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In Parnell and Abrahams (2008 Proc. Roy. Soc.

A 464, 1461-1482) (doi:10.1098/rspa.2007.0254) a

homogenization scheme was developed that gave rise

to explicit, analytical forms for the effective antiplane

shear modulus of a periodic fibre reinforced medium.

The expressions take the form of rational functions in

the volume fraction φ. In that scheme a (non-dilute)

approximation was invoked in order to determine

simple leading order expressions and it was shown

that agreement with existing methods is good except

at very high volume fractions. Here the theory is

extended in order to determine higher order terms in

the rational function expansions.

The methodology is attractive in that the expressions

can be derived for a large class of fibres with

non-circular cross section. Furthermore, terms are

clearly identified as being associated with the lattice

geometry of the periodic structure, fibre cross-

sectional shape, and host/fibre material properties.

The expressions are derived in the context of antiplane

elasticity but the analogy with the potential problem

illustrates the broad applicability of the method

to, e.g., thermal, electrostatic and magnetostatic

problems. The efficacy of the scheme is illustrated

by comparison with the well-established method of

asymptotic homogenization where the associated cell

problem is usually solved by some computational

scheme, e.g. finite element methods.

1. Introduction
A classical problem in the mechanics of inhomogeneous

media is to attempt to replace the two-dimensional

potential problem ∇ · (µ(x)∇w(x)) = 0, where
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x= (x1, x2) and µ(x) is a periodic (scalar) function that varies rapidly with x, by an equivalent

problem of the form

∇ · (µ∗∇w∗(x)) = 0. (1.1)

In order to do this, a so-called separation of scales between the micro and macro lengthscales must

be assumed and in general the effective property µ∗ is a second order tensor with components

µ∗ij in the context of Cartesian coordinates, for example. The path to (1.1) is the process of

homogenization and µ∗ depends strongly on the geometrical and physical properties of the

medium in question [1,2]. Noting that the equations arise from the equilibrium equation ∇ · σ =0

where σ=µe, and e=∇w, it is stressed that the problem posed has broad applicability, as

summarized in Table 1. To fix ideas here the application to antiplane elasticity shall be described.

Assume now that µ(x) is piecewise

constant, and a cross-section of the

medium takes the form as depicted in Fig.

1 so that the material can be classified as a

unidirectional fibre-reinforced composite

(FRC), noting that general fibre cross-

sections shall be considered. Such media

are used in a multitude of applications

where rather specific material properties

are required in order to perform a task

effectively and where frequently naturally

available homogeneous media are not

effective or efficient [1]. In particular

materials of this form can provide high

tensile stiffness and/or high directional

conductivity whilst remaining relatively

light by using only a small volume fraction

of the fibre phase.

x1

x2 µ0

µ1

Figure 1: An inhomogeneous medium with

piecewise constant material property µ(x). The

unidirectional fibre reinforced composite medium

depicted here has general microstructure, in

particular the fibres have non-circular cross-

sections.

The microstructural lengthscales of such inhomogeneous media are becoming ever smaller

with an increasing ability to engineer microstructures for improved macroscopic performance [3].

It is frequently convenient to consider the problem in the context of wave propagation so that an

inertia term is added to the governing equation and the effective medium is then governed by, for

example

∇ · (µ∗∇w∗(x)) + ρ∗ω
2w∗(x) = 0, (1.2)

where in the context of antiplane elasticity ρ∗ is the effective mass density and where time-

harmonic motion e−iωt has been assumed, where ω is the angular frequency. By considering

this dynamic context, a natural macroscopic lengthscale is introduced: the wavelength of the

propagating effective wave. Intrinsic to the subject of homogenization then, where quasi-static

properties are determined, is that the wavelength of the propagating wave is much longer than

the microstructural lengthscale.

A number of methods have proved extremely successful at predicting µ∗ in both the static and

quasi-static regimes, including the method of asymptotic homogenization [2,4–6], the equivalent

inclusion method [7,8], boundary element solutions of integral equations [9] and the use of

Fourier transforms [10–12]. All schemes rely on the separation of scales and periodicity - the

fact that a periodic cell is representative of the entire medium. A significant amount of work

has been done that incorporates propagation at finite frequencies and particularly when the

wavelength of the propagating wave is of the order of the microstructure, when dynamic effects

become important. In this context the microstructure can be designed to manipulate the wave
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Application σi ei w µij
Antiplane Antiplane stress Displacement displacement Shear

elasticity vector (σ13, σ23) gradient ∇w w moduli µij
Thermal Heat flux Temperature temperature thermal

conductivity qi gradient −∇T T conductivity kij
Electrical Electrical current Electric Electric Electrical

conductivity Ji field Ei =∇Φ potential Φ conductivity σij
Dielectrics Displacement field Electric Electric Electric

Di field Ei =∇Φ potential Φ permittivity ǫij
Magnetism Magnetic induction Magnetic Magnetic Magnetic

Bi field Hi =∇Ψ potential Ψ permeability µij
Porous Weighted velocity Pressure Pressure Permeability

media ηvi gradient ∇p p kij
Diffusion Diffusion flux Concentration Concentration Diffusivity

ji gradient ∇c c Dij

Table 1: Table illustrating the numerous application areas associated with the potential problem,

together with corresponding variables. Here attention is restricted to two-dimensional problems.

carrying capabilities of the medium. In particular for periodic materials the microstructure can

be chosen in order that the medium acts as a wave filter, for waves in certain frequency ranges

(so-called stop bands) waves are forbidden to propagate. Methods devised to determine the so-

called band gap structure are the plane wave expansion technique [13], multipole methods [14],

and so-called high frequency homogenization [15]. See the useful review by [16] for further details.

Low frequency effective properties can thus be deduced numerically from these schemes by

considering propagation near the origin of the dispersion curves in question. If from the outset

however, one is interested purely in the low-frequency limit where homogenization applies, then

there is no need to determine this full dynamic behaviour.

Here then a strict separation of scales shall be assumed; the homogenization regime is assumed

to hold and the material responds as an effective medium with uniform properties. The key

novelty of the proposed scheme is the form of solutions that are derived as shall be illustrated

below. The method to be discussed extends the work in [17] (referred to as PA below), where a

new homogenization scheme was devised based on the integral equation form of the governing

equation, considering antiplane wave propagation in the low frequency limit, so that an equation

of the form (1.2) was derived, and the leading order result was determined. The work of PA

was itself inspired by the method introduced in [18], in which expressions for the effective

elastic properties of three-dimensional random particulate media were determined, but restricted

to the dilute-dispersion limit. Returning to the two-dimensional periodic medium considered

here, attention shall be restricted to the case of macroscopically orthotropic media, so that

µ∗ij = δ1iδ1jµ
∗
1 + δ2iδ2jµ

∗
2 when written with respect to the principal axes of anisotropy. In PA

the effective moduli were shown to take the following rational function form at leading order:

µ∗j =
1 + C1jφ

1 +D1jφ
. (1.3)

The coefficients C1j and D1j depend upon the shape of the fibre cross section and the ratio of fibre

to host shear moduli. Upon extending the method to higher orders, it shall be shown in this work

that for circular cylindrical fibres the following result is derived:

µ∗j =
1 + C1jφ+C4jφ

4 + C6jφ
6 + C7jφ

7 +C8jφ
8 + . . .

1 +D1jφ+ C4jφ4 +C6jφ6 + C7jφ7 + C8jφ8 + . . .
(1.4)
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and additional general expressions are determined for fibres of more complex cross-section.

In principle the scheme presented can be extended to three dimensions and more complex

microstructural geometries.

As in PA it shall be assumed that all fibres in the composite are identical, that all phases

are isotropic and that the lattice geometry and fibre cross-sections are restricted such that

the effective medium appears to be, at most, orthotropic on the macroscale. In Section 2 the

governing equations are summarized and the associated integral equations are derived. The

integral equation methodology is then described in Section 3 and the manner in which effective

properties are determined is presented in Section 4. Results are given in Section 5 for a variety

of media before a concluding in Section 6. Some of the more detailed analysis is presented in

Appendices in order to aid the flow of the paper.

It is reiterated that although the method is described here in the context of antiplane elasticity

and expressions for the effective antiplane shear moduli µ∗1 and µ∗2 are derived, the method is

equally applicable to any of the applications summarized in Table 1.

