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RELATIVE ERROR ACCURATE STATISTIC BASED ON
NONPARAMETRIC LIKELIHOOD

LORENZO CAMPONOVO AND TAISUKE OTSU

Abstract. This paper develops a new test statistic for parameters defined by moment condi-

tions that exhibits desirable relative error properties for the approximation of tail area prob-

abilities. Our statistic, called the tilted exponential tilting (TET) statistic, is constructed by

estimating certain cumulant generating function under exponential tilting weights. We show

that the asymptotic p-value of the TET statistic can provide an accurate approximation to the

p-value of an infeasible saddlepoint statistic, which is asymptotically chi-squared distributed

with a relative error of order n−1 both in normal and large deviation regions. Numerical re-

sults illustrate the accuracy of the proposed TET statistic. Our results cover both just- and

over-identified moment condition models.

1. Introduction

This paper develops a new test statistic for parameters defined by moment conditions that
exhibits desirable relative error properties for the approximation of tail area probabilities. For this
problem, there are various test statistics available in the literature, such as the Wald, empirical
likelihood (Owen, 1988), exponential tilting (Efron, 1981, 1982, Kitamura and Stutzer, 1997,
and Imbens, Spady and Johnson, 1998), power divergence (Baggerly, 1998), and saddlepoint
statistics (Robinson, Ronchetti and Young, 2003, and Ma and Ronchetti, 2011), among others.
In particular, it is known that the empirical likelihood statistic admits the Bartlett correction,
a higher-order refinement for the absolute error of the type I error probability (DiCiccio, Hall
and Romano, 1991). This refinement in the absolute error is typically not achieved by other
statistics, such as exponential tilting (Jing and Wood, 1996, and Baggerly, 1998).

For statistical inference, researchers are commonly interested in the accuracy of approximations
for tail area probabilities or p-values of test statistics. For this purpose, the relative error rather
than the absolute one would be a more relevant measure of accuracy, and various procedures
typically based on saddlepoint approximations are developed (Tingley and Field, 1990, Daniels
and Young, 1991, Jing and Robinson, 1994, Robinson, Ronchetti and Young, 2003, and Kolassa
and Robinson, 2011, among others). In particular, Robinson, Ronchetti and Young (2003)
considered the situation where the cumulant generating function is known to the researcher and
developed a novel saddlepoint statistic that is asymptotically chi-squared distributed with a
relative error of order n−1 even in the large deviation region. Although this statistic is generally
infeasible due to the requirement on knowledge of the cumulant generating function, Robinson,
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Ronchetti and Young (2003) and Ma and Ronchetti (2011) proposed some feasible versions of
the saddlepoint statistic by using the exponential tilting weights (Efron, 1981, 1982).

In this paper, we propose a new test statistic that achieves desirable relative error properties
for the approximation of tail area probabilities. More precisely, our statistic is asymptotically
chi-squared distributed, and the asymptotic p-value approximations using the chi-squared dis-
tribution are very accurate even in the tails. The basic idea of our statistic is to note that the
conventional exponential tilting statistic is constructed from estimating the cumulant generating
function by the sample average, and to modify the cumulant estimation by using the exponential
tilting weights instead of the uniform weights n−1. In other words, we tilt the exponential tilting
statistic. Thus, the new statistic is called the tilted exponential tilting (TET) statistic.

We show that the TET statistic is asymptotically chi-squared distributed, and demonstrate
that its asymptotic p-value provides an accurate approximation to the p-value of some ideal
(but infeasible) saddlepoint statistic, which is also asymptotically chi-squared distributed with
a relative error of order n−1 both in normal and large deviation regions. We note that both the
TET and ideal statistics are new in the literature, and different from the saddlepoint statistics
discussed above. Furthermore, our results on the TET statistic cover both just- and over-
identified moment condition models.

Finally, we study through Monte Carlo simulations the accuracy of the proposed TET statis-
tic. We consider both just- and over-identified instrumental variable regression models. The
numerical results highlight a desirable accuracy of our test statistic. In particular, the empirical
quantiles of the TET statistic are extremely close to those of the limiting distribution even for
very small sample sizes.

2. Benchmark case

In this section, we present the basic idea of the new test statistic and its theoretical and
numerical properties under a benchmark setup. Section 2.1 introduces our TET statistic. Section
2.2 illustrates its finite sample accuracy through Monte Carlo simulation. In Section 2.3, we show
that the TET statistic has desirable relative error properties for the approximation of tail area
probabilities.

2.1. Tilted exponential tilting statistic. Suppose we observe an i.i.d. sample {Xi}ni=1 of
X. In this section, we focus on hypothesis testing for the null H0 : θ0 = 0 against the two-
sided alternative H1 : θ0 6= 0, where the p-dimensional vector of parameters θ0 is defined by
p-dimensional moment conditions

E[g(X, θ0)] = 0.

