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1 Introduction

The process of recovering oil from a reservoir traditionally comprises three stages.
When first drilling into a reservoir, the high pressure in the rock forces out hy-
drocarbons in the form of gases and oils; this process is referred to as primary
oil recovery. Eventually, the naturally high pressure in the reservoir drops, and
water needs to be injected to maintain the rate at which the oil is retrieved. Typ-
ically, seawater is used for this secondary waterflood. However, a high percentage
of the oil remains undisturbed, and a tertiary waterflood is often performed to
remove some of the oil that can’t be recovered using seawater alone. Numerous
technologies have been developed for this tertiary recovery stage, such as alkaline
flooding, polymer flooding, and gas injection. This paper is motivated by one such
technology, namely low salinity waterflooding.

In low salinity waterflooding, low salinity water is injected into the reservoir
instead of seawater. Provided certain conditions are met, such as polar compounds
being present in the oil, clay compounds being present in the reservoir, and divalent
ions being present in the formation water [1], a low salinity waterflood results in
additional oil being recovered. While the requirements for low salinity oil recovery
to be effective are relatively well known, the dominant causal mechanism is not
well understood, and a number of potential mechanisms have been proposed in
the literature.

For example, Tang and Morrow [22] suggest that the presence of lower salinity
water causes the electrical double layer between the clay platelets present in the
reservoir to expand and release fines. These fines act as a surfactant, and alter the
permeability of the reservoir. McGuire et al. [21] suggest that, due to the increase
in pH during a low salinity injection, the interfacial tension is reduced, leading
to a wettability alteration. As a secondary effect, they claim that the carboxylic
compounds in the oil are desorbed from the clay as a result of the pH increase.

Lager et al. [15] propose an alternative mechanism, known as Multicomponent
Ionic Exchange (MIE). In this mechanism, divalent cations present in the connate
brine (water naturally present in the oil reservoir before any waterflooding has
taken place) attract oil to the clay by forming a bridge across the thin film of
water separating the oil and the clay, binding the negatively charged carboxylate
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ions on the oil surface to the negatively charged exchange sites on the clay surface.
Lager et al. assert that, as the concentration of divalent ions in the injected water
is decreased, the ions attracting the oil to the clay migrate into the bulk, and are
replaced by monovalent ions, allowing the release of oil. Additionally, they claim
that the thin film of water between the oil and clay expands in the low salinity
regime, due to electric double layer expansion, reducing the attraction of the oil
to the clay surface, and thus assisting the release of oil.

Numerous experimental studies have been undertaken to distinguish between
these different mechanisms. The majority of these are core-scale experiments, in
which a sample of reservoir rock, a ‘core’, approximately 10cm×4cm2, is water-
flooded with brine [9–11,15,18,27,32,33]. By studying the effects of different oil,
rock, and brine compositions, these experiments provide a good understanding of
the requirements for effective low salinity oil recovery.

By performing core-scale experiments, Lager et al. [15] observe that a greater
oil recovery can be achieved without any increase in the number of fines produced,
or any significant permeability alteration, and thus they assert that fines migration
is unlikely to be the dominant mechanism. They also dispute the pH increase
mechanism, as low salinity effects were observed in experiments in which the pH
only showed a slight increase.

As an alternative to a core experiment, Berg et al. [3] demonstrate the weak-
ening of the adhesion forces between oil droplets and a clay surface in the low
salinity regime, by passing water over oil on a clay surface. They observe that
the oil droplets lift from the clay surface as the salinity of the surrounding fluid
reduces. These results support the MIE mechanism proposed by Lager et al. [15].

A key component in the MIE mechanism is the expansion of the thin water
film between the oil and clay. Lee et al. [16] used Small Angle Neutron Scattering
to measure the thickness of the film, h∗, for various salinities, and found that h∗

varies from 0.9 nm to 1.3 nm as the salinity of the surrounding fluid varies. These
results support the MIE mechanism by demonstrating the effect of the double
layer expansion, and the weakening of adhesion forces at the oil-clay interface, as
the salinity of the surrounding fluid is reduced.