2. Governing Equations
The microstructure of the medium in question is illustrated in Figure 1. Unidirectional fibres,

considered so long as for the problem to be assumed two-dimensional, are positioned on

a periodic lattice and their cross-section is considered general with the restriction that the

macroscopic anisotropy is at most orthotropic. The problem shall be formulated in Cartesian

coordinates, with the x3 coordinate running parallel to the fibre axis and the x1x2 plane being

the plane of periodicity. The location of the centre of the (s, t)th periodic cell is defined by the

lattice vector

R(s, t) = q(sl1 + tl2), s, t∈Z, (2.1)

for some vectors l1, l2 ∈R× R. Attention is restricted to the case where each periodic cell contains

a single fibre. The lengthscale q can be considered as the characteristic lengthscale of the periodic

cell and therefore the microstructure of the medium. Consider a distribution of fibres that induces

macroscopic orthotropy so that

l1 = (A1, B1), l2 = (0, B2), A1, B1, B2 ∈R,

and the periodic cell is a parallelogram with area q2R= q2A1B2. Each cell therefore consists of a

fibre of general cross-section occupying the domain Vst embedded within the host phase which is

denoted by V0. The shear modulus and mass density of the host (fibre) is denoted as µ0 (µI ) and

ρ0 (ρI ) respectively.

The lengthscale a associated with the fibre cross-section is introduced by defining the

boundary of the fibre cross-section in terms of circular cylindrical coordinates, i.e.

r(θ) = af(θ), θ ∈ [0, 2π], (2.2)

with f(θ)≥ 1 so that a=minθ∈[0,2π](r(θ)) on the boundary of the fibre. This choice is convenient

for calculations that will be carried out in Appendix A associated with incorporating the shape of

the fibre cross-section into the analysis.

Horizontally polarized shear (SH) waves, otherwise known as antiplane waves, are considered

to propagate through the medium. The associated time-harmonic elastic displacement, polarized

in the x3 direction is denoted by w(x), where it is recalled that x= (x1, x2). The elastic

displacement w is governed by

∇2w(x) + (k20 + (k21 − k20)χ(x))w(x)= 0, (2.3)

where ∇= (∂/∂x1, ∂/∂x2) and where k0 = ω/c0 and kI =ω/cI are the wavenumbers of the host

and fibre respectively and where c20 = µ0/ρ0 and c2I = µI/ρI are the squares of the phase velocities
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of the two phases. The so-called indicator function χ(x) is defined by

χ(x) =

{

1 if x∈ Vst, s, t∈Z

0 if x∈ V0.

The associated Green’s function for the host domain satisfies

(∇2 + k20)G(x− y) = δ(x− y), (2.4)

and is

G(x− y) =
1

4i
H

(1)
0 (k0|x− y|),

where H
(1)
0 (r) denotes the Hankel function of the first kind and zeroth order.

Combining (2.3) and (2.4) appropriately, imposing boundary conditions of continuity of

displacement and traction on fibre/host interfaces, the problem is restated in integral equation

form as

w(x) =
∞
∑

s,t=−∞
s,t∈Z

(

(ρ0 − ρI)ω
2

µ0

∫
Vst

w(y)G(y − x)dy −
(µ0 − µI )

µ0

∫
Vst

∇yw(y) · ∇yG(y − x)dy

)

,

where ∇y = (∂/∂y1, ∂/∂y2). Non-dimensionalising using the scalings x̂= qx and ŵ=w/Ŵ , with

Ŵ being a typical displacement magnitude, and noting that Green’s function is already non-

dimensional, the lattice vector in scaled coordinates becomes

p= sl1 + tl2,

and the cross-sectional area of the periodic cell is R=A1B2. At this point it appears convenient

to define the volume fraction per unit span in the x3 direction, φ= |D|/R, where |D| is the (non-

dimensional) cross-sectional area of the fibre.

Upon dropping the hat notation the non-dimensional integral equation takes the form

w(x) =
∞
∑

s,t=−∞
s,t∈Z

(

(1− d)ε2
∫
Vst

w(y)Gε(y − x)dy − (1−m)

∫
Vst

∇yw(y) · ∇yGε(y − x)dy

)

,

(2.5)

where d= ρI/ρ0 and m= µI/µ0 are the contrasts in mass density and shear moduli, ε= qk0 and

Gε(x− y) =
1

4i
H0(ε|x− y|).

Note that

lim
ε→0

Gε(x− y) =
1

2π
ln(|x− y|) + γc =G0(x− y) + γc (2.6)

where γc =
2γe−iπ−2 log 2

4π is a constant and γe = 0.577216... is Euler’s constant. Having already

dropped hats, referring to (2.2), in non-dimensional coordinates the boundary of the fibre is

therefore described by r= ℓf(θ), θ ∈ [0, 2π], where ℓ= a/q. The non-dimensional fibre cross-

section is easily shown to be

|D|=

∫2π
0

∫ ℓf(θ)
0

rdrdθ=
ℓ2

2

∫2π
0
f2(θ)dθ

and the volume fraction of the fibre cross section within the periodic cell is then

φ=
|D|

R
=

ℓ2

2R

∫2π
0
f2(θ)dθ.

Therefore

ℓ=

√

2Rφ
/

∫2π
0
f2(θ)dθ= τ

√

φ. (2.7)
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Attention here is restricted to the scenario where τ remains O(1), with respect to φ. Therefore

from (2.7),

ℓ=O(
√

φ). (2.8)

In the homogenization regime ak0 ≪ 1 and ε= qk0 ≪ 1 and it can be assumed here that ak0 =

O(ε). In [19,20] the regime where ak0 ≪ 1 but ε is not restricted to being small was considered.

Note that this requires φ≪ 1. If one wished, the method introduced in the next section could be

modified in order to consider this regime.

3. The Integral Equation Method
In PA it was shown that setting m= 1 leads to the result ρ∗ = (1− φ) + dφ for the non-

dimensional effective density (scaled on ρ0) in the quasi-static limit. This is an exact result in the

separation of scales regime. Here, without loss of generality and in order to determine the effective

shear modulus, set d= 1 in (2.5). Differentiate both sides of the resulting integral equation with

respect to xk, k=1, 2 to yield

∂w

∂xk
(x) =−(1−m)

∞
∑

s,t=−∞
s,t∈Z

(

∂

∂xk

∫
Vst

∇yw(y) · ∇yGε(y − x)dy

)

. (3.1)

Now take x∈ Vab, i.e. within the (a, b)th fibre, which has position vector r= al1 + bl2. By taking

the Taylor expansion of Green’s function about the point y= p= (p1, p2) = sl1 + tl2 (i.e. about

the centre of the(s, t)th fibre), (3.1) becomes

∂xkw(x) = (1−m)
∞
∑

s,t=−∞
(s,t) 6=(a,b)





2
∑

n=1

∞
∑

i,j=0

W
(n)
ij (p)

(

∂yn∂yk∂
i
y1∂

j
y2Gε(y − x)

)
∣

∣

∣

y=p





− (1−m)∂xk

∫
Vab

∇yw(y) · ∇yGε(y − x)dy, (3.2)

where ∂iyk denotes the ith derivative with respect to yk and

W
(k)
ij (p) =

∫
Vst

1

i!j!
(y1 − p1)

i(y2 − p2)
j ∂w

∂yk
(y)dy=O(φ(i+j+2)/2). (3.3)

The variables introduced as W
(k)
ij (p) can be thought of as displacement-gradient moments of order

i+ j, recalling that φ= |D|/R. The order of these moments has been deduced using the fact that,

since w is a smooth function, w and all its derivatives will be O(1).

Notice that the term for (s, t) = (a, b) is not included in the summation, nor has the Taylor

series of the Green’s function been taken in this term, because Green’s function is singular in

the domain Vab since x is contained in this region. The assumption that one can Taylor expand

Green’s function puts restrictions upon the parameters ε and φ. Either (a) ε≪ 1 in which case φ is

unrestricted or (b) ε=O(1) and then φ≪ 1 is required. Here only the scenario of (a) is considered.