Since we do not specify the parametric distribution form of X, testing methods based on para-
metric likelihood theory, such as the likelihood ratio and score tests, are not applicable. However,
there are several ways to test H0 in this setting. For example, we can implement the Wald test
based on some estimator of θ0. Also based on some nonparametric likelihood, we can conduct
likelihood ratio or score type tests (see, e.g., Owen, 2001).
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We propose a new test statistic for H0, which exhibits a desirable finite sample accuracy. Our
test statistic is constructed by evaluating the exponential tilting statistic (Efron, 1981, 1982,
Kitamura and Stutzer, 1997, and Imbens, Spady and Johnson, 1998) under the exponential tilting
weights based on the restriction E[g(X, 0)] = 0. Let λ̂ be the solution of

∑n
i=1 e

λ̂′g(Xi,0)g(Xi, 0) =

0. The conventional exponential tilting statistic is written as

T et
n = −2 log

(
1

n

n∑
i=1

eλ̂
′g(Xi,0)

)
.

It is known that nT et
n converges in distribution to the chi-squared distribution with p degrees of

freedom under H0. This statistic is obtained by minimization of the empirical relative entropy

min
π1,...,πn

n∑
i=1

nπi log(nπi), s.t.
n∑
i=1

πig(Xi, 0) = 0,
n∑
i=1

πi = 1.

By applying the Lagrange multiplier method, the solution is written as

π̂i =
eλ̂
′g(Xi,0)∑n

j=1 e
λ̂′g(Xj ,0)

,

for i = 1, . . . , n. Note that by construction these optimal weights are positive and satisfy the mo-
ment condition

∑n
i=1 π̂ig(Xi, 0) = 0. Indeed, the empirical distribution using the weights {π̂i}ni=1

is an asymptotically efficient estimator of the distribution function of X under the restriction
E[g(X, 0)] = 0 (Brown and Newey, 1998).

Intuitively, the exponential tilting statistic T et
n is constructed by taking expectation of eλ̂′g(Xi,0)

under the empirical distribution with weights 1/n. Our proposal is to replace the uniform weights
by the optimal ones under H0, and to take expectation of eλ̂′g(Xi,0) under the tilted empirical
distribution with weights {π̂i}ni=1, that is

T tet
n = 2 log

(
n∑
i=1

π̂ie
λ̂′g(Xi,0)

)
= 2

[
log

(
n∑
i=1

e2λ̂′g(Xi,0)

)
− log

(
n∑
i=1

eλ̂
′g(Xi,0)

)]
.

We call this statistic the tilted exponential tilting (TET) statistic. As shown in the proof of
Theorem 1, the reason for the positive sign of T tet

n can be seen from a second-order expansion
around λ̂′g(Xi, 0) = 0,

nT tet
n = nλ̂′

[
n∑
i=1

π̂ig(Xi, 0)g(Xi, 0)′

]
λ̂+ op(1),

underH0, where we used
∑n

i=1 π̂ig(Xi, 0) = 0. It will be shown that the right hand side converges
in distribution to the chi-squared distribution with p degrees of freedom under H0. To make the
argument rigorous, we impose the following assumption.

Assumption 1. {Xi}ni=1 is i.i.d., E[|g(X, θ0)|ζ ] <∞ for some ζ > 2, and E[g(X, θ0)g(X, θ0)′]

is nonsingular.

All conditions are standard. Based on these conditions, the limiting null distribution of the
TET statistic is obtained as follows.
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Theorem 1. Under Assumption 1 and H0 : θ0 = 0, the TET statistic nT tet
n converges in

distribution to the chi-squared distribution with p degrees of freedom.

Therefore, under H0, the TET statistic nT tet
n is asymptotically equivalent to the exponential

tilting statistic nT et
n . We can also show that they have the same local power function under local

alternatives.

2.2. Simulation for benchmark case. To illustrate finite sample accuracy of the TET statis-
tic, we provide some simulation results. We generate random samples {Xi}ni=1 = {Yi,Wi, Zi}ni=1

of sizes n = 20, 40, 60, and 80 according to

Yi = Wiθ0 + Ui,

Wi = Ziπ0 + Vi,

where Zi ∼ N(0, 1),

(
Ui

Vi

)
∼ N

((
0

0

)
,

(
1 0.2

0.2 1

))
, θ0 = 0, and π0 = 0.8. The

parameter θ0 is defined by the moment condition E[g(X, θ0)] = E[Z(Y −Wθ0)] = 0. We are
interested in testing the null hypothesis H0 : θ0 = 0 against the alternative H1 : θ0 6= 0, and
compare the exponential tilting statistic nT etn , and the TET statistic nT tetn . Both statistics
converge in distribution to the χ2

1 distribution under H0. Figure 2.1 reports the q-q plots of the
empirical quantiles of these test statistics against those of the χ2

1 distribution. The number of
Monte Carlo replications is 20, 000.