Theoretical predictions for the thickness of the thin layer of water between the
clay and the oil have been made based on a balance between capillary pressure
and electro-osmotic forces [8, 12, 31]. These forces are derived from Derjaguin,
Verwey, Landau, and Overbeek’s (DVLO) theory of colloidal stability [6, 30], in
which the disjoining pressure, Π, is taken to be the same as between two flat
plates [2,20,24–26]. However, there does not appear to be a systematic derivation
of the height at which the oil lies above the clay where the oil-water interface is
treated as a free surface. Further, the expressions often stated for the film thickness
are for static models [8,12–14,31]; however, as can be seen by studing the motion
of bubbles through capillary tubes [4] (the Bretherton model), or by studying the
spreading of droplets on surfaces [29] (Tanner’s Law), the film thickness below a
moving droplet is dependent on the velocity at which the droplet moves, hence
these static models are of limited use when studying oil motion through a pore
space.
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A systematic derivation for the motion of a fluid through a prewetted capillary
in the presence of a disjoining pressure is given by Egorov et al. [7]. However, this
model does not include electrostatic effects due to ion exchange. On the other
hand, Kuchin et al. [13, 14] study the profile of a capillary meniscus with the
inclusion of electrostatic effects. However, in their model the meniscus is static,
and so they do not consider Bretherton effects which will influence the motion of
oil.

In this paper, we study the paradigm problem of the two-dimensional steady
motion of a charged oil slug in a charged pore throat, where the surrounding
water contains both monovalent and divalent ions. In Section 2, we present a
mathematical model to describe the motion of the oil slug, which includes a simple
model for the reactions occurring between the ions and the surfaces.

Then, in Section 3, we solve the model and derive an expression for the velocity,
V , at which the oil slug moves given a pressure difference, P , along the length of
the pore throat. We also consider the asymptotic limit in which P is much smaller
than the disjoining pressure due to the charged surfaces.

In Section 4, we will solve the model numerically in the high salinity and low
salinity regimes to determine the shape and the velocity of the oil slug. We will
solve the model assuming that the ratio of P to the disjoining pressure is O(1),
and we will compare the results with the asymptotic solution in the limit in which
this term tends to zero.

Finally, in Chapter 5, we will draw together our findings and discuss their
application. Our aim is to provide a simple, testable model for the effect of a low
salinity injection.

2 Model Formulation

We wish to model the motion of an oil slug through a pore throat filled with saline
water, subject to a constant pressure difference, P , across the ends of the pore.
We suppose that the pore throat can be represented by a capillary tube of length
L and height 2R, and that at each end of the capillary there is a bulk region of
water. We label the oil region by Ωo, the surrounding water region by Ωw, and the
clay regions bounding either side of the capillary tube by Ωc, as shown in Figure
1. We assume that there is a thin film of water separating the oil from the clay
surface (due to electrostatic and viscous effects) along the upper and lower surfaces
of the oil slug. The thickness of this water layer is unknown a priori ; however,
we assume that it is thin enough such that from a macroscopic perspective there
appears to be contact between the oil and the clay. We denote the length of
the oil droplet, measured from the apparent contact point of the rear meniscus,
to the apparent contact point of the front meniscus, by Lo, and we assume that
Lo = O(L). Taking the origin of our coordinate system to be the lower left corner
of the tube, we suppose that the upstream apparent contact point has horizontal
coordinate xc, with the positions of the front and rear menisci being xf and xr, as
shown in Figure 2.

In order to model the effect of the salinity of the water on the motion of
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Figure 1: Schematic diagram of the motion of an oil slug through a capillary
between two bulk phases of water.

the oil slug, we assume that the water phase contains solvated positively and
negatively charged ions, with the concentrations of the monovalent and divalent
species being c± and c2± respectively. In order to model ion exchange mechanisms
on the capillary wall, and on the oil-water interface, we assume that these surfaces
contain a number of negatively charged exchange sites at which reactions are
allowed to occur. Using symmetry, we consider only the lower half of the capillary
tube, that is, the region z < R.

2.1 Governing Equations

We model the oil and water using the Navier-Stokes equations. Due to the pres-
ence of the ions, the net charge density is q(c+ − c− + 2c2+ − 2c2−) in the water
phase, where q is the (absolute) charge of an electron. Hence, the electric field,
∇φ, induces a force on the water, and we have to include this body force in the
equations for the water phase. Thus we write

∇ · uw = 0, in Ωw, (1)

ρw
Duw
Dt

= −∇pw + µw∇2uw − q(c+ − c− + 2c2+ − 2c2−)∇φ, in Ωw, (2)

∇ · uo = 0, in Ωo, (3)

ρo
Duo
Dt

= −∇po + µo∇2uo, in Ωo, (4)

where uo = (uo, wo) is the velocity in the water phase, uw = (uw, ww) is the
velocity in the oil phase, pw is the pressure in the water phase, po is the pressure
in the oil phase, ρw is the density of the water, ρo is the density of the oil, µw
is the viscosity of the water, µo, is the viscosity of the oil, and φ is the electric
potential.
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Figure 2: Schematic diagram of the macroscopic capillary problem. The thickness
of the water layer below the oil slug has been exaggerated for illustrative purposes.