Proceed now by defining the operation Lδξ [(∗)] as the act of multiplying each side of equation

(∗) by (x1 − r1)
δ(x2 − r2)

ξ/(δ!ξ!) and integrating in the x plane over the domain Vab, where

r= (r1, r2). Hence consider Lδξ[(3.2)] and Taylor expand Green’s function and its derivatives

about x= r to obtain, after some rearrangement

W
(k)
δξ (r)

(m− 1)
+
∑

p 6=r





2
∑

n=1

∞
∑

i,j,α,β=0

W
(n)
ij (p)Cδξαβ

(

∂yn∂yk∂
i+α
y1 ∂j+βy2 Gε(y − x)

)∣

∣

∣

x=r,y=p





=A
(k)
δξ (r), (3.4)
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where the property ∂Gε/∂xk =−∂Gε/∂yk has been employed. Furthermore, the following terms

have been defined:

A
(k)
δξ (r) =

∫
Vab

(x1 − r1)
δ(x2 − r2)

ξ

δ!ξ!
∂xk

∫
Vab

∇yw(y) · ∇yGε(y − x)dydx (3.5)

=O(φ(δ+ξ+2)/2)

and

Cδξαβ =

∫
Vab

(−1)α+β

α!β!δ!ξ!
(x1 − r1)

δ+α(x2 − r2)
ξ+βdx (3.6)

=

∫2π
0

∫ ℓf(θ̂)
0

(−1)α+βRδ+α+ξ+β+1

α!β!δ!ξ!
(cosΘ)δ+α(sinΘ)ξ+βdRdΘ

=
(−1)α+βℓδ+α+ξ+β+2

α!β!δ!ξ!(δ + α+ ξ + β + 2)

∫2π
0

[f(Θ)]δ+α+ξ+β+2(cosΘ)δ+α(sinΘ)ξ+βdΘ

= ℓδ+α+ξ+β+2Ĉδξαβ , (3.7)

where the local polar coordinate system x1 =R cosΘ, x2 =R sinΘ has been defined and where

(2.7) is used in order to define Ĉδξαβ =O(1). As was shown in PA the influence of the cross-

sectional shape of the fibre is embedded solely in the terms known as the shape tensors A
(k)
δξ , the

form of which shall be considered shortly.

(a) The shape factor

The term A
(k)
δξ incorporating fibre cross-section in (3.5) appears to possess a singularity at y= x

due to the presence of derivatives of Green’s function in the integrand. However, as was shown

in [17], this apparent singular contribution is found to be zero by splitting the domain Vab up into

a non-singular part Vab\Cψ and apparently singular part Cψ , whereCψ is a circle of radius ψ≪ 1

with origin y= x. Therefore all that remains to consider are integrals of the type

A
(k)
δξ (r) = lim

ψ→0

∫
Vab

(x1 − r1)
δ(x2 − r2)

ξ

δ!ξ!
∂xk

∫
Vab\Cψ

∇yw(y) · ∇yGε(y − x)dydx. (3.8)

Once again employing the property ∂Gε/∂xk =−∂Gε/∂yk , the xk derivative may be taken inside

the y integral, and since the range of integration does not include the region where G(y − x) is

singular, exchanging the order of integration is permissable. Therefore

A
(k)
δξ (r) =− lim

ψ→0

∫
Vab\Cψ

∂y1w(y)∂yk∂y1Jδξ(y) + ∂y2w(y)∂yk∂y2Jδξ(y)dy, (3.9)

where

Jδξ(y) =

∫
Vab

(x1 − r1)
δ(x2 − r2)

ξ

δ!ξ!
Gε(y − x)dx. (3.10)

It is convenient here to represent (3.10) as a series expansion, i.e.

Jδξ =Dδξ00 +Dδξ10(y1 − r1) +Dδξ01(y2 − r2) +

P+2
∑

p=2

p
∑

q=0





Dδξ
(p−q)q

(p− q)!q!
(y1 − r1)

p−q(y2 − r2)
q





(3.11)

so that displacement gradient moments naturally arise in (3.9). A procedure for obtaining the

coefficients Dδξij for a given fibre cross-section is outlined in Appendix A. The order of truncation,

P + 2 is governed by the shape function f involved. For elliptical fibres P = δ + ξ for example.
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Substituting (3.11) into (3.10) and (3.9) and adjusting the indices one obtains

A
(1)
δξ (r) =−

P
∑

p=0

p
∑

q=0

(

Dδξ
(p−q+2)q

W
(1)
(p−q)q

(r) +Dδξ
(p−q+1)(q+1)

W
(2)
(p−q)q

(r)
)

, (3.12)

A
(2)
δξ (r) =−

P
∑

p=0

p
∑

q=0

(

Dδξ
(p−q+1)(q+1)

W
(1)
(p−q)q

(r) +Dδξ
(p−q)(q+2)

W
(2)
(p−q)q

(r)
)

. (3.13)

Note that Dδξ00, Dδξ10 and Dδξ01 do not arise in the shape tensor as they do not survive second

order differentiation. In the case of fibres with circular cross-sections f(θ) = 1 and it follows that

Ĉδξαβ = 0 if δ + ξ + α+ β is odd. Since A
(k)
δξ =O(φ(δ+ξ+2)/2) =W

(k)
δξ , equations (3.12)-(3.13)

lead to the conclusion that Dδξmn =O(φ(δ+ξ−m−n+2)/2).

Equations (3.12) and (3.13) coupled with (3.4) give rise to an infinite homogeneous system

of linear equations for the displacement gradient moments W
(k)
δξ . A wave-like ansatz for these

moments is now posed.

(b) Wave-like solutions

Define the variable u= p− r and noting (2.8), wseek plane wave type solutions of (3.4) of the

form

W
(k)
ij (r) = Ŵ k

ijℓ
i+j+2 exp(iγ · r), (3.14)

with γ(Θ) = εγ(Θ)(cosΘ, sinΘ) being the non-dimensional effective wavenumber (scaled on q)

in the direction of the angle subtended from the x1 axis, Θ. Furthermore define

Dδξmn = ℓδ+ξ−m−n+2D̂δξmn. (3.15)

Therefore, using (2.7), (3.7), (3.12), (3.13), (3.14) and (3.15) in (3.4) (recalling k= 1, 2) and again

recalling (2.8),

Ŵ
(1)
δξ

(1−m)
−

∞
∑

i,j,α,β=0

(

Ĉδξαβ

(

τφ
1

2

)i+j+α+β+2 {

Ŵ
(1)
ij A[i+ α+ 2, j + β]

+ Ŵ
(2)
ij A[i+ α+ 1, j + β + 1]

})

=
P
∑

p=0

p+2
∑

q=0

(

D̂δξ
(p−q+2)q

Ŵ
(1)
(p−q)q

+ D̂δξ
(p−q+1)(q+1)

Ŵ
(2)
(p−q)q

)

,

(3.16)

Ŵ
(2)
δξ

(1−m)
−

∞
∑

i,j,α,β=0

(

Ĉδξαβ

(

τφ
1

2

)i+j+α+β+2 {

Ŵ
(1)
ij A[i+ α+ 1, j + β + 1]

+ Ŵ
(2)
ij A[i+ α, j + β + 2]

})

=

P
∑

p=0

p+2
∑

q=0

(

D̂δξ
(p−q+1)(q+1)

Ŵ
(1)
(p−q)q

+ D̂δξ
(p−q)(q+2)

Ŵ
(2)
(p−q)q

)

(3.17)

where

A[m,n] =
∑

u 6=0

∂mu1
∂nu2

Gε(u) exp(iγ · u) (3.18)

is a lattice sum, which shall now be discussed further.
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(c) Lattice sums

First pick out the singular, non-integrable behaviour of the derivative of the Green’s function in

the lattice sum, as |u|→ 0 which shall be defined as

S[m,n] = lim
|u|→0

∂mu1
∂nu2

Gε(u),

Then for a given m,n, the infinite sums in (3.16) and (3.17) can be written in the form

A[m,n] =
∑

u 6=0

[(

∂mu1
∂nu2

Gε(u)− S[m,n]
)

exp(iγ · u)
]

+ L[m, n], (3.19)

where

L[m,n] =
∑

u 6=0

S[m, n] exp(iγ · u). (3.20)

The first term of (3.19) can be turned into an integral in the same manner as in Sec. 3(a) of [17].

It transpires that when this step is applied, one if left with an integral that is O(1) with respect

to ε, multiplied by a factor εi+j+α+β . Therefore the only term from this sum to integral step that

contributes at O(1) with respect to ε is the case when i= j = α= β =0.