The empirical quantiles of the TET statistic are extremely close to those of the limiting
χ2

1 distribution. The accuracy of the exponential tilting statistic increases as the sample size
increases. However, the TET always outperforms the exponential tilting. In the next subsection,
we provide some theoretical arguments which clarify the desirable accuracy of the TET statistic.

2.3. Relative error properties. In the definition of the TET statistic, we propose to take
expectation of eλ̂′g(Xi,0) under the tilted weights {π̂i}ni=1 satisfying

∑n
i=1 π̂ig(Xi, 0) = 0. To see

the rationale of our approach, consider the ideal (but infeasible) statistic

Tn = 2K(λ̂),

where K(λ) = logE[eλ
′g(X,0)] is the cumulant generating function of g(X, 0), and λ̂ solves∑n

i=1 e
λ̂′g(Xi,0)g(Xi, 0) = 0. Observe that Tn is infeasible because it involves expectation to

evaluate the cumulant. Furthermore, Tn is different from the saddlepoint statistic proposed in
Robinson, Ronchetti and Young (2003) because it does not involve any estimators of θ0.

Let Fp be the cumulative distribution function of the chi-squared distribution with p degrees
of freedom. The relative error property for the approximation of the tail area probability of Tn
is established as follows.

Theorem 2. Suppose that Assumptions 1 and 2 in the Appendix hold true. Then under H0 :

θ0 = 0,
Pr{nTn ≥ nt : F} = {1− Fp(nξ(t))}(1 +O(n−1)),

4
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Figure 2.1. Empirical quantiles of the exponential tilting statistic (solid line)
and TET statistic (dashed line) against quantiles of their asymptotic distribution.
In the top panels, from the left to right, the sample sizes are n = 20 and 40. In
the bottom panels, from the left to right, the sample sizes are n = 60 and 80.

uniformly over t ∈ (0, ε) for some ε > 0, where ξ(t) =
(√

t− logG(
√
t)

n
√
t

)2
and G(·) is defined in

(B.3) in the Appendix.

Assumption 2 is on the saddlepoint approximation of the density of E[g(X, 0)g(X, 0)]1/2λ̂.
This assumption is satisfied under mild conditions; see, e.g., Field (1982), Skovgaard (1990),
Jensen and Wood (1998), and Almudevar, Field and Robinson (2000). We note that the saddle-
point approximation error in (A.1) is of relative order O(n−1).

Theorem 2 provides an accurate approximation formula for the tail area probability of Tn.
This approximation holds not only for the normal region (i.e.,

√
nt is bounded) but also for the

large deviation region (i.e., t is bounded). This theorem shows that the ideal statistic Tn admits
relative error of order O(n−1) up to the large deviation region. Note that the relative error
would provide more meaningful measure for quality of tail area approximation compared to the
absolute one. Robinson, Ronchetti and Young (2003) established an analogous desirable relative
error property for their saddlepoint statistic, which is also infeasible in the present setup.

It does not seem to be possible to obtain such accurate approximation by other statistics.
For example, one may consider a quadratic form of the sample average 1

n

∑n
i=1 g(Xi, 0) as a test
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statistic. However, as shown in Osipov (1981) and argued in Kolassa and Robinson (2011, p.
3358), the relative error of the quadratic form statistic is at best of order n−1/4 in the large
deviation region. Therefore, we treat Tn as the ideal statistic and focus on approximating its
p-value by using the TET statistic.

The adjustment by the transform ξ(t) to achieve relative error refinement is analogous to the
one in Kolassa and Robinson (2011) for the (parametric) likelihood ratio statistic. In general, the
function G(·) requires numerical integration over a sphere of dimension p, but a simple Monte
Carlo approximation to any degree of accuracy required can be readily obtained; see Kolassa and
Robinson (2011) for a detail.

Motivated by the desirable relative error property of Tn, we now argue that the TET statistic
T tet
n provides an accurate approximation to the tail area probabilities of the ideal statistic Tn.

To this end, we introduce the function

Ktet(λ) = log

(
n∑
i=1

π̂o
i e
λ′g(xo

i ,0)

)
,

where {xo
i }ni=1 and {π̂o

i }ni=1 are the observed values of {Xi}ni=1 and {π̂i}ni=1, respectively. We
can see that the observed values of Tn and T tet

n are given by tn = 2K(λ̂o) and ttet
n = 2Ktet(λ̂o),

respectively, where λ̂o is the observed value of λ̂. Taylor expansions of K(λ) and Ktet(λ) around
λ = 0 yield

K(λ) =
1

2
λ′E[g(X, 0)2]λ+O(|λ|3),

Ktet(λ) =
1

2
λ′

(
n∑
i=1

π̂o
i g(xo

i , 0)2

)
λ+O(|λ|3).(2.1)

