

[

wNN 1−µ
t + 1 − wN

]
1

1−µ

[

w∗

N (N ∗

t )1−µ∗

+ 1 − w∗

N

]
1

1−µ∗

(24)

Now consider the consumption, money demand and labour supply decisions of the

representative household. We first consider the case of flexible wages. Then maximizing

(58) subject to (2) and (3), treating habit as exogenous, and imposing symmetry on

households (so that Ct(r) = Ct, etc) yields standard results:

Qt,t+1 = β
MUC

t+1

MUC
t

Pt

Pt+1
(25)

MUM
t = MUC

t

[

It

1 + It

]

(26)

Wt(1 − Tt)

Pt
= −

1
(

1 − 1
η

)

MUL
t

MUC
t

≡
1

(

1 − 1
η

)MRSt (27)

where MUC
t , MUM

t and −MUL
t are the marginal utility of consumption, money holdings

and the marginal disutility of work respectively. Taking expectations of (25) we arrive at

the following familiar Keynes-Ramsey rule:

1 = β(1 + It)Et

[

MUC
t+1

MUC
t

Pt

Pt+1

]

(28)

In (26), the demand for money balances depends positively on consumption relative to

habit and negatively on the nominal interest rate. Given the central bank’s setting of the

latter and ignoring seignorage in the government budget constraint, (26) is completely

recursive to the rest of the system describing our macro-model and will be ignored in the

rest of the paper. In (27) the real disposable wage is proportional to the marginal rate

of substitution between consumption and leisure, −
MUN

t

MUC
t

, this constant of proportionality

reflecting the market power of households that arises from their monopolistic supply of a

differentiated factor input with elasticity η.
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2.2 Domestic Producers

In the domestic goods non-traded and trade sectors, each good differentiated good f is

produced by a single firm f using only differentiated labour with another constant returns

CES technology:

Yi,t(f) = Ai
t

[

(

1

ν

) 1

η
ν
∑

r=1

Li,t(f, r)(η−1)/η

]η/(η−1)

≡ Ai,tLi,t(f) ; i = N,T (29)

where Li,t(f, r) is the labour input of type r by firm f in sector i and Ai,t is an exogenous

shock capturing shifts to trend total factor productivity in this sector. Minimizing costs
∑ν

f=1 Wt(r)Lt(f, r) gives the demand for each household’s labour by firm f as

Li,t(f, r) =

(

Wt(r)

Wt

)

−η

Li,t(f) ; i = N,T (30)

and aggregating over firms leads to the demand for labor as shown in (3).9 Per capita

aggregate outputs in the home bloc is given by

Yi,t = Ai,tLi,t ; i = N,T (31)

where Yi,t and Li,t are aggregated as for consumption aggregates CN,t(r) and CH,t(r) in

(5) and (7), respectively.

In a equilibrium of equal households, all wages adjust to the same level Wt. For later

analysis it is useful to define the real marginal cost (MC) as the wage relative to domestic

producer price. Using (27) and (31) this can be written as

MCT,t ≡
Wt

AT,tPH,t
=

ηUL,t

(η − 1)(1 − Tt)AT,t
Lφ

t (Ct − HC,t)
σ

(

Pt

PH,t

)

(32)

MCN,t ≡
Wt

AN,tPN,t
=

ηUL,t

(η − 1)(1 − Tt)AN,t
Lφ

t (Ct − HC,t)
σ

(

Pt

PN,t

)

(33)

for the traded and non-traded sectors respectively.

Turning to price-setting in the traded sector, we assume that there is a probability

of 1 − ξH at each period that the price of each good f is set optimally to P̂H,t(f). If

the price is not re-optimized, then it is indexed to last period’s aggregate producer price

inflation.10 With indexation parameter γH ≥ 0, this implies that successive prices with no

9Note that in a symmetric equilibrium of identical firms and households, total demand for labour of type

r by firms in the traded sector is LT,t(r) =
∑nH

f=1
LT,t(f, r). Hence LT,t =

∑nH

f=1
LT,t(f) =

∑nH

r=1
LT,t(r),

nHLT,t(f) = νLT,t(r). Similarly nNLN,t(f) = νLN,t(r). Such a symmetric equilibrium applies to the

flexi-price case of our model, but not to the sticky-price case where, at each point in time, some firms are

locked into price and wage contracts, but others are re-optimizing these contracts.
10Thus we can interpret 1

1−ξH
as the average duration for which prices are left unchanged.
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re-optimization are given by P̂H,t(f), P̂H,t(f)
(

PH,t

PH,t−1

)γH

, P̂H,t(f)
(

PH,t+1

PH,t−1

)γH

, ... . For

each producer f the objective is at time t to choose P̂H,t(f) to maximize discounted

profits

Et

∞
∑

k=0

ξk
HQt,t+kYT,t+k(f)

[

P̂H,t(f)

(

PH,t+k−1

PH,t−1

)γH

− PH,t+kMCT,t+k

]

(34)

where Qt,t+k is the discount factor over the interval [t, t + k], subject to a common11

downward sloping demand from domestic consumers and foreign importers of elasticity ζT

as in (10). The solution to this is

Et

∞
∑

k=0

ξk
HQt,t+kYT,t+k(f)

[

P̂H,t(f)

(

PH,t+k−1

PH,t−1

)γH

−
ζT

(ζT − 1)
PH,t+kMCT,t+k

]

= 0 (35)

and by the law of large numbers the evolution of the price index is given by

P 1−ζT

H,t+1 = ξH

(

PH,t

(

PH,t

PH,t−1

)γH
)1−ζT

+ (1 − ξH)(P̂H,t+1(f))1−ζT (36)

Similarly for the non-traded sector we have

Et

∞
∑

k=0

ξk
HQt,t+kYT,t+k(f)

[

P̂N,t(f)

(

PN,t+k−1

PH,t−1

)γN

−
ζN

(ζN − 1)
PN,t+kMCN,t+k

]

= 0 (37)

and

P 1−ζN

N,t+1 = ξN

(

PN,t

(

PN,t

PN,t−1

)γN
)1−ζN

+ (1 − ξN )(P̂N,t+1(f))1−ζN (38)

2.3 Exchange Rate Pass-Through

The home bloc consumer purchases imported goods either via distributors who import

foreign differentiated goods for which the law of one price holds, or directly from the

producer. The first range of varieties produced by the PCP foreign firms have aggregate

price P p
F,t given by (19) and the second range produced by LCP firms P ℓ

F,t given by (20).

2.3.1 PCP Importers

For good f imported by the home bloc from PCP foreign firms the price P p
F,t(f), set by

retailers, is given by P p
F,t(f) = StP

∗

F,t(f). Similarly P ∗ p
H,t(f) =

PH,t(f)
St

.

11Note that we impose a symmetry condition ζT = ζ∗

T ; i.e., the elasticity of substitution between differ-

entiated goods produced in any one bloc is the same for consumers in both blocs.
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2.3.2 LCP Exporters

Price setting in export markets by domestic LCP exporters follows is a very similar fashion

to domestic pricing. Note that non-optimized prices are indexed to last period’s aggregate

imported price inflation in the LCP distribution sector. The optimal price in units of

domestic currency is P̂ ℓ
H,tSt, costs are as for domestically marketed goods so (35) and (36)

become

Et

∞
∑

k=0

ξk
HQt,t+kY

∗

T,t+k(f)



P̂H,t(f)∗ ℓSt+k

(

P ∗ ℓ
H,t+k−1

P ∗ ℓ
H,t−1

)γ∗

H
ℓ

−
ζT

(ζT − 1)
PH,t+kMCT,t+k



 = 0

(39)

and by the law of large numbers the evolution of the price index is given by

(P ∗ ℓ
H,t+1)

1−ζT = ξH



P ∗ ℓ
H,t

(

P ∗ ℓ
H,t

P ∗ ℓ
H,t−1

)γ∗

H
ℓ




1−ζT

+ (1 − ξH)(P̂ ∗ ℓ
H,t+1(f))1−ζT (40)

Price setting of P ℓ
F by foreign LCP exporters follows in an analogous way. Table 1

summarizes the notation used.

Origin of Good Domestic Market Export Market (PCP) Export Market(LCP)

Home PH P ∗ p
H = PH

St
P ∗ ℓ

H 6= PH

St

Foreign P ∗

F P p
F = StP

∗

F P ℓ
F 6= StP

∗

F

Table 1. Notation for Prices

2.4 Staggered Wage-Setting

We introduce wage stickiness in an analogous way. There is a probability 1− ξW that the

wage rate of a household of type r is set optimally at Ŵt(r). If the wage is not re-optimized

then it is indexed to last period’s CPI inflation. With a wage indexation parameter

γW the wage rate trajectory with no re-optimization is given by Ŵt(r), Ŵt(r)
(

Pt

Pt−1

)γW

,

Ŵt(r)
(

Pt+1

Pt−1

)γW

, · · ·. The household of type r at time t then chooses W 0
t (r) to maximize

Et

∞
∑

k=0

(ξwβ)k
[

Ŵt(r)(1 − Tt+k)

(

Pt+k−1

Pt−1

)γw

Lt+k(r)Λt+k(r) + Lt+k(r)MUL
t+k(r)

]

(41)
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where Λt(r) =
MUC

t (r)
Pt

is the real marginal utility of consumption income and Lt(r) is

given by (3). The first-order condition for this problem is

Et

∞
∑

k=0

(ξwβ)k W η
t+k

(

Pt+k−1

Pt−1

)

−γwη

Lt+kΛt+k(r)
[

Ŵt(r)(1 − Tt+k)

(

Pt+k−1

Pt−1

)γw

−
1

(1 − 1
η )

Pt+kMRSt+k(r)
]

= 0 (42)

Note that as ξw → 0 and wages become perfectly flexible, only the first term in the

summation in (41) counts and we then have the result (27) obtained previously. By

analogy with (36), by the law of large numbers the evolution of the wage index is given by

W 1−η
t+1 = ξw

(

Wt

(

Pt

Pt−1

)γw
)1−η

+ (1 − ξw)(Ŵt+1(r))
1−η (43)

2.5 The Equilibrium

In equilibrium, goods markets, money markets and the bond market all clear. Equating the

supply and demand of the home consumer good and assuming that exogenous government

expenditure goes exclusively on non-traded goods we obtain

YT,t = CH,t +
ν∗

ν
C∗

H,t (44)

YN,t = CN,t + Gt (45)

Lt = LT,t + LN,t (46)

Fiscal policy is rudimentary: a balanced government budget constraint12

PN,tGt + TRt = Tt(PH,tCH,t +
ν∗

ν
StP

∗

H,tC
∗

H,t + PN,tYN,t) ≡ Tt GDPt (47)

where GDPt is nominal GDP, completes the model. As in Coenen et al. (2005) we further

assume that changes in government spending are financed exclusively by changes in lump-

sum taxes with the tax rates Tt, held constant at its steady-state value.

