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Abstract

We study the validity of bootstrap methods in approximating the sampling distribution

of penalized GMM estimators with oracle properties. More precisely, we focus on bridge

estimators with Lq penalty for 0 < q < 1, and adaptive lasso estimators. We show that

the nonparametric bootstrap with recentered moment conditions provides a valid method

for approximating the distribution of these estimators. Furthermore, using the bootstrap

approach, we also propose a data-driven method for the selection of tuning parameters in

the penalization terms. Monte Carlo simulations confirm the reliability and accuracy of

the bootstrap procedure. The empirical coverages for the active variables implied by the

nonparametric bootstrap are always very close to the nominal coverage probabilities.

JEL Classification: C12, C13, C52.

Keywords: Nonparametric Bootstrap, Penalized GMM Estimators, Oracle Properties.

∗E-mail: l.camponovo@surrey.ac.uk. Address: Guildford, Surrey, GU2 7XH, UK.

1



1 Introduction

Since Hansen (1982), the generalized method of moments (GMM) has attained widespread ap-
plicability in various statistics and econometrics problems. The GMM provides a powerful tool
for introducing statistical inference in several economic and financial models that are specified
by some moment conditions; see, e.g., Hall (2005) for a review of the GMM. Important examples
include instrumental variable regression models, where the GMM makes use of the orthogonality
conditions to allow for efficient estimation in the presence of heteroskedasticity of unknown form.

In spite of a consistent (and efficient) estimate of the parameter of interest, GMM estimators
do not perform variable selection. To overcome this problem, in the spirit of Frank and Friedman
(1993), Tibshirani (1996), Fu (1998), Knight and Fu (2000), Fan and Li (2001) and Zou (2006),
among others, recent research proposes penalized GMM estimators; see, e.g., Caner (2009) and
Caner and Zhang (2014). By adding appropriate penalization terms in the GMM estimation
criterion, penalized GMM estimators may achieve the so-called oracle properties. More precisely,
they may simultaneously perform correct variable selection, and provide efficient estimates of
the nonzero coefficients as if only the relevant variables had been included in the model.

In this paper, we study the validity of bootstrap methods in approximating the sampling
distribution of penalized GMM estimators with oracle properties. More precisely, we focus on
bridge estimators with Lq penalty for 0 < q < 1, and adaptive lasso estimators. In particular,
we show that the nonparametric bootstrap with recentered moments conditions provides a valid
method for approximating the distribution of these estimators. Furthermore, using the boot-
strap approach, we also propose a data-driven method for the selection of tuning parameters in
the penalization terms. In our study, we mainly consider settings where the dimension of the
parameter of interest dθ and the number of moment conditions dg are fixed, while the sample
size n is large. However, in principle the nonparametric bootstrap can be applied also to settings
where both dθ and dg may depend on the sample size n.

Recently, many authors have proposed inference procedures for penalized estimators, in par-
ticular in linear models. Some of these procedures rely on resampling methods, such as Chatterjee
and Lahiri (2010, 2011, 2013), Minnier et al. (2011) and Camponovo (2015). Another class of
inference methods considers a desparsification approach, which removes the bias introduced by
shrinkage and constructs appropriate approximate inverses of the empirical Gram matrix; see,
e.g., Zhang and Zhang (2014) and van de Geer et al. (2014). Lockhart et al. (2014) proposed
a covariance statistic for testing the significance of predictors. Taylor et al. (2014) introduced
a new class of test statistics for forward stepwise and least-angle regression that produces exact
post-model-selection p-values. Belloni et al. (2014 a,b) defined inference methods for single

2



coefficients that explicitly account for inevitable model selection errors in the asymptotic ap-
proximations. Our work is mostly related to that of Camponovo (2015), which focuses on the
nonparametric bootstrap for lasso estimators in heteroskedastic linear regression models. Our
results supplement previous findings by studying the validity of the nonparametric bootstrap for
more general (nonlinear) penalized GMM estimators.

Finally, we study the accuracy of the nonparametric bootstrap through Monte Carlo simula-
tions in instrumental variable regression models. The bootstrap approach ensures very accurate
inference for the active variables. Indeed, the empirical coverages for the active variables implied
by the nonparametric bootstrap are always very close to the nominal coverage probabilities. Fur-
thermore, for the inactive variables the nonparametric bootstrap provides very short confidence
intervals with empirical coverage converging to 1. Indeed, because of the variable selection prop-
erty, the penalized GMM estimates of zero coefficients collapse to 0 asymptotically. Therefore,
in this case the empirical coverage of confidence intervals should converge to 1 as n increases;
see e.g., Minnier et al. (2011) for similar empirical findings.