Therefore, to O(1) with respect to ε,

A[i+ α+ p, j + β + q] =

{

I [p, q] + L[p, q] if i= j = α= β =0

L[i+ α+ p, j + β + q] otherwise,
(3.21)

where p+ q= 2 and

I [p, q] = lim
ε→0

1

R

∫∞
−∞

∫∞
−∞

(

∂pu1
∂qu2

Gε(u)− S[m,n]
)

exp(iγ · u)du.

Taking Θ= 0 and defining γ(0) = γ1, so that the wavenumber vector is γ = ε(γ1, 0) with γ1 being

the effective wavenumber in the x1 direction it was shown in the appendices to [17], that (using

the notation here)

I [2, 0] =
1

γ21 − 1
=: Γ (γ1), I [1, 1] = I [0, 2] = 0. (3.22)

If one wishes to determine the effective wavenumber in the x2 direction (seeking µ2 instead of

µ1), it is straightforward to rotate the material by π/2. Performing this action leaves the above

integrals unchanged, the wave is considered to propagate in the (new) x1 direction, merely using

notation γ2 instead of γ1 to indicate the wavenumber associated with the new material direction

of propagation.

As regards L[m,n] it should be noted that there are some further key results for that greatly

simplify the process of obtaining the expressions for effective moduli. First, since the singular part

of the Green’s function contributing to the lattice sum satisfies Laplace’s equation (except at the

singular point, which is not important in the lattice summations), the lattice sums will satisfy

L[m+ 2, n] =−L[m, n+ 2] ∀m,n∈Z. (3.23)

Furthermore, only cases where both m and n are even will give a non-zero L[m,n]. For example,

consider the case of L[1, 2] =−L[3, 0] due to (3.23). The associated S[m, n] takes the form

−S[3, 0] ==−
∂3

∂u31

(

1

2π
ln |u|

)

=
3u1u

2
2 − u31

π|u|3
.

When this is employed in the lattice sum (3.20), then in the limit as ε→ 0, due to the odd powers

of u1 in the numerator then when the summation over all nonzero u is made, all the terms where

u1 is positive will cancel with those where u1 is negative, so that the lattice sum must be zero.

This reasoning works equally well for all lattice sums whose indices total an odd number.

It is shown in Appendix B how the non-zero L[m, n] can be straightforwardly determined.
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(d) The asymptotic system in φ

Using (3.21) in (3.16) and (3.17) we find that the leading order (with respect to ε) system of

equations is

Ŵ
(1)
δξ

(1−m)
− Ĉδξ00β

2φŴ
(1)
00 Γ (γ1)

− (1−m)
∞
∑

i,j,α,β=0

(

Ĉδξαβ

(

τφ
1

2

)i+j+α+β+2 {

Ŵ
(1)
ij L[i+ α+ 2, j + β]

+ Ŵ
(2)
ij L[i+ α+ 1, j + β + 1]

})

=
P
∑

p=0

p+2
∑

q=0

(

D̂δξ
(p−q+2)q

Ŵ
(1)
(p−q)q

+ D̂δξ
(p−q+1)(q+1)

Ŵ
(2)
(p−q)q

)

,

(3.24)

Ŵ
(2)
δξ

(1−m)
−

∞
∑

i,j,α,β=0

(

Ĉδξαβ

(

τφ
1

2

)i+j+α+β+2 {

Ŵ
(1)
ij L[i+ α+ 1, j + β + 1]

+ Ŵ
(2)
ij L[i+ α, j + β + 2]

})

=

P
∑

p=0

p+2
∑

q=0

(

D̂δξ
(p−q+1)(q+1)

Ŵ
(1)
(p−q)q

+ D̂δξ
(p−q)(q+2)

Ŵ
(2)
(p−q)q

)

.

(3.25)

This is an eigenvalue problem with eigenvalues γ1 and associated eigenvectors comprising the

moments Ŵ
(k)
δξ , noting that γ1 appears only in the term Γ (γ1). In order to make progress take

expansions in the volume fraction parameter

Ŵ
(1)
δξ = u0δξ + u1δξφ+ u2δξφ

2 + . . . , (3.26)

Ŵ
(2)
δξ = v0δξ + v1δξφ+ v2δξφ

2 + . . . , (3.27)

Γ (γ1) =
a−1

φ
+ a0 + a1φ+ a2φ

2 + . . . , (3.28)

where the form for Γ is motivated by (3.22) and the fact that γ1 → 1 as φ→ 0.

Note the φ (ℓ) scaling of the wavetype solutions (3.14), so moments whose indices total an

odd number will have a fractional leading order in φ. For instance, W
(k)
10 (r) =O

(

φ
3

2

)

. This

would suggest that, in general, powers of φ
1

2 should be included in (3.26) to (3.28). However,

restricting attention to shapes featuring a rotational symmetry of π, henceforth referred to as

centrally symmetric shapes, then by observing the properties of the integrals in Appendix A it can

be shown that such terms are not required. Proof of this is given in Appendix C, and the remainder

of the methodology shall be discussed in the context of this restriction to central symmetry.

Given the scalings involved, using (3.22) and γ21 = 1/µ∗1 , (3.28) gives

µ∗1 =
a−1 + a0φ+ a1φ

2 + a2φ
3 + . . .

a−1 + (1 + a0)φ+ a1φ2 + a2φ3 + . . .
(3.29)

The concern of the next section is the determination of the coefficients aj from the linear system.

4. Determining explicit forms for the effective properties
Equation (3.29) provides an explicit form for the effective shear modulus, as a rational function in

φ, providing the coefficients aj can be determined. Note that the approximation provided in [17]

was exactly this with both numerator and denominator truncated at O(φ). Here the objective is

to determine higher order coefficients for a variety of fibre cross-sections.

There is a straightforward algorithmic mechanism for determining the coefficients aj . Hereon-

in the term “(δξ) equations” shall refer to (3.24) and (3.25) for fixed δ and ξ. Start by noting
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that expressions for the aj coefficients arise by considering the first (00) equation, (3.24), using

the expansions (3.26)-(3.28) and equating each order in φ of the resulting equation. In order

to determine all coefficients up to aN , say, the first (00) equation must be considered up to

order φN+1. Each order provides an expression for a coefficient aj in terms of the eigenvector

components uj00, lattice sums, coefficients of the shape tensors and possibly components from

other moments ujδξ and vjδξ . By observing which terms from the displacement gradient moments

appear in this highest order equation, one can then see which truncation with respect to the

choices of indices (δξ) needs to be made and hence which additional (δξ) equations need to

be considered in order to solve the linear system for the required terms ujδξ and vjδξ and hence

subsequently ai. The following examples illustrate the implementation of this scheme.

(a) Example: Elliptical cylindrical fibres

Consider elliptical cylindrical fibres of arbitrary aspect ratio ǫ, which is the the semi axis length

in the x2 direction, b, divided by the semi axis length in the x1 direction a. At O(1), noting that

Ĉ0000τ
2 =1, where we recall that τ is defined for a given shape in (2.7) and writing without loss

of generality that u000 = 1, it is determined that

a−1 =
a+mb

(1−m)(a+ b)
. (4.1)

Note also that the second (00) equation yields v000 = 0. The O(φ) terms give (upon using the

properties of the lattice sum)

u100
(1−m)

=a−1u
1
00 + a0u

0
00 + u000L[2, 0] +

bu100
a+ b

,

and after using (4.1) and v000 = 0 this gives

0=(L[2, 0] + a0)u
0
00 =⇒ a0 =−L[2, 0], (4.2)

while the second (00) equation to the same order simply gives v100 = 0.

Continuing in this vein, (3.29) takes the form

µ∗j =
p0j +

1
2 (Sj − 1)φ− p2jC4jφ

2 − p3jC6jφ
3 − p4jC

2
4jφ

4 + . . .

p0j +
1
2 (Sj + 1)φ− p2jC4jφ2 − p3jC6jφ3 − p4jC

2
4jφ

4 + . . .
, (4.3)

where L[2, 0] =−L[0, 2] =−(Sj − 1)/2, C4j depend upon the fourth order lattice sum and the pij
coefficients are polynomial quotients inm, dependent on aspect ratio. Their forms are too lengthy

to be given here but can straightforwardly be derived by implementing the algorithm above. As

one should expect through checking for consistency with other leading order approximations

p01 = a−1 =
a+mb

(1−m)(a+ b)
, p02 =

b+ma

(1−m)(a+ b)
. (4.4)

For the specific case of fibres arranged on a square lattice, one finds that

µ∗j =
p0j −

1
2φ− p2jC4jφ

2 − p4jC
2
4jφ

4 + . . .

p0j +
1
2φ− p2jC4jφ2 − p4jC

2
4jφ

4 + . . .
. (4.5)

Details of how higher order terms are derived will be given explicitly in the next section for the

case of circular cross-sections.

(b) Example: Circular cylindrical fibres

To illustrate specific details of the derivation of higher order terms, consider the circular cross-

sectional case, a= b= 1 for which the details of the last section are clearly valid. Consider the first

(00) equation to O(φ2). After evaluating the Ĉ00αβ coefficients in the quadruple sum, using the

relations (3.23) and the rule involving odd indices within the lattice sum, in addition to the result
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from the previous section that v100 = 0 and the forms (4.1) and (4.2) for a−1 and a0, the equation

reduces to

0 = a1u
0
00 +

1

π
(u020 − u002 − v011)L[4, 0]. (4.6)

This illustrates how higher order moment terms arise, in this case u020, u002 and v011, and therefore

motivates which equations need to be studied subsequently. In this case, it means that the (11),

(20) and (02) equations must be considered at leading order with respect to φ in order to obtain

a1. Using the naming convention that the collective set of (ij) equations where i+ j = n shall be

referred to as the order n equations, here the interest is therefore in the order 2 equations.

It transpires that these order 2 equations partition into two non-trivial decoupled sub-systems:

the first (20) and (02) equations and the second (11) equation form a system in Ŵ
(1)
20 , Ŵ

(1)
02 and

Ŵ
(2)
11 , while the second (20) and (02) equations and the first (11) equation form a system in

Ŵ
(2)
20 , Ŵ

(2)
02 and Ŵ

(1)
11 . The latter subsystem is homogeneous with respect to the leading order

coefficients of the moments featured, while (4.6) illustrates how the former contributes to the

process of obtaining a1. Hence, making use of (4.1) for a= b=1 and all other solutions from prior

orders of φ, the leading order equations of the former sub-system take the form

0=
1

16
u000

(

1 +m

1−m
− 1

)

+
1

8
u102 +

(

7

8
−

1

1−m

)

u120 +
1

8
v111,

0=
1

16
u000

(

1 +m

1−m
+ 1

)

+

(

1

8
−

1

1−m

)

u102 −
1

8
u120 +

1

8
v111,

0=−
1

8
u000 +

1

2
u102 +

1

2
u120 +

(

1

2
−

1

1−m

)

v111.

Solving these equations gives

u120 = u102 =
u000
8
, v111 = 0,

and hence (4.6) gives a1 =0.

Proceeding to general orders, with the aid of a symbolic package such as Mathematica, for

general parallelogram lattices, results for circular cylindrical fibres take the form

µ∗j =
1 + (Sj − 1)Mφ−

M2C2

4j

3π2 φ4 −
M2C2

6j

720π4 φ
6 −

M3C2

4jC6j

18π4 φ7 −
M2C2

8j

π6 φ8 + . . .

1 + (Sj + 1)Mφ−
M2C2

4j

3π2 φ4 −
M2C2

6j

720π4 φ6 −
M3C2

4j
C6j

18π4 φ7 −
M2C2

8j

π6 φ8 + . . .
, (4.7)

where M= (1−m)/(1 +m). Note that the sixth order lattice sum is zero for square lattices,

hence C6j = 0 which is why order φ6 and φ7 terms appear in the general case and not the square

lattice case.

In the special case when circular cylindrical fibres on a square lattice, expressions for the

effective shear moduli take the form

µ∗j =
1−Mφ−

M2C2

4j

3π2 φ4 −
M2C2

8j

π6 φ8 + . . .

1 +Mφ−
M2C2

4j

3π2 φ4 −
M2C2

8j

π6 φ8 + . . .
(4.8)

This is consistent with the form of higher order terms outlined in the conclusions of [17].

(c) More general fibre cross-sections

Although rather lengthy, analytical forms for the effective shear moduli associated with general

cross-sections can be obtained. The procedure above can be followed and certainly in a symbolic

package such as Mathematica, forms can be derived. However such expressions are too lengthy

and cumbersome in general to be provided here1. Importantly, for a given cross-sectional shape,

using the above procedure, a rational function approximation for the effective properties as a

1The algorithm to derive explicit forms for rather general shapes will be provided in an online repository upon publication
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function of φ can be derived and subsequently used to great utility. In the following section we

discuss results obtained for shapes more general than elliptical and validate the scheme with

the classical method of asymptotic homogenization (MAH). The argument for using the present

scheme over the MAH (or other methods) is that this integral equation methodology can yield

explicit forms, particularly when some aspects of the medium are fixed (e.g. square lattice, fixed

m), of the effective moduli, retaining dependence on φ. Such forms can then be used with great

rapidity in models without the need for recourse to finite element simulations as soon as one

changes, for example the volume fraction, as is required in the MAH for general shapes, for

example.

5. Results
The implementation of the above methodology is now described for a range of geometries in the

case of a shear contrast of m= 18.75 (graphite fibres in epoxy). To fix ideas and since general

cross-sections are of principal interest here, attention is restricted to the case of square lattices.

Extension to other lattices is straightforward. Results derived using the methodology shall be

compared with those obtained using the MAH [5]. It transpires that the effective antiplane shear

modulus (when scaled on that of the host medium) as determined by the MAH can be written in

the form (see Eqs. (3.25) and (3.26) of [5])

µ∗1 =1 + (m− 1)(φ+H11), µ∗2 = 1 + (m− 1)(φ+H22), (5.1)

where the tensor components of H may be described as follows

H =

∫
Vab

∇ξNdξ=

∫
∂Vab

N · nds=

[

H11 H12

H21 H22

]

. (5.2)

Here n is the outer unit normal to the fibre boundary ∂Vab, ξ is the short lengthscale of the

problem and N = (N1, N2) is the solution to the associated cell problem. In the case of square

lattices as considered for these results, H12 =H21 = 0, and if the fibre cross section has a

rotational symmetry of π/2, H11 =H22 and thus µ∗1 = µ∗2 . Generally for fibres of non-circular

cross-section, the finite element method is employed to solve the cell problem. Indeed here we use

COMSOL multiphysics to solve the cell problem for antiplane shear. We compare the methods

by plotting the components H11 and H22 of the H-tensor. It shall be shown that this is a very

sensitive measure of the accuracy of the integral equation scheme and generally speaking, it

provides excellent accuracy even at extremely high volume fractions, for relatively low order

approximations of the rational function form.

(a) Circular Cylindrical Fibres

Consider circular fibres of radius r. Figure 2 compares results for H11(r) as obtained from (4.8)

when truncated to different orders of φ (so for example order 4 refers to the estimate given by

(4.8) when terms up to order φ4 are included on the top and bottom) to those from using the

MAH. Results are plotted against the radius r of the circular cylindrical fibre inside the cell and

related to the volume fraction φ via equation (2.7) for f(θ) = 1 and R=1. Results for the MAH

when utilising the multipole method [5] and the finite element method (FEM) are both plotted

to illustrate that the FEM remains consistent with the multipole method. Agreement between the

MAH and the present integral equation method (IEM) estimates is, in general, excellent until the

radius begins to approach 0.5, referred to as the packing limit. In this limit, fibres begin to be in

contact with each other and clearly other effects become important. The right hand plot of Figure

2 focuses on values of the radius close to this packing limit. Thus it appears that the highest order

IEM employed here (order 12) estimate begins to deviate from the MAH estimate around 0.48,

although this is deviation when studying the tensor components of H. Generally the impact of

this deviation on effective properties is weaker as will be seen shortly.
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Radius r

0.4 0.42 0.44 0.46 0.48 0.5

H
11
(r
)

-0.55

-0.5

-0.45

-0.4

-0.35

-0.3
Circular fibres

IEM order 1
IEM order 4
IEM order 8
IEM order 12
AH Multipole
AH FEM

Figure 2: Plot of H11(r) for m= 18.75 when circular fibres are arranged on a square lattice, with

associated solutions of the cell problem from the MAH inset (left) and a close-up for high radii

(right).

(b) Elliptical Cylindrical Fibres

Figure 3 illustrates results obtained in the case of elliptical fibres with aspect ratio (major axis

divided by minor axis) of ǫ=2 and here r is the major axis. As the left hand plot illustrates,

agreement is excellent in general and it is only near the packing limit where the IEM and MAH

results show any deviation. The right hand plot therefore magnifies this region.

Radius r

0.4 0.42 0.44 0.46 0.48 0.5

H
11
(r
),

H
22
(r
)

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15
Elliptic fibres

H11 IEM order 1
H11 IEM order 8
H22 IEM order 1
H22 IEM order 8
H11 AH FEM
H22 AH FEM

Figure 3: Plot of H11(r) and H22(r), where r is the major axis of the ellipse, for m= 18.75 when

elliptical fibres of aspect ratio 2 are arranged on a square lattice, with associated solutions of the

cell problem from the MAH inset (left) and a close-up for high radii (right).

One interesting aspect of these results comes from examining H22, the component associated

with µ2. Here, the leading order IEM solution is in excellent agreement with the MAH results even

at leading order, with the addition of terms up to order φ8 only slightly increasing the accuracy

close to the packing limit when the major axis r= 0.5. Contrast this with the H11 results; here the

leading order IEM solution begins to behave significantly differently from the MAH solution close

to r=0.4. The IEM solution requires the addition of higher order terms to replicate the upturn

that the MAH result experiences up to the packing limit. Even when including terms up to order
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φ8, the IEM cannot replicate this upturn precisely and the gradient of the result from r=0.45

onwards does not quite match the MAH result in this region. Of course, this assumes that MAH

is correct and one cannot be entirely sure that close to the packing limit that this is the case in

terms of effective properties since other effects come into play.

The above effect should be expected of course, as the geometry of the composite is such that the

major axis of the ellipse is in line with the x1 coordinate. Consequently when close to the packing

limit r= 0.5, while the inclusions within the composite will be close to/at the point of contact in

the x1 direction (i.e. a fibre from one cell will be close to touching the fibres in the left and right

neighbouring cells), there will still be a significant distance between fibres in neighbouring cells in

the x2 direction (cells directly above or below a cell). This essentially causes the problem to be, in a

sense, significantly more dilute with respect to the x2 direction than to the x1 direction, since there

will still be significant portions of the composite comprised of the host phase in the x2 direction

even when the fibres are near the point of contact. Therefore it makes sense that IEM is able to

produce high accuracy results for H22 and hence µ∗2 even without the addition of higher order

terms, since the method shows very strong agreement with results from other known methods in

dilute cases (as all of the results so far for low values of the radius/major axis illustrate).

(c) Results For Other Fibre Cross Sections

As already outlined, this method is designed to work with fibres of rather general cross section.

Having established promising results for fibres of elliptical cross section, it would be of interest

to examine how successful the method is with more complicated cross sections. Polygons appear

to be one class of shapes which are an ideal successor to ellipses when considering additional

geometrical complexities within the problem.

The left hand plot of Figure 4 examine the results for H11(r) and H22(r) in the case of

rectangular shaped fibres with aspect ratio 2 and where r is the long axis of the rectangle. In

addition, the right hand plot of Figure 4 shows the results for the actual effective shear modulus

µ∗1 for all three fibre shapes considered thus far, when plotted against volume fraction, as opposed

to fibre “radius". Figure 5 plots both effective shear moduli against fibre “radius". As well as

returning the results to the context of the effective properties sought, these plots again help

illustrate the extra sensitivity the H−tensor components exhibit, i.e. in general even for quite

small order approximations the IEM appears to provide exceptional predictions of the effective

shear moduli, even up to extremely high volume fractions.

Naturally, as the rectangular cross-section features the same aspect ratio as the ellipse

considered earlier, this composite experiences a similar phenomenon regarding the accuracy of

results for H22 (and through this µ∗2) as compared with those for H11 (and thus µ∗1). In this

instance, the method is able to replicate the upturn behaviour more accurately as compared to

the elliptical case, with the leading order solution seeing its gradient flatten towards the very end

of the plot and the order φ6 solution replicating the upturn of the MAH result almost exactly (as

opposed to the elliptical case, where even at order φ8 the IEM could not fully produce an upturn

as steep as required). The geometry of the rectangle is a large factor in this behaviour, as when

two rectangles reach the point of contact (r= 0.5), the entirety of the left and right hand edges

will be in contact with each other, as opposed to two ellipses, which will only be in contact with

each other at one point. This means that as the size of inclusions reaches the packing limit, the

regions close to the left and right hand edges of the cell will contain a much smaller proportion

of the host material when the fibre cross sections are rectangles as opposed to ellipses, and the

geometry of these regions of host material will also be much simpler for rectangles.

Figure 6 shows a plot of results for fibres of hexagonal shaped cross section in the context of the

cell problem, with Figure 7 plotting the actual effective properties. Once again, there is extremely

good agreement between the two methods.

As expected, since this hexagon features edges parallel to the left and right hand cell

boundaries, the IEM results replicate the results for H11 to a greater accuracy than those of H22.

However, it is only in a region very close to the packing limit that the IEM results for H22 begin



16

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

Volume fraction φ
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Ellipse IEM order 8
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Rectangle IEM order 6
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Figure 4: Plot of H11(r) and H22(r) for the situation when for m= 18.75 and rectangular fibres of

aspect ratio 2 are arranged on a square lattice, with associated solutions of the cell problem from

the MAH inset (left) and a plot of the effective property µ∗1 versus volume fraction for circular,

rectangular and elliptical fibre cross-sections (right).
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Figure 5: Plot of the effective antiplane shear moduli µ∗1 (left) and µ∗2 (right) versus fibre “radius"

for the situation when circular, elliptical and rectangular fibres are arranged on a square lattice,

m= 18.75.

to significantly differ from the MAH results, in failing to fully replicate the upturn at the very end

of the MAH plot.

The so called “radius" parameter which the results are plotted against is the parameter which

governs the area of the polygon within the unit cell. It comes from considering the radial distance

from the centre of the polygon to its outer edge as a function of the polar angle θ. Indeed, if one

has a two dimensional shape governed by a function f(θ) multiplied by a constant r, where the

function f is designed to have a minimum of 1 which occurs at the point θ= 0, so that r may be

considered the minimum distance of the shape from its centre, then the area A can be written as

A=
r2

2

∫2π
0
f2(θ)dθ.

This area can then be used in place of the volume fraction, just as the volume fraction of elliptical

fibres could be represented by the equation for the area of the ellipse in terms of its minor axis.
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Figure 6: Plot ofH11(r) andH22(r) form=18.75 when hexagonal fibres are arranged on a square

lattice, with associated solutions of the cell problem from the MAH inset (left) and a close-up for

high radii (right).
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Figure 7: Plot of effective antiplane shear moduli µ∗1 and µ∗2 form= 18.75 when hexagonal shaped

fibres are arranged on a square lattice.

The f functions for polygons are actually a sub class of a more general shape function of the form

f(θ) =

(∣

∣

∣

∣

1

a
cos
(m

4
θ
)

∣

∣

∣

∣

n2

+

∣

∣

∣

∣

1

b
sin
(m

4
θ
)

∣

∣

∣

∣

n3
)−1/n1

.

Further detail on this so called “superellipse" function can be found in work by Gielis [23]. For

reference, in the case of the hexagon, a and b are 1, n1 = 100, m= 6 and n2 = n3 = 62. For the

rectangle, a= 2, b= 1, m= 4 and n1 = n2 = n3 = 200.

6. Conclusion
New, explicit expressions for the effective properties of inhomogeneous media have been derived

in the case of the scalar problem associated with periodic two-dimensional fibre reinforced

composites. Results are broad in applicability due to the form, and can therefore be applied to

the case of antiplane shear, thermal conductivity, etc. as has been described. Of specific interest is

that the fibres in question can be of rather general cross-section and results obtained have been
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validated successfully with the classical method of asymptotic homogenization. The advantage

of the present scheme is that the forms can be used for general volume fractions without recourse

to computational methods, such as finite element schemes. The method is designed with general

fibre cross section shapes in mind, but in the special case of centrally symmetric shapes results

such as (4.3) and (4.7) may be obtained. Extensions to the case of full elastodynamics and

three-dimensional scenarios for both the potential problem and elastodynamics are currently

underway.
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A. Two Dimensional J Tensor Expansion
Consider (3.10) with Gε replaced by G0 as defined in (2.6). Define the planar polar coordinate

systems

x− r= ρ̂(cos θ̂, sin θ̂), y − r= ρ(cos θ, sin θ)

with ρ, ρ̂≥ 0 and 0≤ θ, θ̂ < 2π. Also define the boundary of the cross-sectional shape as

ρ̂= f(θ̂)

where f(θ̂)≥ 1 for all θ̂. Thus

Jδξ(y) =
1

4πδ!ξ!