Given nominal interest rates It, I
∗

t the money supply is fixed by the central banks to

accommodate money demand. By Walras’ Law we can dispense with the bond market

equilibrium condition. Then the equilibrium is defined at t = 0 as stochastic sequences

Ct, CHt, CFt, CN,t, PHt, PN,t, PFt, Pt, Mt, Wt, YH,t, YN,t, Lt, LN,t, LT,t, P 0
Ht, 16 foreign

12In this cashless economy, we ignore seignorage and consistent with this we later ignore the utility from

money balances in the household welfare function.
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counterparts C∗

t , etc, RERt, RERT,t, Nt and Tt, given past price indices and exogenous

processes UC,t, UM,t, UL,t, AN,t, AT,t, TRt, Gt and foreign counterparts.

From (25) and its foreign counterpart we have

Qt,t+1 = β
MUC

t+1

MUC
t

Pt

Pt+1
= β

MUC ∗

t+1

MUC ∗

t

P ∗

t St

P ∗

t+1St+1
(48)

Let zt =
StP ∗

t

Pt

MUC
t

MUC ∗

t

. Then assuming identical holdings of initial wealth in the two blocs,

(48) implies that zt+1 = zt = z0 where initial relative consumption in prices denominated

in the home currency reflects different initial wealth in the two blocs. Therefore13

MUC
t

MUC ∗

t

=
z0Pt

StP ∗

t

(49)

2.6 Financial Market Incompleteness

We now modify our model to allow for incomplete financial markets, to incorporate foreign

debt dynamics without inducing non-stationarity. We assume there is no inter-bloc trade

in state-contingent bonds so that risk-sharing between blocs no longer applies. There is

however a full set of state-contingent bonds within each bloc so the marginal utilities of

consumption are equated across households at all dates and states of nature in each bloc.

Therefore we can assume a representative household for each bloc. Following Benigno

(2001) there are two risk-free one-period bonds denominated in the currencies of each

bloc, BH,t and BF,t respectively in aggregate. The prices of these bonds are given by

PB,t =
1

1 + It
(50)

P ∗

B,t =
1

(1 + I∗t )φ(
StBF,t

Pt
)

(51)

where φ(·) captures the cost in the form of a risk premium for home households to hold

foreign bonds. We assume φ(0) = 0 and φ′ < 0.

For analytical convenience only the home households can hold foreign bonds. Then

net foreign assets in the home bloc equals holdings of foreign assets, BF,t. Assuming a

13(49) is the risk-sharing condition for consumption, because it equates marginal rate of substitution

to relative price, as would be obtained if utility were being jointly maximized by a social planner (see

Sutherland (2002)). Note that (28) and (49) together imply the stochastic UIP condition (see Benigno and

Benigno (2001)).
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cashless economy, for the home bloc the household budget constraint for household r now

becomes

PtCt(r) + PB,tBH,t(r) + P ∗

B,tStBF,t(r) = (1 − Tt)Wt(r)Lt(r) + BH,t−1(r) + St−1BF,t−1(r)

+ (1 − Tt)Γt(r) + TRt (52)

Maximizing (58) subject to (52) and (3), treating habit as exogenous, and imposing sym-

metry on households as before gives the following first-order conditions for holdings of

home and foreign bonds

PB,t =
βEt

[

MUC
t+1

Pt

Pt+1

]

MUC
t

= Et[Qt,t+1] (53)

P ∗

B,t =
βEt

[

MUC
t+1

St+1Pt

StPt+1

]

MUC
t

= Et[Qt,t+1] (54)

which replaces (25). Dividing (53) by (54) gives the modified risk-sharing condition

PB,t

P ∗

B,t

=
Et

[

MUC
t+1

Pt

Pt+1

]

Et

[

MUC
t+1

St+1Pt

StPt+1

] (55)

Let
∑ν

r=1 BF,t(r) = νBF,t are the net holdings by the household sector of foreign

bonds. Summing over the household budget constraints and subtracting (47), we arrive

at the national resource identity describing the accumulation of net foreign assets

P ∗

B,tStBF,t = St−1BF,t−1 + WtLt + Γt − PtCt − PH,tGt ≡ St−1BF,t−1 + TBt (56)

where, noting that national income WtLt + Γt = GDPt, TBt = GDPt − PtCt − PN,tGt is

the trade balance. For later use we can write the trade balance, nominal exports minus

nominal imports, as

νTBt = ν∗StP
∗

H,tC
∗

H,t − νPF,tCF,t (57)

2.7 Specialization of the Utility Function

In this paper we adopt a standard form of the utility function of the form

E0

∞
∑

t=0

βtUC,t







(Ct(r) − HC,t)
1−σ

1 − σ
+ UM,t

(

Mt(r)
Pt

)1−ϕ

1 − ϕ
− UL,t

Lt(r)
1+φ

1 + φ
+ u(Gt)






(58)

where u(Gt) is the utility from exogenous per capita government spending Gt.
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Before proceeding it is informative at this point to discuss an alternative choice of

utility function is non-separable in consumption, labour effort and money balances. The

former feature allows the model to be consistent with the balanced growth path (henceforth

BGP) set out in previous sections. As pointed out in Barro and Sala-i-Martin (2004),

chapter 9, section 9.3, this requires a careful choice of the form of the utility as a function

of consumption and labour effort. Again it is achieved by a utility function which is

non-separable in these two arguments. A utility function that satisfies these requirements

takes the form:

U ≡
UC,t

[

Φ(r)1−̺t(1 − Lt(r))
̺t
]1−σ

1 − σ
(59)

where effort is measured as a proportion of a day, normalized at unity, and

̺t ≡ ̺ + εL,t (60)

Φt(r) ≡

[

aZt(r)
θ−1

θ + (1 − a)UM,t

(

Mt(r)

Pt

)
θ−1

θ

]

θ
θ−1

(61)

Zt(r) ≡

[

b(Ct(r) − HC,t)
χ−1

χ + (1 − b)G
χ−1

χ

t

]
χ

χ−1

(62)

The utility function (59) has a number of notable features. First, UC,M > 0 iff σθ > 1

in which case money holdings and consumption are complements. Second, UΦL > 0 so

that private and public consumption, and money holdings together, and leisure (equal to

(1 − Lt(r)) are substitutes. Third, it leads to a non-zero Ramsey steady-state inflation

rate. Finally, a BGP requires that the real wage and consumption grow at the same rate

at the steady state. From (27) this requires that
MUL

t

CtMUC
t

is constant at the BGP growth

steady state. The implications of this alternative form of utility function is left to further

research.

2.8 The Steady State

A deterministic zero-inflation steady state, denoted by variables without the time sub-

scripts, with Et−1(UC,t) = 1, Et−1(UL,t) = κ, a zero trade balance TB = 0 and zero net

foreign assets is given by

CH = w

(

PH

PT

)

−µT

CT (63)
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CF = (1 − w)

(

PF

P

)

−µT

CT (64)

CN = wN

(

PN

P

)

−µ

C (65)

CT = (1 − wN )

(

PT

P

)

−µ

C (66)

PC = PT CT + PNCN = PHCH + PF CF + PNCN (67)

P =
[

wNP 1−µ
H + (1 − wN )P 1−µ

T

]
1

1−µ
(68)

PT =
[

wP 1−µT

H + (1 − w)P 1−µT

F

]
1

1−µT (69)

PF =
[

θ∗(P p
F )1−ζT + (1 − θ∗)(P ℓ

F )1−ζT

]
1

1−ζT (70)

W (1 − T )

P
=

κLφ((1 − h)C)σ

1 − 1
η

(71)

1 = β(1 + I) (72)

YT = AT LT (73)

YN = ANLN (74)

L = LT + LN (75)

PN = P̂N =
W

AN

(

1 − 1
ζN

) (76)

PH = P̂H =
W

AT

(

1 − 1
ζT

) (77)

P p
F = P̂ p

F = SP ∗

F (78)

P ℓ
F = SP ∗

F (79)

ΦF =
SP ∗

F

PF
= 1 (80)

YT = CH +
ν∗

ν
C∗

H (81)

YN = CN + G (82)

T =
PHG + TR

GDP
=

PHG + TR

PC + PNG + TB
(83)

plus the 19 foreign counterparts and

N =
PN

PT
(84)

T =
PF

PT
(85)

RER =
SP ∗

P
(86)

15



RERT =

[

w∗T 1−µ∗

+ 1 − w∗
]

1

1−µ∗

[w + (1 − w)T 1−µ]
1

1−µ

(87)

νTB = ν∗SP ∗

HC∗

H − νPF CF = 0 (88)

It should be noted that in the steady state the law of one price holds for each differen-

tiated good and for aggregate traded prices. We now have gives 47 equations to determine

the steady state of 49 endogenous variables: C, CH , CF , CN , CT , P , PT , PN , W , LT , LN ,

L, R, YT , YN , PH = P̂H , PF = P̂F , ΦF , P p
F , P ℓ

F , T , 21 foreign counterparts C∗ etc, T , N ,

S, RERT and RER given G and TR.