These expansions highlight some interesting analogies between Tn and T tet
n . By the argu-

ment in the proof of Theorem 1, the sample counterpart of the difference K(λ) − Ktet(λ) is
of order Op(n−1/2|λ|2). On the other hand, if we consider an analogous function Ket(λ) =

− log
(

1
n

∑n
i=1 e

λ′g(xo
i ,0)
)

for the exponential tilting statistic so that tet
n = 2Ket(λ̂o), then an

expansion yields

(2.2) Ket(λ) = −λ′ḡo − 1

2
λ′V̂ oλ+O(|λ|3),

where ḡo = 1
n

∑n
i=1 g(xo

i , 0) and V̂ o = 1
n

∑n
i=1(g(xo

i , 0) − ḡo)(g(xo
i , 0) − ḡo)′. In this case, the

sample counterpart of the difference K(λ)−Ket(λ) is of order Op(max{n−1/2|λ|, |λ|2}).
The following theorem shows that Ktet(λ) can provide an accurate approximation to the tail

area probabilities of Tn.

Theorem 3. Suppose that Assumptions 1 and 2 in the Appendix hold true. Then under H0 :

θ0 = 0,
1− Fp(nξ(K(λ))) = {1− Fp(nKtet(λ))}(1 + rn),

where the sample counterpart of rn is of order Op(n1/2|λ|2).

Theorem 3 shows that the TET statistic can provide an accurate approximation to the tail area
probability formula 1−Fp(nξ(K(λ))) for the ideal statistic Tn. The error of this approximation
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is relative and of order n1/2|λ|2. Therefore, in the normal region for λ = O(n−1/2), the relative
error is of order O(n−1/2). Beyond the normal region, e.g., λ = O(n−1/3), the relative error
approximation is of order O(n−1/6). On the other hand, it is clear from (2.2) that the function
Ket(λ) for exponential tilting does not have such a relative error property.

3. General case

In this section, we generalize the theoretical results obtained in the last section. Sections 3.1
and 3.2 consider testing for composite hypotheses and overidentifying restrictions, respectively.
Section 3.3 provides some simulation evidence.

3.1. Composite hypothesis test for just-identified model. In this subsection, we extend
the results for the benchmark case to composite hypothesis testing for just-identified moment
conditions. Let θ0 = (θ′10, θ

′
20)′. Suppose we wish to test the null hypothesis H0 : θ20 = 0 against

the two-sided alternative H1 : θ20 6= 0. In this case, the conventional exponential tilting statistic
may be written as

T et
n,c = −2 max

θ1∈Θ1

log

(
1

n

n∑
i=1

eλ̂(θ1)′g(Xi,θ1,0)

)
,

where λ̂(θ1) solves
∑n

i=1 e
λ̂(θ1)′g(Xi,θ1,0)g(Xi, θ1, 0) = 0 for each θ1. It is known that nT et

n,c con-
verges in distribution to the chi-squared distribution with q degrees of freedom underH0 : θ20 = 0,
where q is the dimension of θ20. Let θ̃1 be the solution of the above constrained maximization
for θ1 and θ̃ = (θ̃′1, 0

′)′. The TET statistic for the composite hypothesis is constructed as

T tet
n,c = 2 log

(
n∑
i=1

π̃ie
λ̃′g(Xi,θ̃)

)
= 2

[
log

(
n∑
i=1

e2λ̃′g(Xi,θ̃)

)
− log

(
n∑
i=1

eλ̃
′g(Xi,θ̃)

)]
,

where π̃i = eλ̃
′g(Xi,θ̃)∑n

j=1 e
λ̃′g(Xj,θ̃)

and λ̃ solves
∑n

i=1 e
λ̃′g(Xi,θ̃)g(Xi, θ̃) = 0. Similar to the last section,

we consider the ideal but infeasible statistic

Tn,c = 2K(λ̃, θ̃1(λ̃)),

where K(λ, θ1) = logE[eλ
′g(X,θ1,0)] and θ̃1(λ) solves E

[
eλ
′g(X,θ̃1(λ),0)λ′

(
∂g(X,θ̃1(λ),0)

∂θ′1

)]
= 0 for

each λ. To analyze the relation between the T tet
n,c and Tn,c consider the function Ktet(λ, θ1) =

log
(∑n

i=1 π̃
o
i e
λ′g(xo

i ,θ1,0)
)
, where {π̃o

i }ni=1 are the observed values of {π̃i}ni=1. Note that the ob-

served value of T tet
n,c is given by ttet

n,c = 2Ktet(λ̃o, θ̃tet
1 (λ̃o)), where λ̃o is the observed value of λ̃ and

θ̃tet
1 (λ) solves 1

n

∑n
i=1 e

λ′g(xo
i ,θ̃

tet
1 (λ),0)λ′

(
∂g(xo

i ,θ̃
tet
1 (λ),0)
∂θ′1

)
= 0 for each λ. To analyze the properties

of the TET statistic T tet
n,c , we modify Assumption 1 as follows.