The ion concentrations are governed by the Nernst-Planck (Drift-Diffusion)
equations,

Dc±

Dt
= D±∇ ·

(
∇c± ∓ q

kBT
c±∇φ

)
, in Ωw, (5)

Dc2±

Dt
= D2±∇ ·

(
∇c2± ∓ 2q

kBT
c2±∇φ

)
, in Ωw, (6)

where D±, D2±, kB, and T denote the diffusive coefficients of the monovalent and
divalent ions, Boltzmann’s constant, and the temperature, respectively. These are
coupled to Poisson’s equation, which determines the electric potential for a given
charge distribution, which reads

∇2φ =

{
q
εw

(c+ − c− + 2c2+ − 2c2−) in Ωw,

0 in Ωo ∪ Ωc,
(7)

where εw is the permittivity of the water phase. Note that although we only need
to solve the fluid equations inside the capillary, we need to solve Poisson’s equation
everywhere to determine φ.

2.2 Boundary Conditions

We set the concentrations of the monovalent and divalent ions to be c1
∞ and c2

∞,
respectively, at each end of the tube. We suppose that there is no potential drop
across the tube, so that φ(0) = φ(L), which we may take to be zero without loss
of generality. These boundary conditions read

pw = P, at x = 0, (8)

pw = 0, at x = L, (9)

c± = c1
∞, c2± = c2

∞, φ = 0, at x = 0, L. (10)
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We restrict our attention to the lower half of the capillary by imposing symmetry
conditions on the surface z = R,

∂uw
∂z

=
∂uo
∂z

= ww = wo =
∂pw
∂z

=
∂po
∂z

=
∂c±

∂z
=
∂c2±

∂z
=
∂φ

∂z
= 0. (11)

One of the advantages of considering only the lower half plane is that the oil-
water interface becomes a single valued function in x. We denote this boundary
by z = h(x, t). On the capillary wall we impose the zero slip condition,

uw = 0, at z = 0, (12)

and on z = h we impose continuity of velocity across the interface, the kinematic
condition, and a balance of normal and tangential stresses. These conditions read

uw = uo, at z = h, (14)

ht = ww − uwhx, at z = h, (15)

n ·Tw · t = n ·To · t, at z = h, (16)

n ·Tw · n = n ·To · n +
γhxx

(1 + h2
x)

3/2
, at z = h, (17)

where n and t are the normal and tangential vectors to the surface, respectively,
and γ is the surface tension of the oil-water interface. We let Tw and To denote
the stress tensors for the water and oil respectively, given by

Tw = −pwI + µw
[
∇uw + (∇uw)T

]
+ εw(∇φ)(∇φ)T − εw

2
|∇φ|2I, (18)

To = −poI + µo
[
∇uo + (∇uo)

T
]
. (19)

To determine the boundary conditions for the ion concentrations, we need to
consider the reactions occuring at the clay-water and oil-water interfaces. We
model the reactions occuring at the clay-water interface by supposing that there
are a number of negatively charged exchange sites on the clay surface which can
either be occupied by a monovalent cation to create a neutrally charged site, a
divalent cation to create a positively charged site, or remain unoccupied. We
let C+ and C2+ denote monovalent and divalent cations, and Sc and S+

c denote
sites on the surface occupied by monovalent and divalent cations respectively.
The subscript c denotes ‘clay’. We suppose the following reactions1 occur on the
surface,

(hole)− + C+
K1

cf−−⇀↽−−
K1

cr

Sc, (20)

(hole)− + C2+
K2

cf−−⇀↽−−
K2

cr

S+
c . (21)

1Note that, in order to model the effects of different reaction processes, such as pH variation,
we can replace equations (20) and (21) and apply the same methodology.
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The first equation describes the adsorption of monovalent ions to create neutrally
charged sites, and the second describes the adsorption of divalent ions to create
positively charged sites. The rate parameters Ki

cf
and Ki

cr are the forward and
reverse reaction rates, repectively, for the reaction involving the ion of valence i.
We let sc and s+

c denote the concentrations of adsorbed monovalent and divalent
cations respectively, and let s∗c be the saturation concentration, which we assume
is constant along the capillary wall. Using the principle of mass action, we obtain
the following equations on the capillary surface, ∂Ωc,

∂sc
∂t

= K1
cf
c+(s∗c − sc − s+

c )−K1
crsc, (22)

∂s+
c

∂t
= K2

cf
c2+(s∗c − sc − s+

c )−K2
crs

+
c . (23)

Balancing the flux of ions to the surface with the rate at which ions react with
the surface sites yields the boundary conditions

D±
(
∂c+

∂z
− q

kBT
c+∂φ

∂z

)
=
∂sc
∂t
, (24)

D2±
(
∂c2+

∂z
− 2q

kBT
c2+∂φ

∂z

)
=
∂s+

c

∂t
, (25)

on z = 0. By assuming that similar reactions occur on the oil-water interface, with
carboxylic acid groups being represented by negatively charged exchange sites, we
also have the following set of boundary conditions on the surface of the oil, z = h,

Dso
Dt

= K1
of
c+(s∗o − so − s+

o )−K1
orso, (26)

Ds+
o

Dt
= K2

of
c2+(s∗o − so − s+

o )−K2
ors

+
o , (27)

D±n ·
(
∇c+ − q

kBT
c+∇φ

)
=

Dso
Dt

, (28)

D2±n ·
(
∇c2+ − 2q

kBT
c2+∇φ

)
=

Ds+
o

Dt
, (29)

where the subscript o denotes ‘oil’. We assume that s∗o is constant along the oil-
water interface. As the negatively charged ions do not react with the surface, we
have the zero flux conditions

n ·
(
∇c− +

q

kBT
c−∇φ

)
= 0, (30)

n ·
(
∇c2− +

2q

kBT
c2−∇φ

)
= 0, (31)

on z = 0, h.
Equations (22) - (31) are the boundary conditions for the ion concentrations at

the clay-water interface, and the oil-water interface. As the surface concentration
of negatively charged, unoccupied sites is given by s∗c − sc − s+

c on the clay-water
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interface, and s∗o − so − s+
o on the oil-water interface, respectively, the surface

charge densities are given by σc = q(2s+
c + sc− s∗c), and σo = q(2s+

o + so− s∗o), for
the clay and oil surfaces respectively.

Due to the charged surfaces, there is a discontinuity in the electric field across
the clay-water and oil-water interfaces, given by the difference in the ratio of the
surface charge density to the permittivity. We also impose that the electric field
is zero at infinity, since we assume that the system is globally neutral. These
conditions read

[εφz]
+
− = σc at z = 0, (32)

[εn · ∇φ]+− = σo at z = h, (33)

∇φ→ 0 as x2 + z2 →∞, (34)

where the permittivity is given by ε = εw in the water phase, ε = εo in the oil
phase, and ε = εc in the clay phase.

Finally, we also assume that the electric potential is continuous across these
interfaces,

[φ]+− = 0 at z = 0, h. (35)

2.3 Non-dimensionalisation

We non-dimensionalise the problem using the following scalings,

x = Lx̂, z = Rẑ, h = Rĥ, (36a,b,c)

uw = Uûw, uo = Uûo, ww = ε1Uŵw, wo = ε1Uŵo, (37a,b,c,d)

pw = P p̂w, po = P p̂o, t =
L

U
t̂, (38a,b)

c± = c1
∞ĉ
±, c2± = c2

∞ĉ
2±, φ =

qs∗cR

εw
φ̂, ε = εwε̂ (39a,b,c,d)

sc = s∗c ŝc, s+
c = s∗c ŝ

+
c , so = s∗oŝo, s+

o = s∗oŝ
+
o , (40a,b,c,d)

where we pick U = PR2

µwL
in order to get a balance in (2), and ε1 = R/L is the

aspect ratio of the capillary tube.
After substituting in these variables, and dropping the hats, the dimensionless

equations read

8



ε21Re
Duw
Dt

= −pwx +
(
ε21uwxx + uwzz

)
− 1

δP ∗
(c+ − c− + 2c∗c2+ − 2c∗c2−)φx,

in Ωw, (41)

ε41Re
Dww
Dt

= −pwz + ε21(ε21wwxx + wwzz)

− 1

δP ∗
(c+ − c− + 2c∗c2+ − 2c∗c2−)φz,

in Ωw, (42)

uwx + wwz = 0, in Ωw, (43)

ε21ρ
∗Re

Duo
Dt

= −pox + µ∗
(
ε21uoxx + uozz

)
, in Ωo, (44)

ε41ρ
∗Re

Dwo
Dt

= −poz + ε21µ
∗ (ε21woxx + wozz

)
, in Ωo, (45)

uox + woz = 0, in Ωo, (46)

ε21Pe±
Dc±

Dt
= ε21

(
c±x ∓ ξc±φx

)
x

+
(
c±z ∓ ξc±φz

)
z
, in Ωw (47)

ε21Pe2±Dc2±

Dt
= ε21

(
c2±
x ∓ 2ξc2±φx

)
x

+
(
c2±
z ∓ 2ξc2±φz

)
z
, in Ωw, (48)