To pin down price levels we need to re-introduce money equate money demand and

its foreign counterpart with exogenously set money supplies in the two blocs, which then

gives us a determinate steady state of the model. It is convenient to assume that money

supplies in our steady state are set so as to result in S = 1 and dispense with the money

demand equations. Furthermore, as is standard in general equilibrium models, we choose

units of output appropriately so that prices of the two non-traded goods, and those of the

traded goods in their own currencies are unity; i.e, PN = P ∗

N = PH = P ∗

F = 1. With this

normalization and the fact that the law of one price holds in the steady state, we have

that P = P p
F = P ℓ

F = PF = PT = N = T = RERT = 1. Similarly for the foreign bloc

P ∗ = P ∗ p
H = P ∗ ℓ

H = P ∗

H = P ∗

T = 1 and therefore RER = 1. Thus in the steady state we

can normalize all prices at unity, an extremely convenient property when it comes to the

linearization.14

2.9 Linearization and State-Space Representation

We now linearize around a baseline and, in general, asymmetric, steady state in which

consumption, output, employment and prices in the two blocs are constant. Then inflation

is zero. Output is then at its inefficient natural rate studied in the previous section and

the nominal rate of interest is given by (72). Define all lower case variables as proportional

deviations from this baseline steady state except for rates of change which are absolute

deviations.15

14Note that with a retail sector introducing an extra LCP mark-up, as in Monacelli (2003), PPP and

this convenient normalization of all prices no longer holds in the steady state (see Batini et al. (2005)).
15That is, for a typical variable Xt, xt = Xt−X

X
≃ log

(

Xt

X

)

where X is the baseline steady state. For

variables expressing a rate of change over time such as rt and πt, xt = Xt − X. Levine et al. (2007a)
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The whole model can now be written in state space form as





zt+1

Etxt+1



 = A





zt

xt



+ Bot + C





it

i∗t



+ Dǫt+1 (89)

Fot = H





zt

xt



 (90)

where zt is a vector of predetermined variables and xt is a vector of non-predetermined or

‘jump’ variables.

3 Calibration and Estimation

3.1 Econometric Strategy

Traditionally, DSGE models are calibrated such that certain theoretical moments given

by the model match as closely as possible their empirical counterparts.16 However, this

method lacks formal statistical foundations (Kim and Pagan, 1994)) and makes testing

the results difficult.17

Following Sargent (1989), and preceding the Bayesian literature, the common praxis

was to estimate DSGE models with maximum-likelihood (ML). For instance Kim and

Pagan (1994) analyzes the effects of taxation in an estimated business cycle model and

Leeper and Sims (1994) and Kim (2000) estimated DSGE models for the analysis of

monetary policy. Well known problems arising with this method are that parameters take

on corner solutions or implausible values, and that the likelihood function may be flat in

some dimensions. GMM estimation is a popular alternative for estimating intertemporal

models (see (Gaĺı and Gertler, 1999)) . However , Christiano and Haan (1996) has shown

by estimating a business cycle model on U.S. data that GMM estimators often do not

have the distributions implied by asymptotic theory. In addition, Lindé (2005) finds that

parameters in a simple New Keynesian model are likely to be estimated imprecisely and

with bias.

provide full details of this linearization.
16For an overview see Favero (2001).
17See, however, Canova and Ortega (2000) for a discussion on how testing in calibrated DSGE models

could be conducted.
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The Bayesian approach taken in this paper follows work by DeJong et al. (2000b,a),

Otrok (2001), and Smets and Wouters (2003b). There are by now numerous applications

of the approach, for example Adolfson et al. (2005), Adolfson et al. (2007), Justiniano and

Preston (2004), Lubik and Schorfheide (2004) and Rabanal and Rubio-Ramı́rez (2005),

and can be seen as a combination of likelihood methods and the calibration methodology.

Bayesian analysis allows formally incorporating uncertainty and prior information regard-

ing the parametrization of the model by combining the likelihood with a prior density for

the parameters of interest. The moments of the prior density can be based on results from

earlier microeconometric or macroeconometric studies, that is appropriate values could be

employed as the means or modes of the prior density, while a priori uncertainty can be

expressed by choosing the appropriate prior variance. For example, the restriction that

AR(1)-coefficients lie within the unit interval can be implemented by choosing a prior

density that covers only that interval, such as a truncated normal or a beta density. This

strategy may help to mitigate numerical problems stemming e.g. from a flat likelihood

function as estimates of the maximum likelihood are pulled towards values that the re-

searcher would consider sensible a priori. This effect will be stronger when the data carry

little information about a certain parameter, that is the likelihood is relatively flat whereas

the effect will only be moderate when the likelihood is very peaked.

By Bayes’ theorem, the posterior density ϕ(ξ | Y ) is related to prior and likelihood as

follows

ϕ(ξ | Y ) =
f(Y | ξ)π(ξ)

f(Y )
∝ f(Y | ξ)π(ξ) = L(ξ | Y )π(ξ),

where π(ξ) denotes the prior density of the parameter vector ξ, L(ξ | Y ) ≡ f(Y | ξ) is

the likelihood of the sample Y and f(Y ) =
∫

f(Y | ξ)π(ξ)dξ is the unconditional sample

density. The unconditional sample density does not depend on the unknown parameters

and consequently serves only as a proportionality factor that can be neglected for estima-

tion purposes. In this context it becomes clear that the main difference between ‘classical’

and Bayesian statistics is a matter of conditioning. Likelihood-based non-Bayesian meth-

ods condition on the unknown parameters ξ and compare f(Y | ξ) with the observed

data. Bayesian methods condition on the observed data and use the full distribution

f(ξ, Y ) = f(Y | ξ)π(ξ) and require specification of a prior density π(ξ).

Computation of the posterior distribution ϕ(ξ | Y ) requires calculating the likelihood
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and then multiplying by the prior density. The likelihood function can be computed

with the Kalman filter using the state-space representation of the solution to the rational

expectations model.

We proceed in two steps: Parameters that are not identified or difficult to estimate

are calibrated based on earlier studies, evidence from micro data or where applicable on

sample averages. The other model parameters are estimated using the Bayesian approach.

following, by now, well-known work of DeJong et al. (2000a,b), Otrok (2001), Smets and

Wouters (2003c, 2004), and in particular for the open economy by Adolfson et al. (2004).18

This allows us to express our subjective believes about these parameters in a statistical

coherent way and update them with the data used. Further, due to the complexity of the

model we first estimate a version of the model where all goods are traded thus eliciting a

prior for the full model with traded and non-traded goods.

We estimate these models on a set of 15 time series: real GDP, real consumption

expenditure, hours worked, the GDP-deflator, consumer prices, nominal wages, nominal

interest rates and the euro-dollar exchange rate, where we take the euro area as the home

country and express the exchange rate in euros per dollar, so that a rising exchange rate

implies a depreciation of the euro. The real variables are expressed in per capita terms. We

use data from 1980q1 to 2005q4, where the first four years are used to initialize the state of

the Kalman filter. For the US the data stems from the Federal Reserve Bank of St. Louis

database (FRED), worked hours and hourly compensation have been retrieved from the

Bureau of Labour Statistics. For the euro area the data is taken from the ECB database

first compiled by Fagan et al. (2001). The exchange rate is obtained from EcoWinPro.

For the euro area there is no long time series on worked hours available. We use

employment instead and add the following measurement equation to the system

emplt = emplt−1 + Etemplt+1 − emplt +
(1 − βξe)(1 − ξe)

ξe
(nt − emplt),

where empl denotes employment. The idea is that employment reacts more sluggishly in

response to macroeconomic shocks than hours worked

The data is pre-filtered such that we remove means and linear trends in order to obtain

stationary series. However, the exchange rate is measured in first differences.

18See also Justiniano and Preston (2004) and Rabanal and Tuesta (2006).
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3.2 Calibrated Parameters

The set of parameters is split into a set of calibrated parameters that are difficult to

estimate because they are linked to steady state conditions or because we think that we

have very good a priori information about them, e.g. the Calvo contract lengths. The other

set contains estimated parameters mainly pertaining to model dynamics and stochastic

properties.

We discuss the set of calibrated parameters in turn. The discount factor is assumed to

be equal across blocs and set to 0.99. We calibrate the relative size of the blocs according to

average relative population size in the euro area and U.S over the years 2001 to 2006. This

implies that EMU makes up about 51% of the population in both blocs. The substitution

elasticity between different kinds of labour is set to 3 for both blocs. The import shares of

traded consumption goods are set to 0.10 in the euro area, taken from the new area wide

model and 0.09 for the US, taken from the Federal Reserve Board model, SIGMA . The

share of labour traded used for production of non-traded goods is set to 0.34 in the euro

area and 0.28 in the U.S.-bloc. Further we assume that 80% of all goods, be they traded

or non-traded, are going to consumption.

As regards price setting we choose to set all Calvo contract lengths to four quarters

but estimate the degree of indexation. However due to possible identification problems

we assume that all firms, i.e. PCP- and LCP-firms, apply the same degree of indexation

in each bloc. We also assume that price setters in each bloc are hit by the same markup

shocks.