Assumption 1’ 1. {Xi}ni=1 is i.i.d., θ10 ∈ intΘ1 is the unique solution of E[g(X, θ10, θ20)] = 0,
Θ1 is compact, g(x, θ1, θ20) is continuous at each θ1 ∈ Θ1 and is continuously differentiable
in a neighborhood N of θ10 for almost every x, E[supθ1∈Θ1

|g(X, θ1, θ20)|ζ ] < ∞ for some
ζ > 2, E[supθ1∈N |∂g(X, θ1, θ20)/∂θ′1|] < ∞, E[∂g(X, θ10, θ20)/∂θ′1] is full column rank, and
E[g(X, θ0)g(X, θ0)′] is nonsingular.

The relative error properties of Tn,c and T tet
n,c are presented as follows.
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Theorem 4. Suppose that Assumption 1’ holds true and that Assumption 2 is satisfied with
g̃(X, θ0) in (B.6) instead of g(X, 0). Then under H0 : θ20 = 0,

(i): the ideal statistic Tn,c satisfies

Pr{nTn,c ≥ nt : F} = {1− Fq(nξc(t))}(1 +O(n−1)),

uniformly over t ∈ (0, ε) for some ε > 0, where ξc(t) is defined as in ξ(t) (by replacing
g(X, 0) with g̃(X, θ0)),

(ii): Ktet(λ, θ1) satisfies

1− Fq(nξc(K(λ, θ̃1(λ)))) = {1− Fq(nKtet(λ, θ̃tet
1 (λ)))}(1 + rn,c),

where the sample counterpart of rn,c is of order Op(n1/2|λ|2).

Theorem 4 (i) highlights the desirable relative error property of the ideal statistic Tn,c. The-
orem 4 (ii) shows that the TET statistic can provide very accurate approximations of the tail
area probabilities of the ideal statistic Tn,c.

We close this section by a comparison with the saddlepoint statistic introduced in Ma and
Ronchetti (2011). In this case, their statistic is written as

2

[
log

(
n∑
i=1

eλ̃
′g(Xi,θ̃)

)
− log

(
n∑
i=1

eλ̃
′g(Xi,θ̃)+µ̂′g(Xi,θ̄1,θ̂2)

)]
,

where θ̂ = (θ̂′1, θ̂
′
2)′ solves

∑n
i=1 g(Xi, θ̂) = 0, µ̂ and θ̄1 solve

∑n
i=1 π̃ie

µ̂′g(Xi,θ̄1,0)g(Xi, θ̄1, θ̂2) = 0

and µ̂′
∑n

i=1 π̃ie
µ̂′g(Xi,θ̂)∂g(Xi, θ̄1, θ̂2)/∂θ′1 = 0. Note that this saddlepoint statistic requires to

solve several equations to obtain θ̂, θ̃, θ̄1, λ̃, and µ̂. In contrast, the TET statistic nT tet
n,c only

requires to solve for θ̃ and λ̃.

3.2. Overidentifying restriction test. In this subsection, we consider the case of overidenti-
fying moment restrictions E[g(X, θ0)] = 0, where the dimension d of the moment functions g is
larger than the dimension p of the unknown parameters θ0. In particular, we focus on testing
overidentifying restrictions, i.e., H0 : E[g(X, θ)] = 0 for some θ against H1 : E[g(X, θ)] 6= 0 for
any θ. This is a specification testing problem for the model specified by moment restrictions. In
this case, the conventional exponential tilting statistic may be written as

T et
n,v = −2 max

θ
log

(
1

n

n∑
i=1

eλ̂(θ)′g(Xi,θ)

)
,

where λ̂(θ) is defined in the last subsection. Based on Newey and Smith (2004), we can show
that nT et

n,v converges in distribution to the chi-squared distribution with d−p degrees of freedom
under the null hypothesis. Let θ̄ be the maximizer of the above optimization problem. The TET
statistic for the overidentifying restriction test is constructed as

T tet
n,v = 2 log

(
n∑
i=1

π̄ie
λ̄′g(Xi,θ̄)

)
= 2

[
log

(
n∑
i=1

e2λ̄′g(Xi,θ̄)

)
− log

(
n∑
i=1

eλ̄
′g(Xi,θ̄)

)]
,
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where π̄i = eλ̄
′g(Xi,θ̄)∑n

j=1 e
λ̄′g(Xj,θ̄)

and λ̄ solves
∑n

i=1 e
λ̄′g(Xi,θ̄)g(Xi, θ̄) = 0. In this case, the ideal but

infeasible statistic is defined as
Tn,v = 2K(λ̄, θ̄(λ)).

where θ̄(λ) solves E
[
eλ
′g(X,θ̄(λ))λ′

(
∂g(X,θ̄(λ))

∂θ′

)]
= 0. Next, consider the function Ktet(λ, θ) =

log
(∑n

i=1 π̄
o
i e
λ′g(xo

i ,θ)
)
, where {π̄o

i }ni=1 are the observed values of {π̄i}ni=1. Note that the observed
value of T tet

n,v is given by ttet
n,v = 2Ktet(λ̄o, θ̄tet(λ̄o)), where λ̄o is the observed value of λ̄ and θ̄tet(λ)

solves 1
n

∑n
i=1 e

λ′g(xo
i ,θ̄

tet(λ))λ′
(
∂g(xo

i ,θ̄
tet(λ))

∂θ′

)
= 0 for each λ. To analyze the properties of the TET

statistic T tet
n,v, we modify Assumption 1 as follows.

Assumption 1” 1. {Xi}ni=1 is i.i.d., θ0 ∈ intΘ is the unique solution of E[g(X, θ0)] = 0, Θ is
compact, g(x, θ) is continuous at each θ ∈ Θ and is continuously differentiable in a neighborhood
N of θ0 for almost every x, E[supθ∈Θ |g(X, θ)|ζ ] <∞ for some ζ > 2, E[supθ∈N |∂g(X, θ)/∂θ′|] <
∞, E[∂g(X, θ0)/∂θ′] is full column rank, and E[g(X, θ0)g(X, θ0)′] is nonsingular.

The relative error properties of Tn,v and T tet
n,v are presented as follows.

Theorem 5. Suppose that Assumption 1” holds true and the adapted version of Assumption 2
is satisfied. Then under H0 : E[g(X, θ0)] = 0,

(i): the ideal statistic Tn,v satisfies

Pr{nTn,v ≥ nt : F} = {1− Fd−p(nξv(t))}(1 +O(n−1)),

uniformly over t ∈ (0, ε) for some ε > 0, where ξv(t) is defined as in ξ(t),
(ii): Ktet(λ, θ) satisfies

1− Fd−p(nξv(K(λ, θ̄(λ)))) = {1− Fd−p(nKtet(λ, θ̄tet(λ)))}(1 + rn,v),

where the sample counterpart of rn,v is of order Op(n1/2|λ|2).

Theorem 5 shows that the desirable relative error properties of the TET statistic also hold
true in overidentified moment condition models.

3.3. Simulation for general case. In this subsection, we evaluate the finite sample perfor-
mance of the TET statistic for the overidentifying restrictions proposed in Section 3.2. We
generate random samples {Wi}ni=1 = {Yi, Xi, Z

′
i}ni=1 of sizes n = 30, 60, 90, and 120 according

to

Yi = Xiθ0 + Ui,

Xi = Z ′iπ0 + Vi,

where Zi =

(
Z1i

Z2i

)
∼ N

((
0

0

)
,

(
1 0

0 1

))
,

(
Ui

Vi

)
∼ N

((
0

0

)
,

(
1 0.2

0.2 1

))
, and

π0 = (0.8, 0.6)′. The true parameter value is set as θ0 = 1. We are interested in testing the
overidentifying restrictions H0 : E[Z(Y −Xθ)] = 0 for some θ against H1 : E[Z(Y −Xθ)] 6= 0

for any θ. To this end, we consider the exponential tilting statistic T et
n,v and TET statistic T tet

n,v.
Both statistics converge in distribution to the χ2

1 distribution under H0. Figure 3.1 reports the

9



q-q plots of the empirical quantiles of these test statistics against those of the χ2
1 distribution.

The number of Monte Carlo replications is 20, 000.
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Figure 3.1. Empirical quantiles of the exponential tilting statistic (solid line)
and TET statistic (dashed line) against quantiles of their asymptotic distribution.
In the top panels, from the left to right, the sample sizes are n = 30 and 60. In
the bottom panels, from the left to right, the sample sizes are n = 90 and 120.

The empirical quantiles of the TET statistic are extremely close to those of the limiting dis-
tribution. The accuracy of the exponential tilting statistic increases as the sample size increases.
However, the TET always outperforms the exponential tilting.
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Appendix A. Notation and assumptions

Let ǧ(X) = E[g(X, 0)g(X, 0)′]−1/2g(X, 0) and λ̌ = E[g(X, 0)g(X, 0)′]1/2λ̂. To define the
saddlepoint approximation for the density of λ̌, we introduce the following notation:

ψ(x, y) = −ey′ǧ(x)ǧ(x),

K(t, y) = logE[et
′ψ(X,y)],

t(y) = solution of
∂K(t(y), y)

∂t
= 0,

h(y) = K(t(y), y),

B(y) = enK(t(y),y)E

[
et(y)′ψ(X,y)∂ψ(X, y)

∂y

]
,

Σ(y) = enK(t(y),y)E[et(y)′ψ(X,y)ψ(X, y)ψ(X, y)′].

Let detA be the determinant of a matrix A. For Theorem 2, we impose the following assumption.