The rest of the paper is organized as follows. In Section 2, we introduce the model and
notation. In Section 3, we study the validity of bootstrap approximations for the sampling
distribution of penalized GMM estimators with oracle properties. In Section 4, we propose a
data-driven method for the selection of the tuning parameter. In Section 5, we present the Monte
Carlo findings. Finally, Section 6 concludes.

2 Penalized GMM Estimators

In Section 2.1, we introduce the penalized GMM estimators, while in Section 2.2 we present
their asymptotic properties.

2.1 Model and Notation

Let (X1, . . . , Xn) be an iid random sample from a probability distribution F . Consider the
moment conditions E[g(Xi, θ0)] = 0, where g(·, ·) is a Rdg -valued function, θ0 is the true value of
the unknown parameter θ ∈ Θ ⊂ Rdθ , and dg ≥ dθ. Throughout the paper, we assume that both
dθ and dg are fixed, and the sample size n is large. A common way to estimate the unknown
parameter of interest relies on the GMM estimator θ̂n solution of

θ̂n = arg min
θ∈Θ

(
1

n

n∑
i=1

g(Xi, θ)

)′
Sn

(
1

n

n∑
i=1

g(Xi, θ)

)
, (1)
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where Sn denotes a sequence of positive definite symmetric dg × dg matrices that converge in
probability to a positive definite symmetric matrix S0.

Example 1. Consider the linear regression model,

Yi = W ′
iθ0 + Ui,

i = 1, . . . , n, where Yi ∈ R, and the regressor Wi = (Wi,1, . . . ,Wi,dθ)
′ ∈ Rdθ may be correlated to

the error term Ui ∈ R. Suppose that there exists a dg-dimensional random vector of instruments
Zi = (Zi,1, . . . , Zi,dg)

′, with E[Zi,jUi] = 0, for j = 1, . . . , dg. Then, we can easily verify that
θ0 satisfies the moment conditions E[g(Xi, θ0)] = 0, with Xi = (Yi,W

′
i , Z

′
i)
′ and g(Xi, θ) =(

(Yi −W ′
iθ)Zi,1, . . . , (Yi −W ′

iθ)Zi,dg
)′.

Under some regularity conditions, θ̂n is a consistent estimator of θ0 with normal limit distri-
bution; see, e.g., Hansen (1982). Let A = {i : θ0,i 6= 0} denotes the set of the nonzero coefficients
of θ0 = (θ0,1, . . . , θ0,dθ)

′. Assume that the number of elements in set A is |A| = dA < dθ. Sim-
ilarly, let Ân = {i : θ̂n,i 6= 0}, where θ̂n = (θ̂n,1, . . . , θ̂n,dθ)

′. Then, in general |Ân| = dθ 6= dA.
Thus, in spite of a consistent estimate of the unknown parameter, GMM estimators do not per-
form variable selection. To overcome this problem in iid linear regression models, recent research
proposes penalized least squares estimators that combine consistent (and efficient) parameter
estimation and variable selection in one step. Examples of penalized least squares estimators
include bridge estimators with Lq penalty for 0 < q < 1 (see, e.g., Frank and Friedman, 1993,
Fu, 1998, and Knight and Fu, 2000), and adaptive lasso estimators (see, e.g., Zou, 2006). By
extending these estimators to our setting, we introduce the penalized GMM estimators

θ̌n = arg min
θ∈Θ

(
1

n

n∑
i=1

g(Xi, θ)

)′
Sn

(
1

n

n∑
i=1

g(Xi, θ)

)
+
λn
n

dθ∑
i=1

λγn,i|θi|q, (2)

where λn,i = 1/|θ̂n,i|, λn is a tuning parameter, and for γ and q we consider two cases: either
(i) γ = 0 and 0 < q < 1 (bridge estimators) or (ii) γ = q = 1 (adaptive lasso estimators). As
pointed out in Zou (2006), in the definition of the adaptive lasso we could also consider the more
general case q = 1 and γ > 0. For brevity, we only consider the case γ = q = 1, however similar
results established in this paper can be obtained also when q = 1 and γ > 0. In the next section,
we derive the asymptotic properties of the penalized GMM estimators.

2.2 Penalized GMM Estimators and Oracle Properties

In iid linear regression models, bridge estimators with Lq penalty for 0 < q < 1, and adaptive
lasso estimators possess the so-called oracle properties. More precisely, they simultaneously
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perform correct variable selection, and provide efficient estimates of the nonzero coefficients as
if only the relevant variables had been included in the model. In this section, we show that
the penalized GMM estimators introduced in (2) feature these properties also in our general
setting. First, we introduce some notation. Let θA0 and θA

c

0 denote the sub-vectors of the
nonzero and zero coefficients of θ0, respectively. Similarly, let θ̌An and θ̌Acn denote the penalized
GMM estimators of θA0 and θA

c

0 , respectively. Finally, let Ǎn = {i : θ̌n,i 6= 0}, where θ̌n =

(θ̌n,1, . . . , θ̌n,dθ)
′. Before presenting the asymptotic properties of penalized GMM estimators, we

introduce following assumptions.

Assumption 1.

(a) (X1, . . . , Xn) are iid observations of X ∼ F , for some probability distribution F .

(b) θ0 is the unique solution in Θ of E[g(X, θ0)] = 0, Θ is compact, and θ0 is an interior point
of Θ.

(c) g(X, θ) is Lipschitz continuous on Θ, i.e., ‖g(X, θ1)− g(X, θ2)‖ ≤ L‖θ1 − θ2‖ a.s. for all
θ1, θ2 ∈ Θ, for some constant L. Also ∂

∂θ
g(X, θ) is Lipschitz continuous on Θ.

(d) For some r ≥ 2, E[‖g(X, θ)‖2r] <∞, and E[‖ ∂
∂θ
g(X, θ)‖r] <∞, for all θ ∈ Θ.

(e) (i) Ω0 = E[g(X, θ0)g(X, θ0)′] is positive definite. (ii) D0 = E[ ∂
∂θ
g(X, θ)] is of full rank.

(iii) Sn converges in probability to a positive definite symmetric matrix S0.

Assumption 1 provides a set of conditions that are typically required for the consistency and
asymptotic normality of GMM estimators and bootstrap approximations. The oracle properties
of penalized GMM estimators are summarized in the next lemma.

Lemma 1. Suppose that Assumption 1 holds. Furthermore, consider the covariance matrix
V0 = (D′0S0D0)−1D′0S0Ω0S0D0(D′0S0D0)−1. If either (i) λn/

√
nq → ∞ and λn/

√
n → 0, for

γ = 0 and 0 < q < 1, or (ii) λn →∞ and λn/
√
n→ 0, for γ = q = 1, then, as n→∞,

(I)
√
nθ̌A

c

n converges in probability to 0.

(II) The law of
√
n
(
θ̌An − θA0

)
converges weakly to normal with mean 0 and covariance V A

0 ,
where V A

0 is the sub-matrix of V0 for the true subset model of nonzero coefficients of θ0.

(III) limn→∞ P (Ǎn = A) = 1.

Statement (III) of Lemma 1 establishes that the penalized GMM estimators asymptotically
identify the sub-vector of the nonzero coefficients of θ0. Furthermore, statement (II) shows that
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the penalized GMM estimators for the nonzero coefficients has the same efficiency of the GMM
estimator based on the true subset model. In particular, by considering a sequence Sn that
converges in probability to Ω−1

0 , for instance Sn =
(

1
n

∑n
i=1 g(Xi, θ̂n)g(Xi, θ̂n)′

)−1

, we can note
that the penalized GMM estimators for the nonzero coefficients achieve the same efficiency of
the (efficient) two-step GMM estimator for the true subset model.

Remark 1. The results in Lemma 1 are subcases of findings established in Caner (2009) and
Caner and Zhang (2014). Indeed, Lemma 1 can be extended also to high-dimensional settings
where dθ and dg may depend on the sample size n. For instance, Caner and Zhang (2014) recently
establish oracle properties of adaptive elastic net estimators in moment condition models when
dθ →∞ and dg →∞, but dg/n→ 0.

Remark 2. To prove parts (I) and (II) of Lemma 1, we extend the approach adopted in the
proof of Theorem 2 in Zou (2006) to our nonlinear moment condition model. More precisely,
first we show that

√
n(θ̌n − θ0) minimizes a particular random process. Then, we compute the

limit and the minimum of this random process. Finally, we apply results in Geyer (1994). On
the other hand, to prove part (III) of Lemma 1, we use similar arguments adopted in the proof
of Lemma 5 in Fan and Peng (2004).