Consumption and labour supply elasticities are calibrated as well and set σ = σ∗ = ϕ =

ϕ∗ = 2. The substitution elasticities between traded and non-traded goods are calibrated

to 1.5 and the substitution elasticities between home and foreign traded goods are set to

2 in each bloc respectively. Finally, as the first difference of the real exchange rate turned

out to be very persistent we calibrated this value to 0.99.

3.3 Priors

We have 50 remaining parameters to estimate and assume a priori that the parameters are

independent of each other and apply the following general convention. For all parameters

that should lie in the unit interval a beta density is chosen as a prior. For the standard
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deviations of the innovations we choose fairly uninformative inverted gamma densities

and for the remaining parameters we formulate our subjective beliefs about location and

uncertainty in terms of normal densities. For a full overview see the column ´prior’ in

Tables 1 to 3 below.

3.4 Results

The results in Tables 1 to 3 are obtained from maximizing the posterior mode as well as

calculating the mean from 500 000 Metropolis-Hastings simulations to approximate the

posterior density. Overall differences between the two blocs are not big, though there

are notable differences. We note that price indexation for traded goods does not play an

important role whereas it is more important for price indexation for non-traded goods

with a much higher value in the euro area. This is also the case for wage indexation in

the euro areas vs the U.S. Across both blocs it turns out that the fraction of PCP-price

setters is very small, only about 1% of the firms set prices in the producer currency.

The notable differences between the two blocs are as follows: consumption habit in the

US is far higher than for EMU pointing to a higher degree of output persistence in that

bloc. By contrast indexation in the non-traded sector and for wages is far higher EMU

indicating a higher degree of non-traded goods inflation and wages in that bloc. All shocks

are very persistent with small differences between blocs. The most important supply-side

shocks in terms of the standard deviation of the white noise components are for labour

supply, non-traded goods technology, and the mark-up in the non-traded sector. For all

these shocks EMU is more volatile than the US. Most of the other parameters estimates

are relatively similar across blocs. Taken as a whole the differences between the two blocs

suggest a stronger role for stabilization in EMU than the US.
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Structural Parameters Prior Posterior

Parameter Type Mean Std Mode Mean 5/95% Interval

Calvo employment EMU ξe beta 0.750 0.100 0.727 0.735 0.697 0.770

Indexation PCP/LCP EMU γH beta 0.500 0.150 0.047 0.058 0.023 0.107

Indexation PCP/LCP US γℓ∗
H beta 0.500 0.150 0.095 0.113 0.047 0.204

Indexation wage setters EMU γW beta 0.500 0.150 0.529 0.402 0.208 0.600

Indexation wage setters US γ∗

W beta 0.500 0.150 0.267 0.373 0.181 0.583

Indexation nontraded goods EMU γN beta 0.500 0.150 0.739 0.615 0.361 0.821

Indexation nontraded goods US γ∗

N beta 0.500 0.150 0.305 0.360 0.164 0.586

Habit EMU h beta 0.500 0.150 0.455 0.475 0.372 0.579

Habit US h∗ beta 0.500 0.150 0.670 0.657 0.551 0.766

PCP-fraction EMU θ beta 0.500 0.200 0.012 0.018 0.004 0.039

PCP-fraction US θ∗ beta 0.500 0.200 0.014 0.024 0.006 0.050

Taylor rule inflation EMU fπ norm 1.500 0.200 1.682 1.517 1.235 1.839

Taylor rule output EMU fy norm 0.500 0.200 0.518 0.229 0.043 0.560

Taylor rule interest rate EMU fr beta 0.700 0.200 0.842 0.871 0.836 0.900

Taylor rule inflation US f∗

π norm 1.500 0.200 1.201 1.495 1.225 1.772

Taylor rule output US f∗

y norm 0.500 0.200 0.488 0.525 0.359 0.731

Taylor rule lagged interest rate US f∗

r beta 0.700 0.200 0.819 0.814 0.756 0.866

Table 1. Structural Parameters

Shock processes - Persistence Prior Posterior

Parameter Type Mean Std Mode Mean 5/95% Interval

Cons. preference EMU ρc beta 0.850 0.100 0.880 0.900 0.849 0.938

Cons. preference US ρ∗c beta 0.850 0.100 0.843 0.842 0.734 0.915

Labour supply EMU ρL beta 0.850 0.100 0.952 0.950 0.923 0.976

Labour supply US ρ∗L beta 0.850 0.050 0.928 0.857 0.691 0.956

Techn. traded goods EMU ρaT
beta 0.850 0.100 0.909 0.914 0.854 0.992

Techn. traded goods US ρ∗aT
beta 0.850 0.100 0.977 0.976 0.955 0.993

Techn. nontraded goods EMU ρaN
beta 0.850 0.100 0.997 0.989 0.973 0.998

Techn. nontraded goods US ρ∗aN
beta 0.850 0.100 0.937 0.935 0.892 0.974

Government expenditure EMU ρg beta 0.850 0.100 0.940 0.945 0.910 0.974

Government expenditure US ρ∗g beta 0.850 0.100 0.980 0.978 0.957 0.994

ROW oil ρROW beta 0.850 0.100 0.837 0.870 0.768 0.949

Table 2. Persistence of Shocks
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Prior Posterior

Parameter Type Mean Dof Mode Mean Interval

Cons pref EMU ǫC invg 0.670 4.000 0.421 0.434 0.354 0.527

Cons pref US ǫ∗C invg 0.670 4.000 0.457 0.475 0.384 0.586

Labour pref EMU ǫL invg 3.000 4.000 2.325 2.530 1.848 3.341

Labour pref US ǫ∗L invg 3.000 4.000 1.425 1.756 1.035 2.765

Tech. traded goods EMU ǫaT
invg 0.600 4.000 0.256 0.317 0.175 0.552

Tech. traded goods US ǫ∗aT
invg 0.600 4.000 0.329 0.486 0.207 0.914

Tech. nontraded goods EMU ǫaN
invg 0.600 4.000 0.840 0.928 0.749 1.133

Tech. nontraded goods US ǫ∗aN
invg 0.600 4.000 0.660 0.653 0.557 0.750

Gov exp EMU ǫG invg 2.000 4.000 2.388 2.511 2.007 3.014

Gov exp US ǫ∗G invg 2.000 4.000 4.095 4.180 3.664 4.790

Oil shock ROW ǫROW invg 0.300 4.000 0.278 0.268 0.201 0.334

Wage markup EMU ǫW invg 0.500 4.000 0.122 0.141 0.119 0.164

Wage markup US ǫ∗W invg 0.500 4.000 0.232 0.235 0.207 0.267

Risk premium ǫE invg 1.400 4.000 0.368 0.381 0.332 0.434

Monetary policy EMU ǫR invg 0.200 4.000 0.092 0.166 0.064 0.432

Monetary policy US ǫ∗R invg 0.200 4.000 0.092 0.178 0.066 0.459

Markup traded goods EMU ǫπH
invg 0.500 4.000 0.180 0.178 0.139 0.220

Markup traded goods US ǫ∗πF
invg 2.000 4.000 0.321 0.306 0.263 0.354

Markup nontraded goods EMU ǫπN
invg 0.500 4.000 0.398 0.416 0.360 0.482

Markup nontraded goods US ǫ∗πN
invg 0.500 4.000 0.264 0.276 0.160 0.414

Correlation between techn. σaT a∗

T
norm 0.740 0.200 0.707 0.691 0.440 0.935

Table 3. Standard Deviations of Shocks

4 LQ Approximation and Equilibrium Concepts

We focus exclusively on monetary policy where the monetary authorities can commit.19

We consider one or two Ramsey planners, for the cooperative and non-cooperative prob-

lems respectively, choosing monetary instruments to maximize household welfare in an

environment consisting of a decentralized economy with possibly large distortions in the

19Levine and Pearlman (2007) consider further discretionary equilibria where commitment to the private

sector is not possible.
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zero-inflation steady state. As shown in Levine et al. (2007b), the procedure for achieving

an accurate LQ approximation for each optimization problem is as follows20:

1. Define the optimization problem for the Ramsey planner. For the cooperation this

is a standard problem. For non-cooperative games we need to define the appropriate

equilibrium concept. Our ultimate aim is to obtain an accurate quadratic approx-

imation of welfare for the state-space representation of the game, (89) and (90).

Since interest-rates are given in this representation, we choose an open-loop Nash

equilibrium in interest-rate paths for the purposes of the approximation.

2. Set out the deterministic non-linear form of each Ramsey problem, to maximize the

representative agents utility subject to non-linear dynamic constraints.

3. Write down the single Lagrangian for the cooperative problem, and the Lagrangians

for the two blocs for the non-cooperative problem. For the cooperative problem it is

assumed that the single Ramsey planner maximizes a weighted sum of the expected

utilities of the representative households in the two blocs using population ratios

as the weights. Associated with each Lagrangian is a Hamiltonian consisting of the

utility and a sum of all appropriately expressed constraints for the decentralized

economy time multipliers.

4. Calculate the first order conditions. We do not require the initial conditions for

an optimum since we ultimately only need the steady-state about which we are

approximating.

5. Calculate the steady state of the first-order conditions. The terminal condition

implied by this procedure is that the system converges to this steady state.

6. Calculate a second-order Taylor series approximation, about the steady state, of the

Hamiltonian associated with the Lagrangian or Lagrangians in 3.

7. Calculate a first-order Taylor series approximation, about the steady state, of the

first-order conditions and the original constraints.