Assumption 2. The density fλ̌ of λ̌ exists and has the saddlepoint approximation

(A.1) fλ̌(y) =
( n

2π

)p/2
e−nh(y) detB(y)√

det Σ(y)
(1 +O(n−1)).

Appendix B. Proofs

B.1. Proof of Theorem 1. Let gi = g(Xi, 0). Using
∑n

i=1 π̂i = 1 and
∑n

i=1 π̂igi = 0, an
expansion around λ̂ = 0 implies

nT tet
n = nλ̂′

[
n∑
i=1

π̂ie
λ̄′gigig

′
i

]
λ̂,

where λ̄ is a point on the line joining λ̂ and 0. Let M̂ = − 1
n

∑n
j=1 e

λ̂′gj . An expansion around
M̂ = −1 implies

nT tet
n = −M̂−1nλ̂′

[
1

n

n∑
i=1

e(λ̂+λ̄)′gigig
′
i

]
λ̂

= nλ̂′

[
1

n

n∑
i=1

e(λ̂+λ̄)′gigig
′
i

]
λ̂+ M̄−2nλ̂′

[
1

n

n∑
i=1

e(λ̂+λ̄)′gigig
′
i

]
λ̂(M̂ + 1)

= T1 + T2,

where M̄ is a point on the line joining M̂ and −1. By applying the argument in Newey and
Smith (2004, pp. 239-240), we can show max1≤i≤n |−eλ̂

′gi +1| p→ 0 and max1≤i≤n |eλ̄
′gi +1| p→ 0.

An expansion of
∑n

i=1 e
λ̂′gigi = 0 around λ̂ = 0 implies

λ̂ = −

(
1

n

n∑
i=1

gig
′
i

)−1(
1

n

n∑
i=1

gi

)
+ op(n

−1/2).

Combining these results,

T1 =

(
1√
n

n∑
i=1

gi

)′(
1

n

n∑
i=1

gig
′
i

)−1(
1√
n

n∑
i=1

gi

)
+ op(1)

d→ χ2
p.

11



Finally, by max1≤i≤n | − eλ̂
′gi + 1| p→ 0, it holds M̂ + 1

p→ 0 and then T2
p→ 0. Therefore, the

conclusion follows.

B.2. Proof of Theorem 2. The basic idea of the proof is similar to that of Robinson, Ronchetti
and Young (2003, Theorem 1). Let m(λ) = logE[eλ

′ǧ(X)] so that Tn = 2m(λ̌). By Assumption
2, the tail probability of Tn is approximated as

Pr{nTn ≥ nt : F} = Pr{2m(λ̌) ≥ t : F}

=

ˆ
{y:2m(y)≥t}

( n
2π

)p/2
e−nh(y) detB(y)√

det Σ(y)
dy(1 +O(n−1))

≡ A(1 +O(n−1)).(B.1)

To evaluate the integral A, consider the polar transformation y 7→ (r, s) (with radius r and
angle s) and another transformation (r, s) 7→ (u, s) with u =

√
2m(y). The Jacobians of these

transformations are J1(y) = (y′y)
p−1

2 and J2(y) =
√
y′y
√

2m(y)

m1(y)′y , respectively, where m1(y) =

dm(y)/dy. Define the transform y 7→ (u, s) as y = ϕ(u, s). By the change of variables, the above
integral is written as

(B.2) A =

ˆ ∞
√
t
cnu

p−1e−nu
2/2

{ˆ
S
δ(u, s)ds

}
du,

where cn = np/2/(2p/2−1Γ(p/2)), S is the p-dimensional unit sphere, and

δ(u, s) =
enu

2/2−nh(ϕ(u,s))Γ(p/2)

2πp/2up−1

detB(ϕ(u, s))√
det Σ(ϕ(u, s))

J1(ϕ(u, s))J2(ϕ(u, s)).

We expand each term in δ(u, s). First, note that

detB(ϕ(u, s)) = detB(0){1 + rξ1(s) + r2R1(r, s)},
1√

det Σ(ϕ(u, s))
=

1√
det Σ(0)

{1 + rξ2(s) + r2R2(r, s)},

where ξ1 and ξ2 are linear combinations of components of s, and R1 and R2 are uniformly
bounded for r bounded. Due to the normalization E[ǧ(X)ǧ(X)′] = I, we have detB(0)√

det Σ(0)
= 1.