∫
V
ρ̂δ+ξ+1 cosδ θ̂ sinξ θ̂ ln

(

ρ2 + ρ̂2 − 2ρρ̂ cos(θ − θ̂)
)

dρ̂dθ̂ (A 1)

In general it is clearly not possible to obtain an analytical form for this and it must be evaluated

numerically for any point y ∈D, hence the motivation for a Taylor style expansion to approximate

such integrals.

Pose the expansion (3.11). In terms of the local coordinates this may be rewritten as

Jδξ(ρ, θ) = aδξ0 (ρ) +
P+2
∑

n=1

aδξn (ρ) cos(nθ) + bδξn (ρ) sin(nθ), (A 2)

where the a and b functions depend on the D coefficients from (3.11) (best found in a symbolic

package such as mathematica) so that for example (with superscripts omitted for convenience)

a0(ρ) =D0,0 +
1

4
ρ2(D2,0 +D0,2) +

1

64
ρ4(D40 + 2D22 +D04) + ...

This yields an ideal situation for isolating the coefficients appearing in the a and b functions

(and hence obtaining conditions they must adhear to) by using orthogonality of trigonometric

functions. As such introduce the operators Cm and Sm as those which multiply by αm cos(mθ)

and αm sin(mθ) and then integrate over θ ∈ [0, 2π) where

αm =

{

1
2π , m= 0,
1
π , m≥ 1.
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Therefore, applying these operators to (A 1) = (A 2) and setting ρ=1,

aδξ0 (1) =
1

8π2δ!ξ!

∫
D
ρ̂δ+ξ+1 cosδ θ̂ sinξ θ̂C0(ρ̂, θ̂) dρ̂dθ̂, (A 3)

aδξm (1) =
1

4π2δ!ξ!

∫
D
ρ̂δ+ξ+1 cosδ θ̂ sinξ θ̂Cm(ρ̂, θ̂) dρ̂dθ̂, (A 4)

bδξm (1) =
1

4π2δ!ξ!

∫
D
ρ̂δ+ξ+1 cosδ θ̂ sinξ θ̂Sm(ρ̂, θ̂) dρ̂dθ̂ (A 5)

where

Cm(ρ̂, θ̂) =

∫2π
0

cos(mθ) ln
(

ρ̂2 + 1− 2ρ̂ cos(θ − θ̂)
)

dθ, (A 6)

Sm(ρ̂, θ̂) =

∫2π
0

sin(mθ) ln
(

ρ̂2 + 1− 2ρ̂ cos(θ − θ̂)
)

dθ. (A 7)

Note that f(θ̂)≥ 1. By performing a change of variables, ψ = θ − θ̂, employing double angle

formulae for the trigonometric functions and using the following identities (Gradshteyn and

Ryzhik [24]),

∫2π
0

ln
(

ρ̂2 + 1− 2ρ̂ cosψ
)

dψ =

{

0, ρ̂2 < 1,

2π ln ρ̂2, ρ̂2 > 1.

∫2π
0

cos(mψ) ln
(

ρ̂2 + 1− 2ρ̂ cosψ
)

dψ =

{

− 2π
m ρ̂m, ρ̂2 < 1,

− 2π
m ρ̂−m, ρ̂2 > 1.

where m≥ 1 in the latter, one finds

aδξ0 (1) =
1

2πδ!ξ!(δ + ξ + 2)2

∫2π
0

cosδ θ̂ sinξ θ̂

[

(

f(θ̂)
)δ+ξ+2 (

(δ + ξ + 2) ln f(θ̂)− 1
)

+ 1)

]

dθ̂

=Aδξ0

where integration by parts in order was used for the ζ integration and a different notation has

been associated with this integral form so that it may be referred to later. Also

aδξm (1) =−
1

2πδ!ξ!

∫2π
0

cosδ θ̂ sinξ θ̂ cos(mθ̂)

[

1

δ + ξ +m+ 2
+ Jδ+ξ−m(θ̂)

]

dθ̂=Aδξm (A 8)

where

Jδ+ξ−m(θ̂) =















ln
(

f(θ̂)
)

, δ + ξ −m=−2,
(

f(θ̂)
)δ+ξ−m+2

− 1

δ + ξ −m+ 2
, otherwise

and similarly

bδξm (1) =−
1

2πδ!ξ!

∫2π
0

cosδ θ̂ sinξ θ̂ sin(mθ̂)

[

1

δ + ξ +m+ 2
+ Jδ+ξ−m(θ̂)

]

dθ̂=Bδξm .

However, more conditions are needed in order to close the system. These are obtained by applying

the Laplacian operator to (3.10) and (3.11), exploiting that ∇2G= δ(y − x),

(y1 − r1)
δ(y2 − r2)

ξ

δ!ξ!
=

N
∑

n=2:p+q=2

Dδξpq
p!q!

(

p(p− 1)(y1 − r1)
p−2(y2 − r2)

q

+q(q − 1)(y1 − r1)
p(y2 − r2)

q−2
)

.
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Comparing coefficients of (y1 − r1)
i(y2 − r2)

j provides equations linking the coefficients Dδξpq .

Some thought leads to the conclusion that for p, q≥ 2

Dδξ
(p+2)q

+Dδξ
p(q+2)

= δpδδqξ .

(a) Linear system

Now employ the equations relating am, bm and Dpq and equate these to the integral forms just

developed above, so that e.g.

aδξ0 (1) =Dδξ00 +
1

4
(Dδξ20 +Dδξ02) +

1

64
(Dδξ40 + 2Dδξ22 +Dδξ04) + ...=Aδξ0

In fact upon employing the Laplacian conditions the full linear system for the unknowns may be

written in the diagonal form

ID=F+R

where

D= [D00 D10 D01 D20 D11 D30 D21 D40 D31....]
T

F= [A0 A1 B1 A2 B2 A3 B3 A4 B4....]
T

and the vector R is essentially a sparse vector including some constants that arise due to the

Laplacian simplification in the LHS. The difficulty is that it depends on the choice of δξ and on

the truncation of the system.

The following examples are given due to their relevance to the example systems in Section (4).

(i) Elliptical Fibre Second Order Case: P = 0, δ = ξ = 0

For this case, only J00(ρ, θ) is sought as a polynomial expansion of the form

J00 = D̂00
00 +D00

10(ỹ1 − r̃1) +D00
01(ỹ2 − r̃2) +

D00
20

2
(ỹ1 − r̃1)

2 +
D00

02

2
(ỹ2 − r̃2)

2, (A 5)

The above expressions clarify better why P =0 is referred to as the second order case: the sum of

the lower indices of the D constants never exceed 2.

In this case, the only non-trivial coefficients that have an influence on the shape tensor term

are

D00
20 =

b

(a+ b)
, D00

02 =
a

(a+ b)
,

so, using (3.12) and (3.13), the shape tensor for this system has the form

Â
(1)
00 =−

b

(a+ b)
Ŵ

(1)
00 , Â

(2)
00 =−

a

(a+ b)
Ŵ

(2)
00 . (A 4)

(ii) Circular Fibre Fourth Order Case Example: P = 2, δ = 2, ξ = 0

Note that in order to fully consider the equations (3.24) and (3.25) to fourth order the cases δ =

ξ =1 and δ = 0, ξ= 2 must also be considered. The case δ= 2, ξ = 0 has been chosen merely as an

example to illustrate how the system for the shape tensor works at this order.

In this instance, the shape tensor may be written as

Â
(1)
20 =

1

16
Ŵ

(1)
00 −

1

8
Ŵ

(1)
02 −

7

8
Ŵ

(1)
20 −

1

8
Ŵ

(2)
11 ,

Â
(2)
20 =−

1

16
Ŵ

(2)
00 +

1

8
Ŵ

(2)
02 −

1

8
Ŵ

(2)
20 −

1

8
Ŵ

(1)
11 .

The fact that this shape tensor depends on displacement gradient moments for δ = ξ = 1 and

δ =0, ξ = 2 illustrates why those choices for δ and ξ must also be considered in order to fully

establish this fourth order problem.
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B. Lattice Sums
As (4.2) illustrates, the coefficients of Γ (γ1) will in general depend upon the lattice sums L[m,n].