20MATLAB software to implement this procedure is in preparation and will be available on request from

the authors.
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8. Use 5. to eliminate the steady-state Lagrangian multipliers in 6. By appropriate

elimination both the Hamiltonian and the constraints can be expressed in minimal

form.

To be more specific, let us consider the general deterministic dynamic programming

problem for an individual policymaker:

max

∞
∑

t=0

βt[U(Xt−1,Wt) s.t. Xt = f(Xt−1,Wt) (91)

where Xt and Wt are vectors of state vector and instrument respectively, which has a

Lagrangian L given by

L =

∞
∑

t=0

βt[U(Xt−1,Wt) − λT
t (Xt − f(Xt−1,Wt))] (92)

If the solution to this problem tends to a steady state, it is easy to show that this steady

state {X̄, W̄ , λ̄} satisfies the steady-state first-order conditions:

UW + λT
t fW = 0 UX −

1

β
λ̄T + λ̄T fX = 0 (93)

If we now expand (92) about the steady state, then all first-order terms are zero, while

the second order terms are given by

∆L =

∞
∑

t=0

βt[∇2H − ∆λT
t (∆Xt − ∆f(Xt−1,Wt))] (94)

where ∇2H is the second-order expansion of H = U + λ̄T f . This corresponds to the

problem

max

∞
∑

t=0

βt∇2H s.t. ∆Xt = ∆f(Xt−1,Wt) (95)

which is what we think of as the LQ approximation.

In fact, the set of nonlinear constraints are slightly more complicated than this, in

that the lead terms may be a function of several lead terms, and there are also static

relationship. Thus for example, the nonlinear equations that define the domestic inflation

rate πH,t are given by

Ht = βξH,tΠ
ζ−1
H,t+1,tΠ

γH(1−ζ)
H,t Ht+1,t + (CH,t + Cp∗

H,t)e
UCt(Ct − hCCt−1)

−σ(PH,t/Pt) (96)

Λt = βξH,tΠ
ζ
H,t+1,tΠ

−γHζ
H,t Λt+1,t + (CH,t + Cp∗

H,t)e
UCt(Ct − hCCt−1)

−σ WRte
−At

(1 − 1/ζ)
(97)
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QtHt = Λt 1 = ξHΠζ−1
H,t Π

γH(1−ζ)
H,t−1 + (1 − ξH)Q1−ζ

t (98)

where ΠH,t is the gross inflation rate, and Ht,Λt, Qt are defining variables that are elim-

inated from the linear approximation. However, the basic approach outlined above is

essentially unchanged other than to include both the static equations and terms like

βξH,tΠ
ζ−1
H,t+1,tΠ

γH(1−ζ)
H,t Ht+1,t in the Hamiltonian.

This then gives us the accurate LQ approximation of the original non-linear optimiza-

tion problem in the form of a minimal linear state-space representation of the constraints

and a quadratic form of the utility expressed in terms of the states. The quadratic form of

the utility function obtained for the cooperative Ramsey planners is then appropriate for

cooperative LQ games irrespective of the monetary instrument, although we use interest

rates as the instrument. For the non-cooperative problem, where there is more than one

policymaker, we obtain an analogous LQ approximation; in this case, each policymaker

has its own set of steady state Lagrange multipliers, so the the quadratic approximations

to the utility functions differ not merely due to the differing objectives of the two poli-

cymakers but also because of the different weights on the constraints. These quadratic

approximations obtained for the non-cooperative Ramsey planners are then appropriate

for for non-cooperative LQ games.

For the non-cooperative problem, for the home and foreign blocs we then arrive at the

approximations

Ω0 =
1

2
Et

∞
∑

t=0

βt[y′tQyt] (99)

Ω∗

0 =
1

2
Et

∞
∑

t=0

βt[y′tQ
∗
yt] (100)

whilst for the cooperative problem we have

ΩC
0 =

1

2
Et

∞
∑

t=0

βt[y′tQ
C
yt] (101)

Letting the population weights be [ω, 1 − ω], it is important to note that in general the

cooperative loss function is not a simple linear sum of the non-cooperative ones as is

commonly assumed in the literature; i.e.,

ΩC
0 6= ωΩ0 + (1 − ω)Ω∗

0 (102)
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To get some idea about the objectives of the policymakers from the perspective of

the LQ approximation, we can examine the elements of the square matrix that multiplies

percentage deviations of the variables from their steady-state values. Given that this is

a 49 × 49 matrix, it is more useful to gain some idea of the policy tradeoffs by listing

the largest diagonal elements; we present these as positive numbers so as to represent wel-

fare losses. Since EMU and the US have approximately equal populations, we put ω = 0.5.

Weight on Coop Non-Coop Euro Non-Coop US

c 4 8 -1

c∗ 14 -3 30

π 156 249 24

π∗ 184 36 306

πH 11 21 2

π∗

F 16 3 28

πN 33 74 -4

π∗

N 61 5 112

wr − wr−1 145 256 34

wr∗ − wr∗
−1 184 43 326

πF 24 29 98

π∗

H -63 26 16

πp
F 17 22 23

πp∗
H -47 19 12

Table 4. Largest weights on squares of variables under cooperation, and for

each bloc under non-cooperation

As can seen from this table, the weights on consumption deviations are easily outweighed

by those on inflation, and particularly by CPI inflation and real wage inflation. Also note

in this table that the weights under cooperation are not equal to the average of those

under non-cooperation as noted in (102). Given the heavy weighting of inflation and real

wage inflation, one would expect that an interest-rate rule based on one or both of these

is likely to be very effective at stabilizing welfare.
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We can now define the three LQ games and equilibria used in the rest of the paper:

Optimal Policy: Cooperation with Commitment: OPTCC

A single Ramsey planner maximizes ΩC
0 given by (101) with respect to {it}, {i

∗

t } subject

to the state-space representation (89) and (90).

Simple Rule: Cooperation with Commitment: SIMCC

A single Ramsey planner maximizes ΩC
0 given by (101) subject to simple feedback con-

straints it = Dyt and i∗t = D∗yt and to the state-space representation (89) and (90), with

respect to D,D∗.

Simple Rule: Non-Cooperation with Commitment: SIMNC

The home Ramsey planner maximizes Ω0 given by (99) subject to simple feedback con-

straints it = Dyt and to the state-space representation (89) and (90), with respect to D,

given i∗t = D∗yt. In a closed-loop Nash equilibrium the foreign Ramsey planner chooses

D∗ in an analogous fashion.

Details of these equilibria are provided in Appendix A.

5 The Zero Lower Bound Constraint

Following Woodford (2003), chapter 6, Levine et al. (2007c) and Levine et al. (2008), we

can impose an effect that approximates the interest-rate ZLB constraint by modifying

the LQ optimization problems. For the non-cooperative game, this is implemented as a

constraint on the variance of the interest rate by modifying the home and foreign blocs

welfare loss functions to, respectively

Ω0 =
1

2
Et

∞
∑

t=0

βt[y′tQyt + wii
2
t ] (103)

Ω∗

t =
1

2
Et

∞
∑

t=0

βt[y′tQ
∗
yt + w∗

i i
∗

t
2] (104)

For the cooperative game the loss function is modified to

ΩC
0 =

1

2
Et

∞
∑

t=0

βt[y′tQ
C
yt + wii

2
t + w∗

i i
∗

t
2] (105)

As explained in Levine et al. (2008), for the non-cooperative game, the home optimiza-

tion problem is to choose an unconditional distribution for it (i.e., at the steady-state, such

that the probability, p, of the interest rate hitting the lower bound is very low. This is im-

plemented by calibrating the weight wi so that z0(p)σi < I where z0(p) is the critical value

28



of a standard normally distributed variable Z such that prob (Z ≤ z0) = p, I = 1
β −1+π̄ is

the zero-inflation, steady-state nominal interest rate and σi is the unconditional variance.

An analogous choice of w∗

i applies to the foreign bloc. For the cooperative game the single

Ramsey planner chooses (wi, w
∗

i ) so that the ZLB constraint is satisfied in both blocs,

though it may only bind in one bloc.21

The stages of the interest-rate rule cooperative and non-cooperative games with a ZLB

constraint are as follows:

1. For the cooperative rules (wi, w
∗

i ) are chosen jointly so that the the probability of

hitting the ZLB is p or less in both blocs. For the non-cooperative rules, EMU

chooses wi given w∗

i such that the probability of hitting the ZLB is p or less. EU

similarly chooses w∗

i given wi. The intersection of the reaction functions wi = f(w∗

i )

and w∗

i = f(wi) is the Nash equilibrium in interest-rate penalties at stage 1 of the

game.

2. Now given (wi, w
∗

i ), for the cooperative rules the two blocs jointly choose rules to

minimize a joint welfare loss function (that incorporates the ZLB constraints). For

non-cooperative rules, EMU choose an welfare-optimum feedback interest-rate rule

to minimize its welfare loss (that again incorporates its own ZLB constraint) given

the rule in the US. The US acts in an analogous way resulting in a closed-loop Nash

equilibrium at stage 2 of the game.

3. Given the rules designed at stage 2 both countries responds to shocks in accordance

with these rules.