Thus, other terms are expanded as

enu
2/2−nh(ϕ(u,s)) = 1 + r2R3(r, s),

J1(y) = rp−1,

J2(y) = 1 + rξ4(s) + r2R4(r, s),

u = r{1 + rξ5(s) + r2R5(r, s)},

where ξ4 and ξ5 are linear combinations of terms of the form sisjsk, and R3, R4 and R5 are
uniformly bounded for r bounded. Combining all these expansions,

δ(u, s) =
Γ(p/2)

2πp/2
{1 + ub(s) + u2R6(u, s)},

12



where R6 is uniformly bounded for r bounded, and b(s) is a linear combination of odd functions
satisfying

´
S b(s)ds = 0. Thus, by taking integral,

(B.3) G(u) ≡
ˆ
S
δ(u, s)ds = 1 + u2k(u),

for some k(u) bounded over u ∈ (0, ε). Also we can see that dG(u)/du = uk1(u) for some k1(u)

bounded over u ∈ (0, ε).
From (B.1)-(B.3),

Pr{nTn ≥ nt : F} =

ˆ ∞
√
t
cnu

p−1e−nu
2/2G(u)du(1 +O(n−1))

=

ˆ ∞
√
t
cnu

p−1e−n(u−logG(u)/(nu))2/2du(1 +O(n−1)),

where the second equality follows from boundedness of k(u) and k1(u). The conclusion follows
by the change of variables v = u− logG(u)/(nu) and boundedness of k(u) and k1(u).

B.3. Proof of Theorem 3. Using (B.1)-(B.3) in the proof of Theorem 2 and integration by
parts, we have

(B.4) 1−Fp(nξ(K(λ))) = {1−Fp(nK(λ))}(1+O(n−1))+
cn
n
K(λ)

p
2 e−

nK(λ)
2

[
G(
√
K(λ))− 1

K(λ)

]
.

For a random variable χ2
p following the chi-squared distribution with p degrees of freedom, we

have

(B.5) Pr{χ2
p ≥ u} ≥ Ce−u/2up/2−1,

for some constant C > 0. By the mean-value theorem,

Fp(nK(λ)) = Fp(nK
tet(λ)) +

e−ū/2ūp/2−1

2p/2Γ(p/2)
(nKtet(λ)− nK(λ)),

for some ū between nK(λ) and nKtet(λ). Also note that nKtet(λ) − nK(λ) = rn, where the
sample counterpart of rn is of order Op(n1/2|λ|2). Combining these results,

1− Fp(nK(λ))

1− Fp(nKtet(λ))
= 1 + r′n,

where the sample counterpart of r′n is of order Op(n1/2|λ|2).
Finally, consider the second term on the right hand side of (B.4). By the definition of G(u) =

1 + u2k(u) for some k(u) bounded over u ∈ (0, ε), the sample counterpart of
[
G(
√
K(λ))−1

K(λ)

]
is of

order Op(1). Also, by (B.5), we have

1− Fp(nKtet(λ)) ≥ Ce−nKtet(λ)/2(nKtet(λ))p/2−1,

for some C > 0. Therefore, by the definition of cn = np/2/(2p/2−1Γ(p/2)) and expansions in
(2.1), we have

cn
n
K(λ)

p
2 e−

nK(λ)
2

[
G(
√
K(λ))− 1

K(λ)

]
(1− Fp(nKtet(λ)))−1 = r′′n.

13



where the sample counterpart of r′′n is of order Op(|λ|2). This concludes the proof of Theorem 3.

B.4. Proof of Theorem 4.

Proof of Part (i). Let Ω = E[g(X, θ0)g(X, θ0)′] and M = Ω−1/2E[∂g(X, θ0)/∂θ′1]. By the spec-
tral decomposition of the idempotent matrix (Czellar and Ronchetti, 2010), there exists a matrix
C = [C1 : C2] such that

M(M ′M)−1M ′ = C

[
Iq 0

0 0(p−q)×(p−q)

]
C ′,

and C ′C = CC ′ = Ip. Based on Newey and Smith (2004, p. 240), we can see that
√
nλ̃ is

asymptotically equivalent to
√
nΩ−1/2C2γ̃, where γ̃ solves

n∑
i=1

eγ̃
′g̃(Xi,θ0)g̃(Xi, θ0) = 0,

where

(B.6) g̃(X, θ0) = C ′2Ω−1/2g(X, θ0).

The saddlepoint density of γ̃ is given by (A.1) with replacement of g(Xi, θ0) with g̃(Xi, θ0). Let
K̃(γ) = K(Ω−1/2C2γ, θ̃1(Ω−1/2C2γ)). We can also see that

Pr{nTn,c ≥ ntn,c : F} = Pr{2nK̃(γ̃) ≥ nK̃(γ̃o) : F}(1 +O(e−nε)),

for any ε > 0 small enough. Then the conclusion follows as in the proof of Theorem 2 by replacing
hλ(y) = logE[ey

′g(X,0)] with logE[ey
′g̃(X,θ0)].

Proof of Part (ii). Using the spectral decomposition of idempotent matrix adopted in the proof
of (i), we can show that nKtet(λ, θ̃tet

1 (λ)) − nK(λ, θ̃1(λ)) = O(n1/2|λ|2). Therefore, (ii) follows
by using the same arguments adopted for the proof of Theorem 3.

B.5. Proof of Theorem 5. The proof is similar to that of Theorem 4.
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