While it has already been shown that these sum to zero when either n, m or both n and m are

odd, and that many sums are equivalent to each other through the Helmholtz identity (3.23), it

still remains to evaluate the non-trivial sums (when n and m are even).

Recall from the definition (3.20) that

L[m,n] =
∑

u 6=0

exp(iγ · u)S[m,n],

where S[m,n] is the singular part of the of the Green’s function differentiated m times with

respect to u1 and n times with respect to u2. In the case of this problem, attention is restricted

to parallelogram shaped lattices, which will in turn restrict the forms of u that appear in the

summation. For ease of exposition, consider the further restriction of rectangular shaped lattices,

so that the displacements to be summed over are of the form u= (Bu, v), where B ≥ 1 is the

aspect ratio and u and v are integers. Since the problem is also considered in the quasi-static limit

ε≪ 1, Green’s function takes the form G0 as defined by (2.6), and the exponential term in (3.20)

may be considered as tending to 1. An example is given to illustrate the procedure involved in

evaluating such sums. Other sums are derived analogously.

(iii) Example: L[2,0] = -L[0,2]

The sum L[2, 0] (equivalent to −L[0, 2] by the Helmholtz identity) will involve the singular part

of ∂2u1
G0(u), which is of the form

S[2, 0] =
u22 − u21

2π(u21 + u22)
2
.

Upon inserting into the lattice sum definition and using the rectangular lattice restriction, this

gives

L[2, 0] =
1

2π

∑

(u,v) 6=(0,0)

v2 −B2u2

(B2u2 + v2)2
.

By isolating the parts of the sum where u= 0 and v= 0 in turn, the above may be written as

L[2, 0] =
1

π

(

∞
∑

v=1

1

v2
−

∞
∑

u=1

1

B2u2
+ 2

∞
∑

u=1

∞
∑

v=1

v2 −B2u2

(B2u2 + v2)2

)

where the sums from −∞ to ∞ excluding 0 have been replaced by twice the sum from 1 to ∞

since the powers of u and v in the sum are all even. By first performing the summation with

respect to v,

L[2, 0] =
1

π

(

π2

6
−

∞
∑

u=1

1

B2u2
+ 2

∞
∑

u=1

[

1

2B2u2
−
π2

2
cosech2(πBu)

]

)

=
π

6
− π

∞
∑

u=1

cosech2(πBu),

which defines this sum for rectangular lattices. Note that in the special case of square lattices,

B =1, then performing the summation with respect to u yields

L[2, 0] = 0.5.

In fact, it turns out that in the case of square lattices, even more of the lattice sums become

trivial, as

L[2(2i+ 1), 0] = 0 ∀i≥ 1, (A -7)

Thus via the Helmholtz identity, L[m, n] will be zero for any even m and n whose total is an odd

number multiplied by 2.
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For example, in the general rectangular lattice case, L[6, 0] has the form

L[6, 0] = π5
(

8

63
−

∞
∑

u=1

[

cosech2(πBu)
(

2 coth4(πBu)

+11 coth2(πBu)cosech2(πBu) + 2cosech4(πBu)
)])

,

and it turns out that for B = 1, the summation in u equals the constant term in this lattice sum,

and as a result L[6, 0] cancels to zero.

Additionally, in the case of square lattices,

L[4, 0]≃−3.00919, L[8, 0]≃−3413.73, L[12, 0]≃−1.25117 × 107,

C. Justifying The Form Of Expansion For Centrally Symmetric
Shapes

In the context of the shape function, central symmetry of the shape indicates that f(θ + π) = f(θ).

First, consider the summation terms in (3.24) and (3.25). When δ = ξ= 0 or δ + ξ is even,

displacement gradient moments of odd order could possibly appear in this term only when α+ β

is even. This can be observed by examining the coefficient Ĉδξαβ as defined in (3.7), dividing the

range of integration into two parts - one for θ̂ ∈ [0, π) and the other for θ̂ ∈ [π, 2π), and using the

substitution θ̂=ψ + π in the integral from π to 2π. By making use of trigonometric angle sum

identities and the fact that f(ψ + π) = f(ψ) due to central symmetry, Ĉδξαβ can be transformed

into an integral multiplied by the factor 1 + (−1)δ+ξ+α+β .

Thus, with δ + ξ being even, (−1)δ+ξ+α+β =−1 when α+ β is odd and so Ĉδξαβ = 0.

Therefore, for spherically symmetric fibre cross sections with δ + ξ being even, only terms within

the quadruple sum where α+ β is even will be non-trivial.

With this established, notice next that each moment in the quadruple sum term is multiplied

by a lattice sum. It transpires that for every combination of α, β, i and j where i+ j is odd and

α+ β is even, at least one of the inputs of the lattice sum multiplying W
(k)
ij is odd. All such

scenarios are outlined in Table 2. As established earlier, the lattice sum evaluates to zero if either

α β i j Reason lattice sums are trivial

Even Even Odd Even i+ α, i+ α+ 2 and j + β + 1 are all odd

Odd Odd Even Odd i+ α, i+ α+ 2 and j + β + 1 are all odd

Even Even Even Odd i+ α+ 1, j + β and j + β + 2 are all odd

Odd Odd Odd Even i+ α+ 1, j + β and j + β + 2 are all odd

Table 2: List of possible scenarios where both α+ β is even and i+ j is odd and how each scenario

causes the lattice sum terms in (3.24) and (3.25) to be trivial

of its inputs is odd. Therefore, no moments of odd order will appear in the quadruples sum terms

in even ordered (δ + ξ even) equations.

This leaves the displacement gradient moment expansion of the shape factor (3.12) and (3.13)

as the only terms that can potentially involve moments of odd order. Note from the form of

expansion that the shape factor term will not include any such moments if the Dδξij coefficients

are zero when i+ j is odd (hereon in described as coefficients of odd order). It transpires

from the process discussed in Appendix A that the coefficients of odd order and those of even

order separate into two subsystems. Therefore, if all coefficients of odd order are to be zero,
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the subsystem of such coefficients should be homogeneous - i.e. no terms independent of the

coefficients with indices totalling an odd number should be present in the subsystem.

Firstly note that since δ + ξ is even, the only inhomogeneous Laplace type condition one

obtains from (A) is guaranteed not to involve any odd ordered coefficients. Therefore, it just

remains to be shown that the equations in the system from Appendix A related to odd ordered

coefficients are homogeneous. This requires the Aδξm and Bδξm terms to be zero when m is odd.

When m is odd these reduce down to

Âδξm =

∫2π
0

cosδ θ̂ sinξ θ̂ cosmθ̂f (δ+ξ+2−m)(θ̂)dθ̂,

B̂δξm =

∫2π
0

cosδ θ̂ sinξ θ̂ sinmθ̂f (δ+ξ+2−m)(θ̂)dθ̂,

where

Âδξm =−2mπδ!ξ!(δ + ξ + 2−m)Aδξm , B̂δξm =−2mπδ!ξ!(δ + ξ + 2−m)Bδξm .

As was the case when examining Ĉδξαβ , splitting the range of integration into two parts - one

for θ̂ ∈ [0, π) and the other for θ̂ ∈ [π, 2π) then substituting θ̂=ψ + π into the latter and making

further use of the central symmetry of f and using trigonometric angle sum identities, the above

can be rewritten as single integrals featuring coefficient 1 + (−1)m+δ+ξ . Since m is odd and δ + ξ

is even, (−1)m+δ+ξ =−1 and thus the coefficient of the integral is zero, meaning Aδξm and Bδξm
are also zero. Therefore, any sub system of equations in coefficients Dδξij where i+ j is odd will

be homogeneous in these coefficients and hence the solution for this subset of coefficients will be

trivial. This means that, when δ + ξ is even, the expansion of Jδξ(y) will not feature any powers

of the coordinate basis of odd order.

With regards to the shape factor, this results in no displacement gradient moments of odd order

appearing in (3.12) and (3.13) when δ + ξ is even and the fibre cross section shape is centrally

symmetric. Therefore, in this case, no fractional powers of the volume fraction φ shall appear in

the system, which means that asymptotically expanding the moments and Γ (γ1) in powers of

φ1/2 is unnecessary. Instead, one can expand in powers of φ.
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