3 Bootstrap for Penalized GMM Estimators

Since in our setting we do not have parametric information on the data generating process, the
standard approach to bootstrapping is the nonparametric bootstrap with recentered moment
conditions proposed in Hall and Horowitz (1996), Andrews (2002), and Camponovo (2016),
among others. The nonparametric bootstrap constructs random samples (X∗1 , . . . , X

∗
n) by se-

lecting from (X1, . . . , Xn) with uniform weight 1/n with replacement. Furthermore, we replace
the moment function g(X∗i , θ) with g∗(X∗i , θ) = g(X∗i , θ)− 1

n

∑n
i=1 g(Xi, θ̌n). The recentering en-

sures that the bootstrap moments E∗[g(X∗i , θ̌n)] = 0, when θ = θ̌n, which mimics the population
moments E[g(Xi, θ)] = 0, when θ = θ0. Consider the bootstrap penalized GMM estimators

θ̌∗n = arg min
θ∈Θ

(
1

n

n∑
i=1

g∗(X∗i , θ)

)′
Sn

(
1

n

n∑
i=1

g∗(X∗i , θ)

)
+
λn
n

dθ∑
i=1

(λ∗n,i)
γ|θi|q, (3)

where λ∗n,i = 1/|θ̂∗n,i|, θ̂∗n = (θ̂∗n,1, . . . , θ̂
∗
n,dθ

)′ is the GMM estimator solution of (1) based on the
bootstrap sample (X∗1 , . . . , X

∗
n), λn is a tuning parameter, and either (i) γ = 0 and 0 < q < 1,

or (ii) γ = q = 1. The nonparametric bootstrap approximates the sampling distribution of
√
n(θ̌n−θ0) with the conditional distribution of

√
n(θ̌∗n− θ̌n) given the observations (X1, . . . , Xn).
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Let θ̌A∗n and θ̌Ac∗n denote the bootstrap penalized GMM estimators of θA0 and θAc0 , respectively.
In the next theorem, we prove the validity of the bootstrap approximation.

Theorem 1. Suppose that Assumption 1 holds. If either (i) λn/
√
nq →∞ and λn/

√
n→ 0, for

γ = 0 and 0 < q < 1, or (ii) λn →∞ and λn/
√
n→ 0, for γ = q = 1, then, as n→∞,

(I)
√
nθ̌A

c∗
n converges in conditional probability to 0.

(II) The conditional law of
√
n
(
θ̌A∗n − θ̌An

)
converges weakly to normal with mean 0 and covari-

ance V A
0 .

The results in Theorem 1 show that the nonparametric bootstrap provides a valid approach
for approximating the sampling distribution of penalized GMM estimators. Furthermore, by
adapting the results in Corollary 3.2 in Chatterje and Lahiri (2011) to our setting, we can show
that the nonparametric bootstrap can also be applied for the construction of confidence sets for
the unknown parameter of interest.

Remark 3. To prove Theorem 1, we extend the approach adopted in the proof of Theorem 2 in
Zou (2006) to our bootstrap nonlinear moment condition model. More precisely, first we show
that

√
n(θ̌∗n − θ̌n) minimizes a particular random process. Then, we compute the limit of this

process. To this end, we consider the conditional probability given the sample (X1, . . . , Xn), and
compute the limit by successively conditioning on a sequence of samples, as n→∞. Finally, we
compute the minimum of this random process and apply results in Geyer (1994).

4 Selection of the Tuning Parameter

The accuracy of penalized GMM estimators may heavily depend on the selection of λn. By
adapting the nonparametric bootstrap, we can introduce a data-driven method for the selection
of this tuning parameter in the spirit of Hall et al. (2009), Chatterje and Lahiri (2011) and
Camponovo (2015). The key idea of our approach is to select the optimal tuning parameter that
minimizes the estimated mean squared error of the adaptive lasso estimator θ̌n.

To this end, also in this case we replace the moment function g(X∗i , θ) with g̃∗(X∗i , θ) =

g(X∗i , θ) − 1
n

∑n
i=1 g(Xi, θ̂n). Note that instead of recentering with respect to the penalized

GMM estimator θ̌n, we recenter with respect to the GMM estimator θ̂n that does not depend
on the selection of λn. Furthermore, we introduce the recentered bootstrap penalized GMM
estimators

θ̃∗n(λn) = arg min
θ∈Θ

(
1

n

n∑
i=1

g̃∗(X∗i , θ)

)′
Sn

(
1

n

n∑
i=1

g̃∗(X∗i , θ)

)
+
λn
n

dθ∑
i=1

(λ∗n,i)
γ|θi − θ̂n,iI(θ̌n,i = 0)|q, (4)
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where λ∗n,i = 1/|θ̂∗n,i|, λn is a tuning parameter, I is the indicator function and either (i) γ = 0

and 0 < q < 1, or (ii) γ = q = 1.
In the penalization term in (4) we recenter with respect to θ̂n,iI(θ̌n,i = 0). This recentering has

no impact on the nonzero coefficients of θ0 for large n. Indeed, if θ0,i 6= 0, then |θ̌n,i| > 0 for large
n with high probability, and consequently θi− θ̂n,iI(θ̌n,i = 0) = θi. On the other hand, if θ0,i = 0,
then θ̌n,i = 0 for large n with high probability, and consequently θi − θ̂n,iI(θ̌n,i = 0) = θi − θ̂n,i.
Therefore, the penalization term in (4) shrinks the bootstrap estimates of zero coefficients of θ0

to the GMM estimates. This adjustment exactly mimics the standard penalization term that
shrinks the estimates of zero coefficients of θ0 to 0; see, Camponovo (2015) for further details on
this approach. Finally, we estimate the mean squared error E[‖θ̌n − θ0‖2] by

φ(λn) = E∗[‖θ̃∗n(λn)− θ̂n‖2], (5)

where E∗ denotes the expectation with respect to the distribution of the bootstrap sample
conditional on the original sample, and select the optimal value λ̂n that minimizes (5). In the
Monte Carlo analysis presented in Section 5, we study through Monte Carlo simulations the
accuracy of the nonparametric bootstrap approach combined with this data-driven method for
the selection of the tuning parameter.

5 Monte Carlo

In this section, we study the accuracy of inference based on GMM estimators with normal
approximation, and adaptive lasso penalized GMM estimators with the nonparametric bootstrap.
For the adaptive lasso penalized GMM estimators, we select the tuning parameters λn according
to the data-driven method introduced in Remark 4. The number of random samples is N = 2000,
and the number of bootstrap replications is B = 299.

In the first exercise, we consider the setting introduced in Example 1 with n = 150, 300,
dθ = 20, and dg = 30, 40. The true value θ0 contains five large coefficients θ0,1 = · · · = θ0,5 = 1,
five moderate coefficients θ0,6 = · · · = θ0,10 = 0.5, and ten noise coefficients θ0,11 = · · · =

θ0,20 = 0. For the covariates and the error terms, we assume Wi,t ∼ N(0, 1), and Ui ∼ N(0, σj),
j = 1, 2, with σ1 = 1 and σ2 = 1

dθ

∑dθ
i=1W

2
i,t. Furthermore, we consider strong instruments

Zi,t ∼ N(0, 1) with E[Wi,tZi,t] uniformly selected in the interval [0.6, 0.9]. In Tables 1 and 2, we
report the empirical coverages and the mean of the length of symmetric 0.95-confidence intervals
for large, moderate and noise coefficients. For nonzero coefficients, the nonparametric bootstrap
provides empirical coverages very close to 0.95, and always outperforms inference based on
GMM estimator and normal approximation. For zero coefficients, the empirical coverages of
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normal approximation with GMM estimator are slightly smaller than 0.95. On the other hand,
the nonparametric bootstrap with adaptive lasso penalized GMM estimator provide shorter
confidence intervals with coverage converging to 1. Indeed, in Lemma 1 we show that the
penalized GMM estimates of zero coefficients collapse to 0 asymptotically. Therefore, in this
case the coverage of confidence intervals should converge to 1 as n increases; see e.g., Minnier,
et al. (2011) for similar empirical findings.

In the second exercise, we consider the setting introduced in Example 1 with n = 100,
dθ = 10, and dg = 20, 30. For the covariates and the error terms we assume Wi,t ∼ N(0, 1)

and Ui ∼ N(0, 1). Furthermore, also in this case, we consider strong instruments Zi,t ∼ N(0, 1)

with E[Wi,tZi,t] uniformly selected in the interval [0.6, 0.9]. The true value θ0 contains three
large coefficients θ0,1 = θ0,2 = θ0,3 = 1, three moderate coefficients θ0,4 = θ0,5 = θ0,6 = 0.5,
three noise coefficients θ0,7 = θ0,8 = θ0,9 = 0, and θ0,10 = c, with c ∈ [0, 4/

√
n]. In Tables 3

and 4, we report the empirical rejection frequencies of the null hypothesis H0 : β0,10 = 0, versus
the alternative H1 : β0,10 6= 0, for c ∈ [0, 4/

√
n], and significance level 0.05. When c = 0, the

rejection frequencies using normal approximation with GMM estimator are slightly larger than
the significance level. On the other hand, in line with the previous exercise, the nonparametric
bootstrap with adaptive lasso penalized GMM estimator provide rejection frequencies that tend
to be quite close to 0. As expected, when c > 0 the power increases. The normal approximation
with GMM estimator imply larger rejection frequencies. However, the difference in power with
the nonparametric bootstrap is always smaller than 0.10.