δ
(
ε21φxx + φzz

)
=

{
c+ − c− + 2c∗c2+ − 2c∗c2− in Ωw,

0 in Ωo ∪ Ωc.
(49)

ε = 1 in Ωw, ε = ε1 in Ωo, ε = ε2 in Ωc, (50)

The dimensionless parameters in the above equations are as follows; Re = ρwPR
2/µ2

w

is the Reynolds number, Pe±,2± = PR2/D±,2±µw are the Peclet numbers for the
different ionic species, δ = s∗c/c

1
∞R is the ratio of the adsorption depth to the radius

of the capillary, P ∗ = εwP/q
2s∗c

2 is the ratio of the pressure drop across the cap-
illary to the electrostatic pressure due to the charged surfaces, ξ = q2s∗cR/εwkBT
is the ratio of the potential due to the charged surfaces to the thermal voltage,
ρ∗ = ρo/ρw is the ratio of the density of the oil to the density of the water,
µ∗ = µo/µw is the ratio of the viscosity of the oil to the viscosity of the water,
and c∗ = c2

∞/c
1
∞ is the ratio of the bulk concentration of divalent ions to the bulk

concentration of monovalent ions. The dimensionless permittivity is ε1 = εo/εw
in the oil phase, and ε2 = εc/εw in the clay phase.
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These equations are subject to the boundary conditions

pw = 1, c±,2± = 1, φ = 0, at x = 0, (51)

pw = 0, c±,2± = 1, φ = 0, at x = 1, (52)

uw = 0, [εφz]
+
− = 2s+

c + sc − 1, [φ]+− = 0,

Λ1
c

∂sc
∂t

= K1
cc

+(1− sc − s+
c )− sc,

Λ2
c

∂s+
c

∂t
= K2

cc
2+(1− sc − s+

c )− s+
c ,

c+
z − ξc+φz = ε21δPe+∂sc

∂t
, c−z + ξc−φz = 0,

c2+
z − 2ξc2+φz =

ε21δPe2+

c∗
∂s+

c

∂t
, c2−

z + 2ξc2−φz = 0,


at z = 0, (53)

uw = uo ht = ww − uwhx,

Λ1
o

Dso
Dt

= K1
oc

+(1− so − s+
o )− so,

Λ2
o

Ds+
o

Dt
= K2

oc
2+(1− so − s+

o )− s+
o ,

c+
z − ξc+φz − ε21hx

(
c+
x − ξc+φx

)
= ε21δPe+s∗

Dso
Dt

,

c2+
z − 2ξc2+φz − ε21hx

(
c2+
x − 2ξc2+φx

)
=
ε21δPe2+s∗

c∗
Ds+

o

Dt
,

c−z + ξc−φz − ε21hx
(
c−x + ξc−φx

)
= 0,

c2−
z + 2ξc2−φz − ε21hx

(
c2−
x + 2ξc2−φx

)
= 0,

1

(1 + ε1h2
x)

1/2

[
ε
(
φz − ε21hxφx

)]+
− = s∗(2s+

o + so − 1),

[φ]+− = 0,



at z = h, (54)

uwz = uoz = ww = wo = pwz = poz = c±z = c2±
z = φz = 0, at z = 1, (55)

∇φ→ 0, as x2 + z2 →∞. (56)

Substituting in the expressions for the stress tensors, (18) and (19), the bound-
ary conditions (16) and (17) read

µ∗
[
(uoz + ε1woz)(1− ε21h2

x) + 2ε21hx(woz − uox)
]

= (uwz + ε1wwz)(1− ε21h2
x)

+ 2ε21hx(wwz − uwx) +
ε1
P ∗
[
hx(ε

2
1φ

2
x − φ2

z) + (1− ε21h2
x)φxφz

]−
, (57)

ε21µ
∗ [woz − hxuoz + ε21hx(hxuox − wox)]

1 + ε21h
2
x

= ε21
[wwz − hxuwz + ε21hx(hxuwx − wwx)]

1 + ε21h
2
x

+
1

2
(po − pw)− 1

P ∗

[
ε21hxφxφz
1 + ε21h

2
x

+
1

4
(ε21φ

2
x − φ2

z)

]−
− Γhxx

4P ∗(1 + ε21h
2
x)

3/2
, (58)
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on z = h. The ratios of the timescales of the surface reactions to the timescale cho-
sen for the non-dimensionalisation are given by Λ1,2

c = PR2/µwL
2K1,2

cr and Λ1,2
o =

PR2/µwL
2K1,2

or , the dimensionless dissociation constants areK1,2
c = