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NONPARAMETRIC LIKELIHOOD FOR VOLATILITY UNDER HIGH
FREQUENCY DATA

LORENZO CAMPONOVO, YUKITOSHI MATSUSHITA, AND TAISUKE OTSU

Abstract. We propose a nonparametric likelihood inference method for the integrated volatil-

ity under high frequency financial data. The nonparametric likelihood statistic, which contains

the conventional statistics such as empirical likelihood and Pearson’s χ2 as special cases, is not

asymptotically pivotal under the so-called infill asymptotics, where the number of high frequency

observations in a fixed time interval increases to infinity. We show that multiplying a correction

term recovers the χ2 limiting distribution. Furthermore, we establish Bartlett correction for

our modified nonparametric likelihood statistic under the constant and general non-constant

volatility cases. In contrast to the existing literature, the empirical likelihood statistic is not

Bartlett correctable under the infill asymptotics. However, by choosing adequate tuning con-

stants for the power divergence family, we show that the second order refinement to the order

O(n−2) can be achieved.

1. Introduction

Realized volatility and its related statistics have become standard tools to explore the behavior
of high frequency financial data and to evaluate financial theoretical models including stochastic
volatility models. This increase in popularity has been propelled by recent developments of prob-
ability and statistical theory and by the increasing availability of high frequency financial data
(see, e.g., Andersen, Bollerslev and Diebold, 2010, for a review). By employing the asymptotic
framework so-called the infill asymptotics, where the number of high frequency observations in
a fixed time interval (say, a day) increases to infinity, Jacod and Protter (1998) and Barndorff-
Nielsen and Shephard (2002) established laws of large numbers and central limit theorems for
realized volatility, which were extended to more general setups and statistics by Barndorff-Nielsen
et al. (2006). Also, Gonçalves and Meddahi (2009) studied higher order properties of the realized
volatility statistic and its bootstrap counterpart.

In this paper, we propose a nonparametric likelihood inference method for the integrated
volatility under high frequency financial data. The nonparametric likelihood statistic, which
contains the conventional statistics such as Owen’s (1988) empirical likelihood and Pearson’s χ2

as special cases, is not asymptotically pivotal under the infill asymptotics. We show that multi-
plying a correction term recovers the χ2 limiting distribution. Furthermore, we establish Bartlett
correction for our modified nonparametric likelihood statistic under the constant and general non-
constant volatility cases. In contrast to the existing literature, the empirical likelihood statistic
is not Bartlett correctable under the infill asymptotics. However, by choosing adequate tuning
constants for the power divergence family, we show that the second order refinement to the order
O(n−2) can be achieved.
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Our theoretical results also contribute to the literature of empirical likelihood (see, Owen,
2001, for a review). Since DiCiccio, Hall and Romano (1991), many papers reported Bartlett cor-
rectability of empirical likelihood in various contexts. Baggerly (1998) showed that in the power
divergence family of nonparametric likelihood functions, only empirical likelihood is Bartlett cor-
rectable. Our results show that under the infill asymptotics, another nonparametric likelihood
statistic achieves Bartlett correction instead of empirical likelihood.

The rest of the paper is organized as follows. Section 2 introduces our basic setup and non-
parametric likelihood statistic and derives the first order asymptotic distribution. In Section
3, we conduct the second order analysis for the proposed statistic and establish the Bartlett
corrections for the constant volatility case (Section 3.1) and general non-constant volatility case
(Section 3.2). Section 4 presents some simulation results.

2. Setup and nonparametric likelihood

Let us consider a scalar continuous time process {Xt}t≥0 (typically a log-price) defined on a
filtered probability space (Ω,F , (Ft)t≥0, P ) that follows

dXt = µtdt+ σtdWt, (1)

where {µt}t≥0 is an adapted predictable locally bounded drift process, {σt}t≥0 is an adapted
cadlag volatility process, and {Wt}t≥0 is a standard Brownian motion. We wish to conduct
statistical inference on the integrated volatility θ =

´ 1
0 σ

2
udu over a fixed interval [0, 1] (say,

a day) based on the high frequency returns ri = Xi/n − X(i−1)/n measured over the period
[(i− 1)/n, i/n] for i = 1, . . . , n.

As a nonparametric measure of volatility, the integrated volatility θ has been drawing con-
siderable attention from researchers in finance who face to high frequency financial data. One
popular estimator of θ is so-called the realized volatility θ̂ =

∑n
i=1 r

2
i . It is known that under

general conditions on the volatility process, θ̂ is consistent for θ and asymptotically normal under
the limit n → ∞ for increasingly finely sampled returns over the fixed interval [0, 1] (called the
infill asymptotics) (e.g., Jacod and Protter, 1998, and Barndorff-Nielsen and Shephard, 2002).
As one of the most general setups, we consider the following one employed by Barndorff-Nielsen
et al. (2006).

Assumption X. The process {Xt}t≥0 follows (1) and satisfies

σt = σ0 +

ˆ t

0
a∗udu+

ˆ t

0
σ∗u−dWu +

ˆ t

0
v∗u−dVu

+

ˆ t

0

ˆ
E
φ ◦ w(u−, x)(µ− ν)(du, dx) +

ˆ t

0

ˆ
E

(w − φ ◦ w)(u−, x)µ(du, dx),

where a∗ is an adapted predictable locally bounded process, σ∗ and v∗ are adapted cadlag processes,
V is a Brownian motion independent of W , µ is a Poisson measure on (0,∞)× E independent
of W and V with intensity measure ν(dt, dx) = dt⊗F (dx), F is a σ-finite measure on the Polish
space (E, E), φ is an indicator function for a neighborhood of 0, and w(ω, u, x) is a mapping
from Ω × [0,∞) × E to the space of processes that is Fu ⊗ E-measurable in (ω, x) for all u and
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cadlag in u and for some sequence {Sk} with increasing stopping time to +∞ and {ψk} satisfying´
E(1 ∧ ψk (x)2)F (dx) <∞, it holds supω∈Ω,u<Sk(ω) |w(ω, u, x)| ≤ ψk(x).

This assumption is general enough to allow for jumps, intraday seasonality, and correlation
between σt and Wt (called the leverage effect). Under Assumption X, Barndorff-Nielsen et al.
(2006) showed the consistency θ̂ p→ θ and asymptotic normality

√
n(θ̂ − θ)√

V̂

d→ N(0, 1), (2)

where V̂ = 2n
3

∑n
i=1 r

4
i . Based on this result, it is customary to construct a Wald-type confidence

interval for θ. Also, Gonçalves and Meddahi (2009) proposed bootstrap inference methods on θ.
In this paper, we develop a nonparametric likelihood inference method for θ.

As a general class of nonparametric likelihood functions for the integrated volatility θ, we
introduce the power divergence family (Cressie and Read, 1984)

Lγ(p1 . . . , pn) =


2

γ(γ+1)

∑n
i=1{(npi)γ+1 − 1} if γ 6= −1, 0,

−2
∑n

i=1 log(npi) if γ = −1,

2n
∑n

i=1 pi log(npi) if γ = 0.

Based on Lγ(p1 . . . , pn), we specify the likelihood function as

`γ,φ(θ) = Lγ(pφ,1 . . . , pφ,n), (3)

where the weights pφ,1, . . . , pφ,n solve

min
p1,...,pn

Lφ(p1 . . . , pn), subject to
n∑
i=1

pi = 1,

n∑
i=1

pi(nr
2
i − θ) = 0. (4)

Note that the nonparametric likelihood function `γ,φ(θ) contains two tuning constants, γ and φ.
In the literature, it is commonly assumed γ = φ. For example, Owen’s (1988) empirical likelihood
corresponds to γ = φ = −1 and Pearson’s χ2 corresponds to γ = φ = −2. Also Baggerly (1998)
showed that in the class of likelihood functions with γ = φ, only empirical likelihood is Bartlett
correctable. On the other hand, Schennach (2005, 2007) considered the case of γ 6= φ and studied
the exponentially tilted empirical likelihood statistic with γ = −1 and φ = 0 from Bayesian and
frequentist perspectives. In the current setup where we employ the infill asymptotics, it is crucial
to consider the general class of `γ,φ(θ) indexed by γ and φ to achieve Bartlett correction. For
example, even if the volatility process σt is constant over t ∈ [0, 1], the empirical likelihood
statistic (i.e., `γ,φ(θ) with γ = φ = −1) is not Bartlett correctable under the infill asymptotics,
and the constants γ and φ need to be chosen separately to achieve Bartlett correction.

By the Lagrange multiplier argument, the solution of (4) is written as (see, Baggerly, 1998)

pφ,i =
1

n
(1 + η + λ(nr2

i − θ))
1
φ , (5)

for φ 6= 0 and pφ,i = 1
nη exp(λ(nr2

i − θ)) for φ = 0, where η and λ solve

1

n

n∑
i=1

(1 + η + λ(nr2
i − θ))

1
φ = 1,

1

n

n∑
i=1

(1 + η + λ(nr2
i − θ))

1
φ (nr2

i − θ) = 0, (6)
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for φ 6= 0 and solve 1
n

∑n
i=1 η exp(λ(nr2

i − θ)) = 1 and 1
n

∑n
i=1 η exp(λ(nr2

i − θ))(nr2
i − θ) = 0 for

φ = 0. In practice, we employ the expression in (5) to compute the likelihood function in (3).
The first order asymptotic distribution of `γ,φ(θ) is obtained as follows. LetRq = nq/2−1

∑n
i=1 |ri|q.

Theorem 1. Under Assumption X, it holds that for each γ, φ ∈ R,

Tγ,φ(θ) =
3

2

(
1− R2

2

R4

)
`γ,φ(θ)

d→ χ2
1,

as n→∞.

See Appendix A.1 for the proof. It should be noted that under the infill asymptotics, the
nonparametric likelihood statistic `γ,φ(θ) (including empirical likelihood) does not converge to
the χ2 distribution. In other words, the nonparametric likelihood statistic is not internally
studentized. This is due to the fact that the asymptotic variance of the term 1√

n

∑n
i=1(nr2

i − θ)
does not match to the limit of 1

n

∑n
i=1(nr2

i − θ)2 under the infill asymptotics. The correction

term 3
2

(
1− R2

2
R4

)
is required to recover the studentization. On the other hand, the first order

asymptotic distribution of Tγ,φ(θ) does not depend on the tuning constants γ and φ. In the
next section, we study the second order asymptotic properties of the statistic Tγ,φ(θ) to compare
difference choices of γ and φ.

3. Second order asymptotics

To investigate the second order asymptotic properties of the nonparametric likelihood statistic,
we follow the conventional recipe put forward in DiCiccio, Hall and Romano (1991) and Baggerly
(1998), among others. In particular, we first derive the signed root of the nonparametric likeli-
hood statistic, and then evaluate the cumulants of the signed root. Based on these cumulants,
we seek values of γ and φ at which the third and fourth cumulants vanish at sufficiently fast
rates to admit Bartlett correction.

For the second order analysis, we add the following assumption.

Assumption H. The process {Xt}t≥0 follows (1) with µt = 0 and σt is independent of Wt and
bounded away from zero.

This assumption is restrictive since it rules out the drift term and leverage effect. Gonçalves
and Meddahi (2009, p. 289) imposed a similar but stronger assumption for higher order analysis
of the bootstrap inference. Although the drift term µt is asymptotically negligible at the first
order, it will appear in the higher order terms and complicates our second order analysis. Ruling
out the leverage effect (i.e., independence between σt and Wt) also simplifies our second order
analysis since it allows to condition on the path of σt to compute the cumulants of the nonpara-
metric likelihood statistic. Relaxing Assumption H for the second order analysis is beyond the
scope of this paper.

Due to independence between σt andWt, throughout this section the symbols such as E[·] and
Op(·) mean the conditional expectation and stochastic order given the path of σt, respectively.

Before analyzing Bartlett correctability of the nonparametric likelihood statistic, we intro-
duce further notation. We transform the moment function as wi = V −1/2(nr2

i − θ) with
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V = E[n−1
∑n

i=1(nr2
i − θ)2] and define

Āk =
1

n

n∑
i=1

wki , αk = E[Āk], Ak = Āk − αk,

for k = 1, 2, . . .. Note that Assumption H implies

α1 = 0, α2 = 1, Ak = Op(n
−1/2),

for each k = 1, 2, . . ., where the first equality follows from E[nr2
i ] =

´ i/n
(i−1)/n σ

2
udu, the second

equality follows by construction, and the third equality follows from Barndorff-Nielsen et al.
(2006, Theorem 2).

Based on the above notation, the nonparametric likelihood statistic is rewritten as `γ,φ(θ) =

Lγ(pφ,1 . . . , pφ,n), where

pφ,i =
1

n
(1 + η + λ̃wi)

1
φ ,

and η and λ̃ solves

1

n

n∑
i=1

(1 + η + λ̃wi)
1
φ = 1,

1

n

n∑
i=1

(1 + η + λ̃wi)
1
φwi = 0.

Expansions of these equations around η + λ̃wi = 0 and repeated substitutions yield expansions
of η and λ̃ as follows

η =
1

2
φ(1 + φ)A2

1 +
1

6
φ(1 + φ)(1− φ)α3A

3
1 −

1

2
φ(1 + φ)A2

1A2

+
1

2
φ(1 + φ)A2

1A
2
2 −

1

2
φ(1− φ)(1 + φ)α3A

3
1A2 +

1

6
φ(1− φ)(1 + φ)A3

1A3

+
1

8
φ

{
(1 + φ)3 + (1− φ)2(1 + φ)α2

3 −
1

3
(1− φ)(1 + φ)(1− 2φ)α4

}
A4

1 +Op(n
−5/2).

and

λ̃ = −φA1 −
1

2
φ(1− φ)α3A

2
1 + φA1A2

−φA1A
2
2 +

3

2
φ(1− φ)α3A

2
1A2 −

1

2
φ(1− φ)A2

1A3

−1

2
φ

{
φ(1 + φ) + (1− φ)2α2

3 −
1

3
(1− φ)(1− 2φ)α4

}
A3

1 +Op(n
−2).

By inserting these formulae to an expansion of n−1`γ,φ(θ) around η + λ̃wi = 0, we obtain

n−1`γ,φ(θ)

= A2
1 +

1

3
(1− γ)α3A

3
1 −A2

1A2 +A2
1A

2
2 − (1− γ)α3A

3
1A2 +

1

3
(1− γ)A3

1A3

+

{(
1

4
+
γ

2
+
γφ

2
− φ2

4

)
+

(
1

4
− γ

2
+
γφ

2
− φ2

4

)
α2

3 +

(
− 1

12
+
γ

4
+
γ2

12
− γφ

2
+
φ2

4

)
α4

}
A4

1

+Op(n
−5/2). (7)
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Let σ̄q,n = nq/2−1
∑n

i=1

(´ i/n
(i−1)/n σ

2
udu

)q/2
. For the term 3

2

(
1− R2

2
R4

)
, expansions around R4 =

3σ̄4,n and R2 = θ yield

3

2

(
1− R2

2

R4

)
=

1

2

3σ̄4,n − θ2

σ̄4,n
+

1

2

θ2

σ̄4,n

(
R4

3σ̄4,n
− 1

)
− 1

2

θ2

σ̄4,n

(
R4

3σ̄4,n
− 1

)2

−V
1/2θ

σ̄4,n
A1 −

1

2

V

σ̄4,n
A2

1 +
2

3

V θ2

σ̄2
4,n

A2
1 +

1

3

V 3/2θ

σ̄2
4,n

A1A2 +Op(n
−3/2), (8)

where R4
3σ̄4,n

− 1 = 2
3
V 1/2θ
σ̄4,n

A1 + 1
3

V
σ̄4,n

A2.
To proceed, Section 3.1 below focuses on the case of constant volatility (σt = σ over t ∈ [0, 1]).

In Section 3.2 we consider the general non-constant volatility case.

3.1. Constant volatility case . Throughout Section 3.1, we assume σt = σ over t ∈ [0, 1]. In
this case, it holds

σ2 = θ, σ̄4,n = θ2, V = 2θ2, α3 = 2
√

2, α4 = 15. (9)

Then by (7) and (8), the expansion of the nonparametric likelihood statistic n−1Tγ,φ(θ) is written
as

n−1Tγ,φ(θ) = A2
1 −

2
√

2

3
γA3

1 −
2

3
A2

1A2 +
4

9
A2

1A
2
2 −

2
√

2

9
(19− 8γ)A3

1A2

+
1

3
(1− γ)A3

1A3 +

(
41

36
γ − 3γφ+

5

4
γ2 +

3

2
φ2

)
A4

1 +Op(n
−5/2).

As in Baggerly (1998), to achieve Bartlett correction, we investigate the conditions of γ and
φ where the third and fourth cumulants of the signed root of the above expansion vanish at
sufficiently fast rates.

First, we consider the third cumulant. After some algebra, the signed root form is obtained
as n−1Tγ,φ(θ) = (S1 + S2 + S3)2 +Op(n

−5/2), where

S1 = A1, S2 = −1

3
A1A2 −

√
2

3
γA2

1,

and S3 = Op(n
−3/2) is not displayed since it is not used to compute the third cumulant. Based

on this form, the third cumulant of S1 + S2 + S3 is obtained as

κ3(γ, φ) = E[S3
1 ] + 3E[S2

1S2]− 3E[S2
1 ]E[S2] +O(n−3),

where by Lemma 2 in Appendix A.2,

E[S3
1 ] = 2

√
2n−2 +O(n−3), E[S2

1S2] = −
√

2(γ + 2)n−2 +O(n−3),

E[S2
1 ]E[S2] = −

√
2

3
(γ + 2)n−2 +O(n−3).

Therefore, if γ = −1, then the dominant term of the third cumulant vanishes and it holds
κ3(−1, φ) = O(n−3).
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Next, we set γ = −1 and analyze the fourth cumulant. After some algebra, the signed root
form of n−1Tγ,φ(θ) with γ = −1 is obtained as n−1T−1,φ(θ) = (T1 +T2 +T3)2 +Op(n

−5/2), where

T1 = A1, T2 = −1

3
A1A2 +

√
2

3
A2

1,

T3 =
1

6
A1A

2
2 −

11
√

2

9
A2

1A2 +
1

3
A2

1A3 +

(
3

4
φ2 +

3

2
φ− 1

18

)
A3

1.

Then the fourth cumulant of T1 + T2 + T3 is obtained as

κ4(−1, φ) = E[T 4
1 ] + 4E[T 3

1 T2] + 4E[T 3
1 T3]− 3(E[T 2

1 ])2

+6E[T 2
1 T

2
2 ]− 4E[T 3

1 ]E[T2]− 12E[T 2
1 T2]E[T2]− 6E[T 2

1 ]E[T 2
2 ]

+12E[T 2
1 ](E[T2])2 − 12E[T 2

1 ]E[T1T2]− 12E[T 2
1 ]E[T1T3] +O(n−4),

where by Lemma 2 in Appendix A.2,

E[T 4
1 ] = 3n−2 + 12n−3 +O(n−4), E[T 3

1 T2] = −76

3
n−3 +O(n−4),

E[T 3
1 T3] =

{
74

3
+

15

4

(
3φ2 + 6φ− 2

9

)}
n−3 +O(n−4), (E[T 2

1 ])2 = n−2,

E[T 2
1 T

2
2 ] =

16

3
n−3 +O(n−4), E[T 3

1 ]E[T2] = −4

3
n−3 +O(n−4),

E[T 2
1 T2]E[T2] =

2

3
n−3 +O(n−4), E[T 2

1 ]E[T 2
2 ] =

4

3
n−3 +O(n−4),

E[T 2
1 ](E[T2])2 =

2

9
n−3 +O(n−4), E[T 2

1 ]E[T1T2] = −10

3
n−3 +O(n−4),

E[T 2
1 ]E[T1T3] =

{
16

3
+

3

4

(
3φ2 + 6φ− 2

9

)}
n−3 +O(n−4).

Therefore, if
9φ2 + 18φ+ 4 = 0,

i.e. φ = −1 ±
√

5
3 , then the dominant term of the fourth cumulant vanishes and it holds

κ4

(
−1,−1±

√
5

3

)
= O(n−4).

Finally, by setting γ = −1 and φ = −1±
√

5
3 , it holds

E[T 2
1 ] = n−1, E[T1T2] = −10

3
n−2 +O(n−3),

E[T 2
2 ] =

4

3
n−2 +O(n−3), E[T1T3] =

25

6
n−2 +O(n−3),

and thus the second cumulant used to compute the Bartlett correction factor is obtained as

nE[(T1 + T2 + T3)2] = 1 + 3n−1 +O(n−2).

Combining these results, we obtain the following theorem. Let χ2
1,α be the (1 − α)-th quantile

of the χ2
1 distribution.

Theorem 2. Suppose Assumptions X and H hold true and σt = σ over t ∈ [0, 1]. Then, for
γ = −1 and φ = −1 ±

√
5

3 , the nonparametric likelihood statistic Tγ,φ(θ) is Bartlett correctable,
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i.e., conditionally on σ,

Pr
{
Tγ,φ(θ) ≤ χ2

1,α(1 + 3n−1)
}

= 1− α+O(n−2).

This theorem says that when we choose γ = −1 and φ = −1±
√

5
3 , the nonparametric likelihood

test based on Tγ,φ(θ) using the adjusted critical value χ2
1,α(1 + 3n−1) provides a refinement to

the order O(n−2) on the null rejection probability error. It should be noted that the empirical
likelihood statistic (i.e., Tγ,φ(θ) with γ = φ = −1) is not Bartlett correctable because the fourth
cumulant of the signed root does not vanish at the order of O(n−4). Also note that in the
constant volatility case, the Bartlett factor 1 + 3n−1 does not contain any unknown object.

3.2. General case . In Section 3.2, we drop the assumption of constant volatility and study
the second order property of the nonparametric likelihood statistic under the general case. In
the general case, the identities in (9) do not apply. Thus the objects such as V , α3, and α4

become unknown and need to be estimated. In this case, by (7) and (8), the expansion of the
nonparametric likelihood statistic n−1Tγ,φ(θ) is written as

n−1Tγ,φ(θ) =
1

2
cA2

1 +
1

6
c1/2

{
c1/2(1− γ)α3 + 2d3/2 − 6d1/2

}
A3

1 +
1

6
c(d− 3)A2

1A2

+
1

18
c(9− 3d− cd)A2

1A
2
2 +

1

6
c(1− γ)A3

1A3

+
1

18
c1/2

{
c1/2(d− 9)(1− γ)α3 + 18d1/2 + 9cd1/2 − 6d3/2 − 4cd3/2

}
A3

1A2

+
1

18

{
2c1/2d1/2(d− 3)(1− γ)α3 − 9c+ 12cd− 4cd2 + 9cf

}
A4

1 +Op(n
−5/2),

where

c =
V

σ̄4,n
, d =

θ2

σ̄4,n
,

f =

(
1

4
+
γ

2
+
γφ

2
− φ2

4

)
+

(
1

4
− γ

2
+
γφ

2
− φ2

4

)
α2

3 +

(
− 1

12
+
γ

4
+
γ2

12
− γφ

2
+
φ2

4

)
α4.

First, we consider the third cumulant. After some algebra, the signed root form is obtained
as n−1Tγ,φ(θ) = (S1 + S2 + S3)2 +Op(n

−5/2), where

S1 =

√
2

2
c1/2A1, S2 =

√
2

12

{
c1/2(1− γ)α3 − 6d1/2 + 2d3/2

}
A2

1 +

√
2

12
c1/2(d− 3)A1A2,

and S3 = Op(n
−3/2) is not displayed since it is not used to compute the third cumulant. Based

on this form, the third cumulant of S1 + S2 + S3 is obtained as

κ3(γ, φ) = E[S3
1 ] + 3E[S2

1S2]− 3E[S2
1 ]E[S2] +O(n−3),

8



where by Lemma 1 in Appendix A.2,

E[S3
1 ] =

2
√

2

15

{
c3/2α3 + 9d1/2 − 2d3/2

}
n−2 +O(n−3),

E[S2
1S2] =

√
2

10

{
5c−1/2(1− γ)α3 − 2c3/2α3 − 18d1/2 + 4d3/2

}
n−2 +O(n−3),

E[S2
1 ]E[S2] =

√
2

30

{
5c−1/2(1− γ)α3 − 2c3/2α3 − 18d1/2 + 4d3/2

}
n−2 +O(n−3).

Therefore, if we set γ as

γ∗ = 1− 4

15
c2 − 12

5

c1/2d1/2

α3
+

8

15

c1/2d3/2

α3
, (10)

then it holds κ3(γ∗, φ) = O(n−3). Note that under the constant volatility case considered in
Section 3.1, the equation (10) reduces to γ∗ = −1. In the general case, however, γ∗ depends on
unknown objects c, d, and α3. By replacing these objects with consistent estimators, we propose
the data-dependent value of γ:

γ̂ = 1− 4

15
ĉ2 − 12

5

ĉ1/2d̂1/2

α̂3
+

8

15

ĉ1/2d̂3/2

α̂3
, (11)

where ĉ = V̂
σ̂4,n

, d̂ = θ2

σ̂4,n
, α̂3 = V̂ −3/2 1

n

∑n
i=1(nr2

i − θ)3, V̂ = 1
n

∑n
i=1(nr2

i − θ)2, and σ̂4,n =
1
3(V̂ + θ2). Since γ̂ − γ∗ = Op(n

−1/2), we need to take the estimation error of γ̂ into account for
the second order analysis below.

Next, we rederive the stochastic expansion of n−1Tγ̂,φ(θ) with γ̂ in (11). By expanding γ̂
around (ĉ, d̂, α̂3) = (c, d, α3), it holds

γ̂ = γ∗ + gA2 + hA3 +Op(n
−1),

where

g = − 8

15
c2 +

8

45
c3 − 6

5

c1/2d1/2

α3
+

4

5

c3/2d1/2

α3
+

4

15

c1/2d3/2

α3
− 16

45

c3/2d3/2

α3
,

h =
4

15
(9− 2d)

c1/2d1/2

α2
3

.

By using this expansion of γ̂, we can rewrite the expansion of the nonparametric likelihood
statistic as

n−1Tγ̂,φ(θ)

=
1

2
cA2

1 +
1

6
c1/2

{
c1/2(1− γ∗)α3 + 2d3/2 − 6d1/2

}
A3

1 +
1

6
c(d− 3)A2

1A2

+
1

18
c(9− 3d− cd)A2

1A
2
2 +

1

6
c(1− γ∗ − hα3)A3

1A3

+
1

18
c1/2

{
c1/2 ((d− 9)(1− γ∗)− 3g)α3 + 18d1/2 − 6d3/2 + 9cd1/2 − 4cd3/2

}
A3

1A2

+
1

18

{
2c1/2d1/2(d− 3)(1− γ∗)α3 − 9c+ 12cd− 4cd2 + 9cf

}
A4

1 +Op(n
−5/2). (12)

9



After some algebra, the signed root form is obtained as n−1Tγ̂,φ(θ) = (T1 +T2 +T3)2 +Op(n
−5/2),

where

T1 =

√
2

2
c1/2A1, T2 = jA2

1 + kA1A2,

T3 = lA1A
2
2 + qA2

1A3 +mA2
1A2 + ζ(φ)A3

1,

and

j =

√
2

12

{
c1/2(1− γ)α3 + 2d3/2 − 6d1/2

}
, k =

√
2

12
c1/2(d− 3),

l =

√
2

36
c1/2(9− 3d− cd)−

√
2

144
c1/2(d− 3)2,

m =

√
2

72

{
c1/2(d− 15)(1− γ)α3 + 18d1/2 − 2d5/2 + 18cd1/2 − 8cd3/2 − 6c1/2gα3

}
,

q =

√
2

12
c1/2(1− γ − hα3),

ζ(φ) =

√
2

36

{
9c1/2f − 9c1/2 + 12c1/2d− 4c1/2d2 − 1

4
c1/2(1− γ)2α2

3 − c−1/2d3 − 9c−1/2d+ 6c−1/2d2

}
.

By the definition of γ∗, we can show that the third cumulant of T1 + T2 + T3 satisfies κ3(γ̂, φ) =

O(n−3). After lengthy calculations, by using the expectations in Lemma 1 in Appendix A.2, the
fourth cumulant

κ4(γ̂, φ) = E[T 4
1 ] + 4E[T 3

1 T2] + 4E[T 3
1 T3]− 3(E[T 2

1 ])2

+6E[T 2
1 T

2
2 ]− 4E[T 3

1 ]E[T2]− 12E[T 2
1 T2]E[T2]− 6E[T 2

1 ]E[T 2
2 ]

+12E[T 2
1 ](E[T2])2 − 12E[T 2

1 ]E[T1T2]− 12E[T 2
1 ]E[T1T3] +O(n−4)

is written in the form of
κ4(γ̂, φ) = ξ1ζ(φ) + ξ2 +O(n−4), (13)

where ξ1 and ξ2 are implicitly defined and do not depend on φ. Although ζ(φ), ξ1 and ξ2 contain
unknown objects c, d, and α3, they can be estimated by ĉ, d̂, and α̂3, respectively (denote by
ζ̂(φ), ξ̂1 and ξ̂2). Then if the solution exists, the ideal value φ̂ is given by a solution of

ξ̂1ζ̂(φ̂) + ξ̂2 = 0. (14)

It should be noted that in the expansion (12), φ appears only in the term f . Therefore, the
estimation error φ̂ − φ is of negligible order Op(n−5/2), and it holds κ4(γ̂, φ̂) = O(n−4), i.e.,
the dominant term of the fourth cumulant vanishes if we choose γ̂ and φ̂ as in (11) and (14),
respectively.

Finally, we compute the second cumulant and Bartlett factor. Using the expectations in
Lemma 1 in Appendix A.2, we have

E[T 2
1 ] =

c

2
E[A2

1] = n−1, E[T1T2] = rn−2 +O(n−3),

E[T 2
2 ] = sn−2 +O(n−3), E[T1T3] = tn−2 +O(n−3),

10



where (recall σ̄q,n = nq/2−1
∑n

i=1

(´ i/n
(i−1)/n σ

2
udu

)q/2
)

r = 4
√

2c1/2V −2
{
jσ̄6,nV

1/2 + k(9σ̄8,n − 2θσ̄6,n)
}
,

s = 12j2σ̄2
4,nV

−2 + 2jk(72σ̄4,nσ̄6,n − 24θσ̄2
4,n)V −5/2

+k2(192σ̄4,nσ̄8,n + 288σ̄2
6,n − 288θσ̄4,nσ̄6,n + 48θ2σ̄2

4,n)V −3,

t = 24
√

2c1/2l(4σ̄4,nσ̄8,n + 6σ̄2
6,n − 6θσ̄4,nσ̄6,n + θ2σ̄2

4,n)V −3

+18
√

2c1/2q(15σ̄4,nσ̄8,n − 6θσ̄4,nσ̄6,n + θ2σ̄2
4,n)V −3

+6
√

2c1/2V −5/2
{
m(6σ̄4,nσ̄6,n − 2θσ̄2

4,n) + ζ(φ)σ̄2
4,nV

1/2
}
.

Thus, the second cumulant used to compute the Bartlett correction factor is obtained as

nE[(T1 + T2 + T3)2] = 1 + an−1 +O(n−2),

where a = 2(r + t) + s. Combining these results, we obtain the following theorem.

Theorem 3. Suppose Assumptions X and H hold true. Then, for γ̂ in (11) and φ̂ in (14)
(if the solution exists), the nonparametric likelihood statistic Tγ̂,φ̂(θ) is Bartlett correctable, i.e.,
conditionally on the path of {σt},

Pr
{
Tγ̂,φ̂(θ) ≤ χ2

1,α(1 + an−1)
}

= 1− α+O(n−2).

This theorem says that even for the general case, the nonparametric likelihood statistic Tγ̂,φ̂(θ)

with the estimated tuning constants γ̂ and φ̂ using the adjusted critical value χ2
1,α(1 + an−1)

provides a refinement to the order O(n−2) on the null rejection probability error. In the general
case, the Bartlett factor a needs to be estimated by the method of moments. Gonçalves and
Meddahi (2009) obtained the second order refinement by the bootstrap to the order o(n−1). In
contrast, our Bartlett correction to the nonparametric likelihood statistic yields a refinement to
the order O(n−2).

4. Simulation

This section conducts simulation studies in order to evaluate finite sample properties of the
nonparametric likelihood inference and second-order refinements proposed in the last section.

We adopt simulation designs considered in Gonçalves and Meddahi (2009). In particular, we
consider the stochastic volatility model

dXt = µtdt+ σt

(
ρ1dW1t + ρ2dW2t +

√
1− ρ2

1 − ρ2
2dW3t

)
,

where W1t, W2t, and W3t are independent standard Brownian motions.
First, we consider a general case (i.e. with drift and leverage effects) to illustrate the first-order

asymptotic theory in Theorem 1 for the nonparametric likelihood statistic Tγ,φ(θ). We consider
two different models for the volatility process σt. The first model for σt is the GARCH(1,1)
diffusion

dσ2
t = 0.035(0.636− σ2

t )dt+ 0.144σ2
t dW1t.

11



The second model is the two-factor diffusion model

σt = f(−1.2 + 0.04σ2
1t + 1.5σ2

2t),

where dσ2
1t = −0.00137σ2

1tdt+ dW1t, dσ2
2t = −1.386σ2

2tdt+ (1 + 0.25σ2
2t)dW2t, and

f(x) =

{
exp(x) x ≤ x0

exp(x0)√
x0

√
x0 − x2

0 + x2 x > x0

with x0 = log(1.5). We allow for drift and leverage effects by setting µt = 0.0314, ρ1 = −0.576,
and ρ2 = 0 for GARCH(1,1) models, and µt = 0.030 and ρ1 = ρ2 = −0.30 for the two-factor
diffusion model.

We compare three methods to construct two-sided 95% confidence intervals: (i) the Wald-
type interval (Wald), (ii) empirical likelihood (EL) and (iii) nonparametric likelihood (NL) with
γ = −1 and φ = −1 +

√
5

3 .
Table 1 gives the actual coverage rates of all the intervals across 10,000 replications for five

different sample sizes: n =1152, 288, 48, 24, and 12, corresponding to 1.25-minute, 5-minute,
half-hour, 1-hour, and 2-hour returns. The Wald-type intervals tend to undercover for both
models. The degree of undercoverage is especially large when sampling is not too frequent. The
two-factor model implies overall larger coverage distortions than the GARCH(1,1) model. The
nonparametric likelihood intervals (including EL intervals) outperform the Wald-type intervals
in all cases.

Second, we consider two special cases to illustrate the second-order refinements proposed in the
last section: (a) a benchmark model where volatility is constant, and (b) models where volatility
is not constant (with no drift term and no leverage effect). Bartlett corrected nonparametric
likelihood (BNL) with the Bartlett correction factor 1 + 3/n are compared with the above meth-
ods. Table 2 shows that the Bartlett corrected nonparametric likelihood intervals outperform all
the other intervals even when there is stochastic volatility despite the fact that this correction
does not theoretically provide an asymptotic refinement under the non-constant volatility case.
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n Wald EL NL Wald EL NL
GARCH(1,1) diffusion Two-factor diffusion

12 80.83 84.80 84.48 73.24 78.45 78.02
24 86.97 90.34 90.03 80.61 85.65 85.23
48 90.41 92.76 92.46 85.76 89.38 89.04
288 94.55 94.98 94.92 93.52 94.50 94.35
1152 94.72 94.83 94.79 94.91 95.31 95.22

Table 1. Coverage probabilities of nominal 95% confidence intervals for inte-
grated volatility with leverage and drift

n Wald EL NL BNL
Constant volatility

12 81.20 85.18 84.77 87.46
24 87.63 90.66 90.35 92.00
48 91.04 93.54 93.14 94.08
288 94.24 94.85 94.78 94.89
1152 95.27 95.39 95.34 95.40

GARCH(1,1) diffusion
12 81.39 85.29 85.02 87.73
24 87.51 90.89 90.61 92.04
48 90.98 93.51 93.19 93.89
288 94.44 94.97 94.87 94.97
1152 95.07 95.18 95.14 95.18

Two-factor diffusion
12 73.74 77.97 77.63 80.87
24 80.90 85.72 85.33 87.06
48 86.05 86.69 89.45 90.32
288 92.83 94.08 93.95 94.08
1152 94.22 95.04 94.99 95.02

Table 2. Coverage probabilities of nominal 95% confidence intervals for inte-
grated volatility with no drift and no leverage
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Appendix A. Mathematical Appendix

A.1. Proof of Theorem 1 . We focus on the case of γ, φ 6= −1, 0. Similar arguments apply
to the cases of γ, φ = −1, 0. For q > 0, define σ̄q =

´ 1
0 σ

q
udu and µq = E|Z|q with Z ∼ N(0, 1).

From Barndorff-Nielsen et al. (2006, Theorem 1), Assumption X guarantees

Rq
p→ µqσ̄q, (15)

for any q > 0. This implies R2
p→ σ̄2, R4

p→ µ4σ̄4, and

3

2

(
1− R2

2

R4

)
p→ 3

2

(
µ4σ̄4 − σ̄2

2

µ4σ̄4

)
. (16)

Let gi = nr2
i − θ. By (2) and (15), we obtain(

2

3
µ4σ̄4

)−1/2 1√
n

n∑
i=1

gi =

(
2

3
µ4σ̄4

)−1/2√
n(R2 − σ̄2)

d→ N (0, 1) , (17)

1

n

n∑
i=1

g2
i = R4 − 2σ̄2R2 + σ̄2

2
p→ µ4σ̄4 − σ̄2

2. (18)

By these results combined with E[g2
i ] <∞ for all i = 1, . . . , n, we can apply the same argument

to Owen (1998) to show max1≤i≤n |η + λgi|
p→ 0. Thus, by expanding (6) around (η, λ) = (0, 0),

we obtain

λ = −φ

(
1

n

n∑
i=1

g2
i

)−1
1

n

n∑
i=1

gi +Op(n
−1),

η =
1

2
φ(φ+ 1)

(
1

n

n∑
i=1

g2
i

)−1(
1

n

n∑
i=1

gi

)2

+Op(n
−2).

Based on these results, an expansion of `γ,φ(θ) around (η, λ) = (0, 0) yields

`γ,φ(θ) =
2

γ(γ + 1)

n∑
i=1

{(1 + η + λgi)
γ+1
φ − 1} =

(
1

n

n∑
i=1

g2
i

)−1(
1√
n

n∑
i=1

gi

)2

+Op(n
−1).

Therefore, the conclusion follows by (16)-(18).

A.2. Lemmas . Here we present some approximation formulae for the moments of Ak. Lemma
1 is derived under Assumptions X and H, which allows non-constant volatility. Lemma 2 is
derived for the constant volatility case. The proofs are available from the authors upon request.
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Lemma 1. Suppose Assumptions X and H hold true. Then

E[A1] = 0, E[A2
1] = 2σ̄4,nV

−1n−1, E[A3
1] = 8σ̄6,nV

−3/2n−2,

E[A4
1] = 12σ̄2

4,nV
−2n−2 + 48σ̄8,nV

−2n−3, E[A5
1] = 160σ̄4,nσ̄6,nV

−5/2n−3 +O(n−4),

E[A6
1] = 120σ̄3

4,nV
−3n−3 +O(n−4), E[A1A2] = (12σ̄6,n − 4θσ̄n,4)V −3/2n−1

E[A2
1A2] = (72σ̄8,n − 16θσ̄6,n)V −2n−2,

E[A3
1A2] = (72σ̄4,nσ̄6,n − 24θσ̄2

4,n)V −5/2n−2 +O(n−3),

E[A4
1A2] = (384σ̄2

6,n + 864σ̄4,nσ̄8,n − 320θσ̄4,nσ̄6,n)V −3n−3 +O(n−4),

E[A5
1A2] = (720σ̄2

4,nσ̄6,n − 240θσ̄3
4,n)V −7/2n−3 +O(n−4),

E[A1A3] = (90σ̄8,n − 36θσ̄6,n + 6θ2σ̄4,n)V −2n−1,

E[A3
1A3] = (540σ̄4,nσ̄8,n − 216θσ̄4,nσ̄6,n + 36θ2σ̄2

4,n)V −3n−2 +O(n−3),

E[A5
1A3] = (5400σ̄2

4,nσ̄8,n − 2160θσ̄2
4,nσ̄6,n + 360θ2σ̄3

4,n)V −4n−3 +O(n−4),

E[A2
1A

2
2] = (192σ̄4,nσ̄8,n + 288σ̄2

6,n − 288θσ̄4,nσ̄6,n + 48θ2σ̄2
4,n)V −3n−2 +O(n−3),

E[A4
1A

2
2] = (1152σ̄2

4,nσ̄8,n + 3456σ̄4,nσ̄
2
6,n − 2880θσ̄2

4,nσ̄6,n + 480θ2σ̄3
4,n)V −4n−3 +O(n−4).

Lemma 2. Suppose Assumptions X and H hold true. Furthermore, assume that σt = σ over
t ∈ [0, 1]. Then

E[A1] = 0, E[A2
1] = n−1, E[A3

1] = α3n
−2, E[A4

1] = 3n−2 + (α4 − 3)n−3,

E[A5
1] = 10α3n

−3 +O(n−4), E[A6
1] = 15n−3 +O(n−4),

E[A1A2] = α3n
−1, E[A2

1A2] = (α4 − 1)n−2,

E[A3
1A2] = 3α3n

−2 +O(n−3), E[A4
1A2] = (6α4 + 4α2

3 − 6)n−3 +O(n−4),

E[A5
1A2] = 15α3n

−3 +O(n−4), E[A1A3] = α4n
−1,

E[A3
1A3] = 3α4n

−2 +O(n−3), E[A5
1A3] = 15α4n

−3 +O(n−4),

E[A2
1A

2
2] = (α4 + 2α2

3 − 1)n−2 +O(n−3), E[A4
1A

2
2] = (3α4 + 12α2

3 − 3)n−3 +O(n−4).
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