6 Conclusions

The GMM provides a powerful tool for introducing statistical inference in several economic and
financial models that are specified by some moment conditions. However, in spite of a consistent
(and efficient) estimate of the parameter of interest, GMM estimators do not perform variable
selection. To overcome this problem, recent research proposes penalized GMM estimators that
may achieve the so-called oracle properties. In this paper, we study the validity of bootstrap
methods in approximating the sampling distribution of penalized GMM estimators with oracle
properties. More precisely, we focus on bridge estimators with Lq penalty for 0 < q < 1, and
adaptive lasso estimators. In particular, we show that the nonparametric bootstrap with recen-
tered moment conditions provides a valid method for approximating the sampling distribution
of penalized GMM estimators. Furthermore, using the bootstrap approach we also propose a
data-driven method for the selection of tuning parameters in the penalization terms. Monte
Carlo simulations confirm the reliability and accuracy of the bootstrap procedure.
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Appendix: Assumptions and Mathematical Proofs

Proof of Lemma 1: To prove Lemma 1, we extend the approach adopted in the proof of The-
orem 2 in Zou (2006) to our nonlinear moment condition model. Let Jn(θ) = 1√

n

∑n
i=1 g(Xi, θ),

and consider the random process,

Rn(u) = Jn(θ0 + u/
√
n)′SnJn(θ0 + u/

√
n)− Jn(θ0)′SnJn(θ0) + λn

dθ∑
i=1

λγn,i
[
|θ0,i + ui/

√
n|q − |θ0,i|q

]
.

Note that Rn(u) is minimized at
√
n(θ̌n−θ0). By considering a Taylor expansion of Jn(θ0+u/

√
n)

around θ0 we have,

Jn(θ0 + u/
√
n) = Jn(θ0) +Dn(θ0)u+ op(1), (6)

where Dn(θ) = 1
n

∑n
i=1

∂
∂θ
g(Xi, θ). It turns out that using (6) we can rewrite Rn(u) as

Rn(u) = 2u′Dn(θ0)′SnJn(θ0) + u′Dn(θ0)′SnDn(θ0)u

+λn

dθ∑
i=1

λγn,i
[
|θ0,i + ui/

√
n|q − |θ0,i|q

]
+ op(1).

Note that under Assumption 1, Dn(θ0) converges in probability to D0, while the law of Jn(θ0)

converges weakly to normal with mean 0 and variance Ω0. Furthermore, Sn converges in proba-
bility to S0.

Next, consider the term λn
∑dθ

i=1 λ
γ
n,i [|θ0,i + ui/

√
n|q − |θ0,i|q], when γ = 0 and 0 < q < 1.

If θ0,i 6= 0, then λn [|θ0,i + ui/
√
n|q − |θ0,i|q] converges in probability to 0, since λn/

√
n → 0,

as n → ∞. On the other hand, if θ0,i = 0, then |θ0,i + ui/
√
n|q − |θ0,i|q = |ui|q/

√
nq. Let

ũ = (ũ1, . . . , ũdθ)
′, with ũi = ui for i ∈ A, and ũi = 0, for i /∈ A. Then, since λn/

√
nq →∞, the

limit R(u) of Rn(u) is given by

R(u) =

{
2ũ′D′0S0ω0 + ũ′D′0S0D0ũ, if ui = 0, for i /∈ A,
∞, otherwise,

where ω0 ∼ N(0,Ω0). Note that the unique minimum of R(u) is ((−(DA′
0 S0D

A
0 )−1DA′

0 S0w0)′, 0′)′,
where DA

0 is the sub-matrix of D0 for the nonzero coefficients. Therefore, using the results in
Geyer (1994), parts (I) and (II) of Lemma 1 for bridge estimators with Lq penalty for 0 < q < 1

are established.
Next, consider the term λn

∑dθ
i=1 λ

γ
n,i [|θ0,i + ui/

√
n|q − |θ0,i|q], when γ = q = 1. If θ0,i 6= 0,

then λnλn,i [|θ0,i + ui/
√
n| − |θ0,i|] converges in probability to 0, since λn/

√
n → 0, as n → ∞.

On the other hand, if θ0,i = 0, then |θ0,i + ui/
√
n| − |θ0,i| = |ui|/

√
n, and λn,i = Op(

√
n). Then,

12



since λn →∞, also in this case the limit R(u) of Rn(u) is given by

R(u) =

{
2ũ′D′0S0ω0 + ũ′D′0S0D0ũ, if ui = 0, for i /∈ A,
∞, otherwise,

where ω0 ∼ N(0,Ω0). Therefore, parts (I) and (II) of Lemma 1 for adaptive lasso estimators are
also established.

Next, we prove part (III) using similar arguments adopted in the proof of Lemma 5 in Fan
and Peng (2004). Let

Q(θ) =

(
1

n

n∑
t=1

g(Xt, θ)

)′
Sn

(
1

n

n∑
t=1

g(Xt, θ)

)
+
λn
n

dθ∑
t=1

λγn,t|θt|q.