21The ZLB constraint can be further eased by shifting the interest rate distribution to the right. Then

steady state inflation rate in the optimal policy is positive. Let π̄ > 0 be this rate. Then I = 1

β
− 1 + π∗

is the steady state nominal interest rate. Given σr the steady state positive inflation rate that will ensure

rt ≥ 0 with probability 1− p is given by π̄ = max[z0(p)σi −
(

1

β
− 1
)

× 100, 0]. Furthermore if π∗ is chosen

in a optimal fashion, it is a credible new steady state inflation rate. (See Levine et al. (2007c)). In this

paper however we retain zero inflation as a steady state feature of the policy rules.
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6 Coordination Gains without Model Uncertainty

6.1 Results with no ZLB Constraint

First let us ignore the ZLB constraint. Table 5 presents results for this case. We consider

three forms of simple commitment rules. The first feed back from current CPI inflation

in each bloc and take the form

it = ρit−1 + θππt (106)

i∗t = ρ∗i∗t−1 + θ∗ππ∗

t (107)

and the second includes a feedback from wage inflation:

it = ρit−1 + θππt + θ∆w∆wt (108)

i∗t = ρ∗i∗t−1 + θ∗ππ∗

t + θ∗∆w∆w∗

t (109)

Finally we consider a rule close to the standard inflation - output gap rule. Since there

are two sectors, traded and non-traded goods, and two outputs we use an employment gap,

the difference between employment with sticky prices and imperfect financial markets and

that with flexible prices and perfect financial markets, as the target variable. Denoting

this by egapt the rule takes the form

it = ρit−1 + θππt + θegapegapt (110)

i∗t = ρ∗i∗t−1 + θ∗ππ∗

t + θ∗egapegap
∗

t (111)

As before we denote by SIMCC the coordinated optimized simple rule of this type

whilst SIMNC denotes the corresponding closed-loop Nash game in interest-rate rules

between the countries. We compare the outcomes of these equilibria with the optimal

coordination and commitment rule, OPTCC. ce is the percentage consumption permanent

equivalent loss in the US from sub-optimal rules compared with OPT. Throughout the

paper, we adopt a conditional welfare loss measure, starting at the zero-inflation steady

state (see Appendix A). Let (Ω0 + Ω∗

0)
i, i = SIMCC, SIMNC, OPT be the expected

welfare loss under these two optimized and optimal rule respectively. Then we have ce =

Ω0+Ω∗

0−(Ω0+Ω∗

0)CC

k × 10−2 where k = (C(1 − h))1−σ ≃ 2 for central parameter values.

In table 5 we first consider the interest volatilities across the various equilibria which

are measures of the degree of monetary policy activism required to minimize the expected
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welfare loss function. We denote by var(it) the steady-state conditional variance of the

nominal interest rate. For OPTCC these are very high and higher in EMU than in the

US. This is as one would expect from the estimated parameter differences noted in section

3. For such values there is a large probability per period of violating the ZLB indicated

in the final column of 0.31 and 0.25 in EMU and the US respectively.22

For equilibrium SIMCC there is very little difference in outcomes across our three forms

of simple feedback rule. Moreover the interest-rate variances are far lower indicating that

being restricted to such rules considerably reduces the welfare gains from stabilization by

the use of the nominal interest rate. The cost of simplicity is significant, around 0.6%

in consumption equivalent terms. Violations of the ZLB are not serious for cooperative

simple rules, but the rules are severely sub-optimal. Once we turn to non-cooperative

simple rules however this feature changes remarkably. Now countries have a incentive

to manipulate the terms of trade in their favour in a direction dependent on the shocks

hitting their economies. Each country then designs a more active rule that constitutes a

closed-loop Nash equilibrium in feedback rules but has a beggar-thy-neighbour character.

As a consequence the gains from cooperation are high varying from 0.53% for the CPI

infaltion rule to 0.78 for the rule that also responds to wage inflation.

6.2 Imposing the ZLB Constraint

The results obtained without ZLB considerations follow most of the coordination gains

literature. In our set-up there are two sources of gains from coordinating monetary policy.

First, as we have seen in section 4, the approximate quadratic loss function are different

for the cooperative and non-cooperative games and the former is not a simple linear

combination of the latter. Second there is the familiar terms of trade externality that

encourages beggar-thy-neighbour policies. From the work of Canzoneri et al. (2005), Liu

and Pappa (2005) and others we know that a non-traded sector add a relative price of

trade to non-traded goods effect that can magnify the unilateral benefits of terms of trade

changes. We then appear to confirm the literature that suggests the coordination gains

can be quite large in richer models with these features.

22Note that we needed to choose wi = w∗

i = 1.6 in OPTCC to obtain a solution. For simple rules there

are no computational problems with putting wi = w∗

i = 0.
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However this conclusion is premature because our non-cooperative rules involve a severe

violation of the ZLB constraint and are therefore not operational. As described in section

5, we now modify the policy rules to incorporate a ZLB constrain with a low probability

per period of p = 0.02 or less of hitting the ZLB. Table 6 shows the results for same

policy rules as in Table 5. Three features of the results are particularly notable. First,

the costs of simplicity are much smaller with the ZLB constraint imposed. Second, owing

to the asymmetries in the estimated model in a number of cases we have equilibria where

the ZLB constraint only binds in the EMU. Third, and most importantly, the gains from

policy coordination are much smaller with ZLB considerations, down to consumption

equivalent gains of 0.03, 0.01 and 0.07 for the CPI, wage inflation and employment gap

rules respectively. The conclusion we draw from these results is: rather than cooperate in

the details of the rule, countries can simply agree to adopt a rule that responds to CPI and

wage inflation.23

In order to understand the workings of the model under cooperative rules, we now

examine the responses under the optimal rule OPTCC and SIMCC in Table 6 to common

1% shocks to total factor productivity in the traded sector (AN (0) = AN (0)∗ = 1) and to

government spending (G(0) = G∗(0) = 1). Figures 1 and 2 show the simulations.

Consider first the supply-side shocks in the non-traded sectors. The features that

OPTCC and the SIMCC rules have in common are a rise in output in the non-traded

sectors, a corresponding fall in the traded sectors a switch facilitated on the demand

side by a fall in the relative prices of non-traded and traded goods in the two blocs (nt,

n∗

t ), a rise in consumption and a fall in CPI inflation. The rise in non-traded output is

sluggish and never achieves the productivity increase of 1% because some of the benefit

of this benign supply-side shock results in households taking more leisure. The relevant

asymmetry between the two blocs for these shocks is the greater persistence of the TFP

non-traded shock in EMU resulting in a more persistent output effect for that bloc.

To understand movements in the real exchange rate (and the related terms of trade)

consider the following linearization of the modified UIP condition (55):

rert = Etrert+1 + Et(r
∗

t − rt) − δrbF,t (112)

23Interestingly such a rule is implicitly advocated by a current member of the monetary policy committee

of the Bank of England, David Blanchflower (see Blanchflower and Shadforth (2007)).
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Solving (112) forward in time we see that the real exchange rate is a sum of future expected

real interest-rate US-EMU differentials plus a term proportional to the sum of future

expected net liabilities of EMU. The EMU real exchange will depreciate (a rise in rert) if

the sum of expected future US-EMU interest-rate differentials is positive and/or the sum

of expected future net liabilities are positive. The second asset effect, a deviation from risk-

sharing, is shown in Figures 1 and 2 as rerd and is negative indicating an accumulation of

assets in EMU. However this effect is offset by a long-run interest-rate differential in favour

of the US causing the EMU real and nominal exchange rate to eventually depreciate.

After around 10 quarters, SIMCC closely mimics OPTCC for the non-traded goods

technology shocks but prior to that the nominal interest paths differ in both blocs and

indeed the interest-rate differentials are of opposite sign. Turning to the government

spending shock, in Figure 2 we now see more prolonged differences between SIMCC and

OPTCC. Under the latter optimal regimes there is very nominal response in terms of

the interest rate and CPI inflation rate. Under SIMCC however, the interest rate falls in

both blocs with a differential in favour of EMU for 20 quarters. Again EMU accumulates

assets and its real exchange rate first appreciates then depreciates as the interest-rate

differential moves in favour of the US. SIMCC does not closely mimic OPTCC even after

20 quarters for this shock. This serves to highlight the sense in which simple rules are

optimal: they are designed to minimize the expected welfare loss over the full range

of shocks. They are optimal only for the particular estimated persistence parameters

and standard deviations of white noise disturbances and are non-certainty equivalence:

different estimates for standard deviations result in different optimized rules. Responses to

some shocks can be severely sub-optimal as is clearly the case for this common government

spending shock.

7 Coordination Gains with Model Uncertainty

In this section we consider model uncertainty in the form of uncertain estimates of the

non-policy parameters of the model, Γ. Suppose the state of the world s is described by

a model with Γ = Γs expressed in state-space form as




z
s
t+1

Etx
s
t+1



 = As





z
s
t

x
s
t



+ Bs





it

i∗t



+ Csǫt (113)
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where z
s
t is a vector of predetermined variables at time t and xt are non-predetermined

variables in state s of the world. For parameter-robust rules, (103) is replaced with the

average expected utility loss across a large number of draws, n, from all models constructed

using both the posterior model probabilities and the posterior parameter distributions for

each model.

Ω0 =
1

2

n
∑

s=1

Et

∞
∑

t=0

βt[ys ′

t Qs
y
r
t + wii

2
t ] (114)

A similar reformulation of the average expected utility applies to Ω∗

0 and ΩC
0 .

We use the draws from the Markov Chain Monte Carlo (MCMC) Bayesian estimation

as a representation of the ex post probability distribution of the parameters of the system.

The results that follow are based on n = 100 such draws. For each draw we use the

variance of the interest rate to calculate the probability of hitting the zero lower bound;

once again the average of these appears as Prob ZLB in the tables and the average variance

of these is included in the table as var(it). Thus with an equilibrium interest rate of 1%

per quarter (4% per annum), the latter are given by

var(it) ≡ σ2
i =

1

n

n
∑

j=1

σ2
i (j) (115)

Prob ZLB =
1

n

n
∑

j=1

Z

(

−
1

σi(j)

)

(116)

where Z(x) is the probability that a standard normal random variable has a value less

than x.