With some abuse of notation, we write θ = (θA
′
, θA

c′
)′. We show that with probability tending

to 1, for any θ̃An satisfying ‖θ̃An − θA0 ‖ = Op(1/
√
n) and any constant c > 0,

Q((θ̃A
′

n , 0
′)′) = min

‖θAc‖≤c/
√
n
Q((θ̃A

′

n , θ
Ac

′

)′).

To this end, for i /∈ A consider

∂Q(θ)

∂θi
= 2

(
1

n

n∑
t=1

∂

∂θi
g(Xt, θ)

)′
Sn

(
1

n

n∑
t=1

g(Xt, θ)

)
+
λn
n
λγn,isgn(θi)q|θi|q−1,

= I1 + I2.

Note that for ‖θ̃An − θA0 ‖ = Op(1/
√
n), and ‖θAc‖ ≤ c/

√
n, then I1 = Op(1/

√
n).

Next, consider the second term I2, when γ = 0 and 0 < q < 1. Note that |θi| ≤ c/
√
n.

Therefore, since λn/
√
nq → +∞, the dominant term is I2. Thus, the sign of θi determines

the sign of ∂Q(θ)/∂θi. More precisely, we have ∂Q(θ)/∂θi < 0, when −c/
√
n < θi < 0, and

∂Q(θ)/∂θi > 0, when 0 < θi < c/
√
n. This concludes the proof of part (III) for bridge estimators

with Lq penalty for 0 < q < 1.
Next, consider the second term I2, when γ = q = 1. Since λn → +∞, it turns out that

the dominant term is I2. Thus, the sign of θi determines the sign of ∂Q(θ)/∂θi. More precisely,
also in this case we have ∂Q(θ)/∂θi < 0, when −c/

√
n < θi < 0, and ∂Q(θ)/∂θi > 0, when

0 < θi < c/
√
n. This concludes the proof of part (III) for adaptive lasso estimators.

Proof of Theorem 1: To prove Theorem 1, we extend the approach adopted in the proof of
Theorem 2 in Zou (2006) to our bootstrap nonlinear moment condition model. More precisely,
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let J∗n(θ) =
(

1√
n

∑n
t=1 g

∗(X∗t , θ)
)
, and consider the process,

R∗n(u) = J∗n(θ̌n + u/
√
n)′SnJ

∗
n(θ̌n + u/

√
n)− J∗n(θ̌n)′SnJ

∗
n(θ̌n) + λn

dθ∑
i=1

(λ∗n,i)
γ
[
|θ̌n,i + ui/

√
n|q − |θ̌n,i|q

]
.

Note that R∗n(u) is minimized at
√
n(θ̃∗n−θ̌n). By considering a Taylor expansion of J∗n(θ̌n+u/

√
n)

around θ̌n, and by Assumption 1, we can rewrite R∗n(u) as

R∗n(u) = 2u′D∗n(θ̌n)′SnJ
∗
n(θ̌n) + u′D∗n(θ̌n)′SnD

∗
n(θ̌n)u

+λn

dθ∑
i=1

(λ∗n,i)
γ
[
|θ̌n,i + ui/

√
n|q − |θ̌n,i|q

]
+ op(1),

where D∗n(θ) = 1
n

∑n
i=1

∂
∂θ
g(X∗i , θ). Note that under Assumption 1, D∗n(θ̌n) converges in condi-

tional probability to D0. Furthermore, the conditional law of J∗n(θ̌n) converges weakly to normal
with mean 0 and variance Ω0.

Next, consider the term λn
∑dθ

i=1(λ∗n,i)
γ
[
|θ̌n,i + ui/

√
n|q − |θ̌n,i|q

]
, when γ = 0 and 0 < q < 1.

If θ0,i 6= 0, then θ̌n,i 6= 0 for n large. Therefore, λn[|θ̌n,i+ui/
√
n|q−|θ̌n,i|q] converges in probability

to 0, since λn/
√
n→ 0, as n→∞. On the other hand, if θ0,i = 0, then θ̌n,i = 0 for n large. Let

ũ = (ũ1, . . . , ũdθ)
′, with ũi = ui for i ∈ A, and ũi = 0, for i /∈ A. Then, since λn/

√
nq →∞, the

limit R(u) of R∗n(u) is given by

R(u) =

{
2ũ′D′0S0ω0 + ũ′D′0S0D0ũ, if ui = 0, for i /∈ A,
∞, otherwise,

where ω0 ∼ N(0,Ω0).
Finally, consider the term λn

∑dθ
i=1(λ∗n,i)

γ
[
|θ̌n,i + ui/

√
n|q − |θ̌n,i|q

]
, when γ = q = 1. If

θ0,i 6= 0, then θ̌n,i 6= 0 for n large. Therefore, since λn/
√
n → 0, it turns out that λnλ∗n,i{|θ̌n,i +

ui/
√
n| − |θ̌n,i|} converges in conditional probability to 0. On the other hand, if θ0,i = 0, then

θ̌n,i = 0 for n large. Then, since λn →∞, also in this case the limit R(u) of R∗n(u) is given by

R(u) =

{
2ũ′D′0S0ω0 + ũ′D′0S0D0ũ, if ui = 0, for i /∈ A,
∞, otherwise,

where ω0 ∼ N(0,Ω0). Note that the unique minimum of R(u) is ((−(DA′
0 S0D

A
0 )−1DA′

0 S0w0)′, 0′)′.
Therefore, using the results in Geyer (1994), Theorem 1 is established.
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n = 150 θ0,i = 1 θ0,i = 0.5 θ0,i = 0

σ1 σ2 σ1 σ2 σ1 σ2

Norm GMM 0.938 0.933 0.939 0.936 0.937 0.935

(0.403) (0.407) (0.404) (0.408) (0.404) (0.408)

Boot AL 0.957 0.956 0.950 0.948 0.982 0.980

(0.446) (0.454) (0.445) (0.453) (0.153) (0.161)

n = 300 θi = 1 θi = 0.5 θi = 0

σ1 σ2 σ1 σ2 σ1 σ2

Norm GMM 0.940 0.939 0.939 0.937 0.942 0.940

(0.279) (0.285) (0.278) (0.284) (0.278) (0.284)

Boot AL 0.956 0.954 0.948 0.947 0.989 0.987

(0.299) (0.307) (0.299) (0.307) (0.088) (0.093)

Table 1: Empirical Coverages and Confidence Interval Lengths. Empirical coverages and in brackets
confidence interval lengths, using GMM estimators and normal approximation (denoted by Norm GMM), and
adaptive lasso penalized GMM estimators and the nonparametric bootstrap (denoted by Boot AL). The sample
size is n = 150, 300. The number of moment conditions is dg = 30.

n = 150 θ0,i = 1 θ0,i = 0.5 θ0,i = 0

σ1 σ2 σ1 σ2 σ1 σ2

Norm GMM 0.937 0.933 0.938 0.935 0.936 0.933

(0.383) (0.387) (0.384) (0.388) (0.383) (0.388)

Boot AL 0.955 0.951 0.945 0.945 0.983 0.981

(0.418) (0.427) (0.418) (0.427) (0.141) (0.149)

n = 300 θi = 1 θi = 0.5 θi = 0

σ1 σ2 σ1 σ2 σ1 σ2

Norm GMM 0.941 0.939 0.940 0.939 0.943 0.942

(0.267) (0.273) (0.266) (0.272) (0.266) (0.273)

Boot AL 0.952 0.951 0.946 0.944 0.990 0.988

(0.284) (0.293) (0.284) (0.292) (0.082) (0.086)

Table 2: Empirical Coverages and Confidence Interval Lengths. Empirical coverages and in brackets
confidence interval lengths, using GMM estimators and normal approximation (denoted by Norm GMM), and
adaptive lasso penalized GMM estimators and the nonparametric bootstrap (denoted by Boot AL). The sample
size is n = 150, 300. The number of moment conditions is dg = 40.
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n = 100 θ0,10 = 0 θ0,10 = 1/
√
n θ0,10 = 2/

√
n θ0,10 = 3/

√
n θ0,10 = 4/

√
n

Norm GMM 0.061 0.149 0.402 0.721 0.912

Boot AL 0.019 0.105 0.337 0.629 0.849

Table 3: Empirical Rejection Frequencies. Empirical rejection frequencies of H0 : θ0,10 = 0, using GMM
estimators and normal approximation (denoted by Norm GMM), and adaptive lasso penalized GMM estimators
and the nonparametric bootstrap (denoted by Boot AL). The sample size is n = 100, and the number of moment
conditions is dg = 20.

n = 100 θ0,10 = 0 θ0,10 = 1/
√
n θ0,10 = 2/

√
n θ0,10 = 3/

√
n θ0,10 = 4/

√
n

Norm GMM 0.063 0.162 0.443 0.752 0.940

Boot AL 0.018 0.116 0.351 0.659 0.883

Table 4: Empirical Rejection Frequencies. Empirical rejection frequencies of H0 : θ0,10 = 0, using GMM
estimators and normal approximation (denoted by Norm GMM), and adaptive lasso penalized GMM estimators
and the nonparametric bootstrap (denoted by Boot AL). The sample size is n = 100, and the number of moment
conditions is dg = 30.
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