As we have found little improvement in rules that target wage inflation and the output

gap in addition to CPI inflation, in Table 7 we present the results for robust CPI infla-

tion targeting rule only. Consumption equivalent losses are measured relative to SIMCC

without the ZLB. How do our robust rules compare with their non-robust counterparts of

Table 6? With or without a ZLB we see that SIMCC calls for far less activism when there

is model uncertainty, a result resembling that of Brainard (1967). With or without model

uncertainty, SIMNC is far more activist than SIMCC as each bloc seeks to use the ex-

change rate to its advantage. Cooperation prevents such beggar-thy-neighbour behaviour,

and when blocs cooperate to account for model uncertainty the benefits from cooperation

grow substantially. With a ZLB, the consumption equivalent gain grows from 0.03% with-

out model uncertainty to to 0.41% with model uncertainty. We have then a new result:
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the gains from monetary policy coordination rise significantly when CPI interest-rate rules

are designed to account for model uncertainty.

8 Conclusions

This paper has examined the the gains from monetary policy coordination in the design

of CPI inflation interest-rate rules using a developed NOEM fitted to EMU-US data by

Bayesian-ML methods. We incorporate two novel features not found in coordination liter-

ature to date: the incorporation of a ZLB interest-rate constraint and model uncertainty.

Both these aspects have interesting consequences for the size of the gains from coordination

summarized in Table 8.

First we recall two sources of gains from coordinating monetary policy: approximate

quadratic loss functions that are different for the cooperative and non-cooperative games

with the former not a simple linear combination of the latter, and the familiar terms

of trade externality that encourages beggar-thy-neighbour policies. From the existing

literature we know that a non-traded sector adds a relative price of traded to non-traded

goods effect that can magnify the unilateral benefits of terms of trade changes. From the

no-ZLB, no-model uncertainty cell of Table 8 we then appear to confirm the literature

that suggests the coordination gains can be quite large in richer models with this feature.

But this result is misleading because interest-rate rules that ignore the ZLB constraint

are not operational. When the ZLB constraint is introduced, from the ZLB, no-model

uncertainty cell of Table 8 we see that the the scope for beggar-thy-neighbour exchange

rate policy under SIMNC is severely curtailed and the coordination gains become very

small. However adding the second aspect: the need to design robust rules in the face of

model uncertainty creates new incentives for exploiting the exchange rate channel under

SIMNC that increase the inefficiency of the Nash equilibrium compared with SIMCC. The

consequence is that even with a ZLB constraint the coordination gains become significant.

This suggests a new result that may have general applicability to both monetary and

fiscal stabilization policy: the gains from coordination can rise significantly when rules

are designed to account for model uncertainty. We have established such a result for CPI

inflation targeting interest-rate rules and a particular two-bloc model. Future research is

required to establish the more general proposition.
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Adolfson, M., Laseen, S., Lindé, J., and Villani, M. (2004). Bayesian Estimation of

an Open Economy DSGE Model with Incomplete Pass-Through. Sveriges Riksbank

Working Paper No. 179.
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Lindé, J. (2005). Estimating new Keynesian Phillips curves: a full information maximum

likelihood approach. Journal of Monetary Economics, 52(6), 1135–1149.

39



Liu, Z. and Pappa, E. (2005). Gains from International Monetary Policy Coordination:

Does it Pay to be Different? Mimeo, ECB Working Paper Series, No. 514, August 2005.

Lubik, T. A. and Schorfheide, F. (2004). Testing for indeterminacy: an application to

U.S. monetary policy. American Economic Review, 94(1), 190–217.

Monacelli, T. (2003). Monetary Policy in a low Pass-Through Environment. European

Central Bank, Working Paper No. 227.

Obstfeld, M. and Rogoff, K. (1996). Foundations of International Macroeconomics. MIT

Press, Cambridge, Massachusetts. London, England.

Obstfeld, M. and Rogoff, K. (2002). Global implications of self-oriented national monetary

rules. Quarterly Journal of Economics, pages 503–535.

Otrok, C. (2001). On measuring the welfare cost of business cycles. Journal of Monetary

Economics, 47(1), 61–92.

Rabanal, P. and Rubio-Ramı́rez, J. F. (2005). Comparing new Keynesian models of the

business cycle: a Bayesian approach. Journal of Monetary Economics, 52(6), 1151–

1166.

Rabanal, P. and Tuesta, V. (2006). Euro-Dollar Real Exchange Rate Dynamics in an

Estimated Two-Country Model: What is Important and What is Not. Mimeo .

Sargent, T. (1989). Two models of measurements and the investment accelerator. Journal

of Political Economy, 97(2), 251–287.

Smets, F. and Wouters, R. (2003a). An estimated stochastic dynamic general equilibrium

model of the Euro Area. Journal of the European Economic Association, 1(5), 1123–

1175.

Smets, F. and Wouters, R. (2003b). An estimated dynamic stochastic general equilibrium

model of the euro area. Journal of the European Economic Association, 1(5), 1123–1175.

Smets, F. and Wouters, R. (2003c). Shocks and frictions in US business cycles: a Bayesian

DSGE approach. paper presented at the conference ‘Dynamic Models Useful for Policy’

held at the Bank of Canada, July 2003.

40



Smets, F. and Wouters, R. (2004). Forecasting with a Bayesian DSGE model: an appli-

cation to the euro area. Journal of Common Market Studies, 42(4), 841–867.

Sutherland (2002). International monetary policy coordination and financial market inte-

gration. Mimeo, Board of Governors of the Federal Reserve System.

Woodford, M. (2003). Foundations of a Theory of Monetary Policy. Princeton University

Press.

A The Policy Rules

Consider first the deterministic problem. Substituting out for outputs, the state-space

representation (89) and (90) becomes:

[

zt+1

xe
t+1,t

]

= A

[

zt

xt

]

+ Bwt (A.1)

where zt is an (n − m) × 1 vector of predetermined variables including non-stationary

processes, z0 is given, wt = [it, i
∗

t ]
T is a vector of policy variables, xt is an m× 1 vector of

non-predetermined variables and xe
t+1,t denotes rational (model consistent) expectations

of xt+1 formed at time t. Then xe
t+1,t = xt+1 and letting yT

t = [zt, xt]
T , (A.1) becomes

yt+1 = Ayt + Bwt (A.2)

The policymakers’ loss function under cooperation at time t with a ZLB is given by

ΩC
t =

1

2

∞
∑

i=0

λt[yT
t+iQ

Cyt+i + wT
t+iRwt+i] (A.3)

The procedures for evaluating the three policy rules are outlined in the rest of this appendix

(or Currie and Levine (1993) for a more detailed treatment).

A.1 The Optimal Policy: Cooperation with Commitment (CC)

Consider the policy-maker’s ex-ante optimal policy at t = 0. This is found by minimizing

ΩC
0 given by (A.3) subject to (A.2) and given z0. We proceed by defining the Hamiltonian

Ht(yt, yt+1, µt+1) =
1

2
βt(yT

t QCyt + wT
t Rwt) + µt+1(Ayt + Bwt − yt+1) (A.4)

where µt is a row vector of costate variables. By standard Lagrange multiplier theory we

minimize

L0(y0, y1, . . . , w0, w1, . . . , µ1, µ2, . . .) =

∞
∑

t=0

Ht (A.5)
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with respect to the arguments of L0 (except z0 which is given). Then at the optimum,

L0 = ΩC
0 .

Redefining a new costate vector pt = β−1µT
t , the first-order conditions lead to

wt = −R−1βBT pt+1 (A.6)

βAT pt+1 − pt = −QCyt (A.7)

Substituting (A.6) into (A.2)) we arrive at the following system under control

[

I βBR−1BT

0 βAT

][

yt+1

pt+1

]

=

[

A 0

−QC I

][

yt

pt

]

(A.8)

To complete the solution we require 2n boundary conditions for (A.8). Specifying z0

gives us n−m of these conditions. The remaining condition is the ‘transversality condition’

lim
t→∞

µT
t = lim

t→∞

βtpt = 0 (A.9)

and the initial condition

p20 = 0 (A.10)

where pT
t =

[

pT
1t pT

2t

]

is partitioned so that p1t is of dimension (n − m) × 1. Equation

(??), (A.6), (A.8) together with the 2n boundary conditions constitute the system under

optimal control.

Solving the system under control leads to the following rule

wt = −F

[

I 0

−N21 −N22

] [

zt

p2t

]

(A.11)

[

zt+1

p2t+1

]

=

[

I 0

S21 S22

]

G

[

I 0

−N21 −N22

][

zt

p2t

]

(A.12)

N =

[

S11 − S12S
−1
22 S21 S12S

−1
22

−S−1
22 S21 S−1

22

]

=

[

N11 N12

N21 N22

]

(A.13)

xt = −
[

N21 N22

]

[

zt

p2t

]

(A.14)

where F = −(R + BT SB)−1(BT SA + UT ), G = A − BF and

S =

[

S11 S12

S21 S22

]

(A.15)

partitioned so that S11 is (n − m) × (n − m) and S22 is m × m is the solution to the

steady-state Ricatti equation

S = QC + F T RF + β(A − BF )T S(A − BF ) (A.16)

42



The welfare loss at time t is

ΩCCOPT
t = −

1

2
(tr(N11Zt) + tr(N22p2tp

T
2t)) (A.17)

where Zt = ztz
T
t . To achieve optimality the policy-maker sets p20 = 0 at time t = 0. At

time t > 0 there exists a gain from reneging by resetting p2t = 0. It can be shown that

N22 < 0, so the incentive to renege exists at all points along the trajectory of the optimal

policy. This is the time-inconsistency problem.

A.2 Optimized Simple Commitment Rules (SIMCC and SIMNC)

We now consider simple sub-optimal rules of the form

wt = Dyt = D

[

zt

xt

]

(A.18)

where D is constrained to be sparse in some specified way. Rule (A.18) can be quite

general. By augmenting the state vector in an appropriate way it can represent a PID

(proportional-integral-derivative)controller (though the paper is restricted to a simple pro-

portional controller only).

First consider the design of cooperative simple rules. Substituting (A.18) into (A.3)

gives

Ωt =
1

2

∞
∑

i=0

βty
T
t+iPt+iyt+i (A.19)

where P = QC + DT RD. The system under control (A.1), with wt given by (A.18), has

a rational expectations solution with xt = −Nzt where N = N(D). Hence

yT
t Pyt = zT

t Tzt (A.20)

where T = P11 − NT P21 − P12N + NT P22N , P is partitioned as for S in (A.15) onwards

and

zt+1 = (G11 − G12N)zt (A.21)

where G = A + BD is partitioned as for P . Solving (A.21) we have

zt = (G11 − G12N)tz0 (A.22)

Hence from (A.23), (A.20) and (A.22) we may write at time t

ΩSIMCC
t =

1

2
zT
t V zt =

1

2
tr(V Zt) (A.23)

where Zt = ztz
T
t and V satisfies the Lyapunov equation

V = T + HT V H (A.24)
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where H = G11 − G12N . At time t = 0 the optimized simple rule is then found by

minimizing Ω0 given by (A.23) with respect to the non-zero elements of D given z0 using

a standard numerical technique. An important feature of the result is that unlike the

previous solution the optimal value of D is not independent of z0. That is to say

D = D(z0)

For the non-cooperative case, in a closed-loop Nash equilibrium we assume each poli-

cymaker chooses rules wt = Dyt and w∗

t = D∗yt independently taking the rule of the other

bloc as given. The equilibrium is then computed by iterating between the two countries

until the solutions converge.

A.3 The Stochastic Case

Consider the stochastic generalization of (A.1)

[

zt+1

xe
t+1,t

]

= A

[

zt

xt

]

+ Bwt +

[

ut

0

]

(A.25)

where ut is an n × 1 vector of white noise disturbances independently distributed with

cov(ut) = Σ. Then, it can be shown that certainty equivalence applies to all the policy

rules apart from the simple rules (see Currie and Levine (1993)). The expected loss at

time t is as before with quadratic terms of the form zT
t Xzt = tr(Xzt, Z

T
t ) replaced with

Et

(

tr

[

X

(

ztz
T
t +

∞
∑

i=1

βtut+iu
T
t+i

)])

= tr

[

X

(

zT
t zt +

β

1 − β
Σ

)]

(A.26)

where Et is the expectations operator with expectations formed at time t.

Thus for the optimal policy with commitment (A.17) becomes in the stochastic case

ΩOPTCC
t = −

1

2
tr

(

N11

(

Zt +
β

1 − β
Σ

)

+ N22p2tp
T
2t

)

(A.27)

For the simple rule, generalizing (A.23)

ΩSIMCC
t = −

1

2
tr

(

V

(

Zt +
β

1 − β
Σ

))

(A.28)

(A.27) and (A.28) are conditional welfare loss measures at time t given zt. The paper

reports conditional welfare losses at the steady state (zt = Zt = 0). An unconditional

welfare loss measure averages over all possible initial states using the distribution of states

calculated under the optimal commitment policy. These are obtained from (A.27) and

(A.28) by replacing Zt with the variance-covariance matrix cov(zt). However, for a discount

factor close to unity, the stochastic terms dominate so the difference between these two

measures is small.
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For the conditional welfare loss measures at time t = 0, the optimized cooperative

simple rule is found by minimizing ΩSIMCC
0 given by (A.28). Now we find that

D∗ = D∗

(

z0 +
β

1 − β
Σ

)

(A.29)

or, in other words, the optimized rule depends both on the initial displacement z0 and on

the covariance matrix of disturbances Σ. The non-cooperative rule for the stochastic case

follows in a similar way.
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Equilibrium Form of Rule (wi, w
∗

i ) Loss ce(%) (var(it), var(i∗t )) Pr ZLB

OPTCC complex (1.6, 1.6) 59.8 0 (3.96, 2.11) (0.31, 0.25)

SIMCC (ρ, θπ) = (0.83, 0.31) (0,0) 180.6 0.60 (0.18.0.34) (0.01, 0.06)

CPI Inflation (ρ∗, θ∗π) = (0.6, 1.19)

SIMNC (ρ, θπ) = (0.51, 10.0) (0,0) 286 1.13 (2.67, 2.56) (0.27, 0.26)

CPI Inflation (ρ∗, θ∗π) = (0.64, 10.0)

SIMCC (ρ, θπ, θ∆w) = (0.98, 0.08, 0.15) (0,0) 178.7 0.60 (0.04, 0.34) (0.00, 0.04)

Wage Inflation (ρ∗, θ∗π, θ∗
∆w) = (0.82, 0.4, 0.78)

SIMNC (ρ, θπ, θ∆w) = (0.63, 10.0, 0.0) (0,0) 335.9 1.38 (2.54, 9.46) (0.27, 0.46)

Wage Inflation (ρ∗, θ∗π, θ∗
∆w) = (1.0, 0.0, 10.0)

SIMCC (ρ, θπ, θegap) = (0.9, 0.17, 0.01) (0,0) 180.3 0.60 (0.1, 0.3) (0.00, 0.03)

Employment Gap (ρ∗, θ∗π, θ∗egap) = (0.65, 1.0, 0.0)

SIMNC (ρ, θπ, θegap) = (0.56, 10.0, 0.0) (0,0) 283.5 1.12 (2.64, 2.17) (0.27, 0.25)

Employment Gap (ρ∗, θ∗π, θ∗egap) = (0.94, 10.0, 0.55)

Table 5. Gains from Coordination: No Model Uncertainty; no ZLB Constraint.

Equilibrium Form of Rule (wi, w
∗

i ) Loss ce(%) (var(it), var(i∗t )) Pr ZLB

OPTCC complex (4.6, 2.8) 111.8 0 (0.25, 0.25) (0.02, 0.02)

SIMCC (ρ, θπ) =(0.83,0.31) (0.0, 0.17) 181.7 0.35 (0.19.0.25) (0.02, 0.02)

CPI Inflation (ρ∗, θ∗π) = (0.72, 0.84)

SIMNC (ρ, θπ) = (1.0, 0.13) (0.59, 1.2) 189.1 0.38 (0.04, 0.25) (0.00, 0.02)

CPI Inflation (ρ∗, θ∗π) = (0.93, 1.06)

SIMCC (ρ, θπ, θ∆w) = (0.97, 0.09, 0.13) (0.09, 0.09) 179.1 0.34 (0.05, 0.24) (0.00, 0.02)

Wage Inflation (ρ∗, θ∗π, θ∗
∆w) = (0.88, 0.0.28, 0.62)

SIMNC (ρ, θπ, θ∆w) = (1.0, 0.48, 0.52) (0.55, 1.1) 181.4 0.35 (0.15, 0.22) (0.03, 0.02)

Wage Inflation (ρ∗, θ∗π, θ∗
∆w) = (1.0, 0.3, 0.64)

SIMCC (ρ, θπ, θegap) = (0.9, 0.17, 0.01) (0.0, 0.11) 180.9 0.25 (0.12, 0.25) (0.03, 0.02)

Employment Gap (ρ∗, θ∗π, θ∗egap) = (0.65, 1.0, 0.0)

SIMNC (ρ, θπ, θegap) = (1.0, 0.48, 0.52) (0.56, 1.07) 196.5 0.42 (0.25, 0.23) (0.02, 0.02)

Employment Gap (ρ∗, θ∗π, θ∗egap) = (0.94, 10.0, 0.55)

Table 6. Gains from Coordination: No Model Uncertainty; ZLB Constraint Imposed.
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Equilibrium Form of Rule (wi, w
∗

i ) Loss ce(%) (var(it), var(i∗t )) Pr ZLB

SIMCC (No ZLB) (ρ, θπ) =(0.81,0.2) (0.0, 0.0) 27.7 0 (0.74.2.53) (0.12, 0.264)

CPI Inflation (ρ∗, θ∗π) = (0.433, 10)

SIMNC (No ZLB) (ρ, θπ) = (0.94, 0.12) (0.0, 0.0) 114.3 0.43 (0.06, 2.22) (0.00, 0.25)

CPI Inflation (ρ∗, θ∗π) = (0.97, 10)

SIMCC (ZLB) (ρ, θπ, θθ) = (0.81, 0.2) (6, 0.5) 42.8 0.08. (0.25, 0.25) (0.024, 0.024)

CPI Inflation (ρ∗, θ∗π, θ∗θ) = (0.639, 0.656)

SIMNC (ZLB) (ρ, θπ, θθ) = (0.95, 0.1) (1.0, 1.12) 126.5 0.49 (0.06, 0.25) (0.00, 0.023)

CPI Inflation (ρ∗, θ∗π, θ∗θ) = (1.0, 1.12)

Table 7. Gains from Coordination: Robust Rules with Model Uncertainty; with and

without ZLB

No ZLB Constraint ZLB Constraint

No Model Uncertainty 0.53 0.03

Model Uncertainty 0.43 0.41

Table 8. Summary of Gains from Coordination in Consumption Equivalent Terms (%)
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Figure 1: Impulse Responses to a 1% Non-Traded Good Technology Shock
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Figure 2: Impulse Responses to a 1% Government Spending Shock
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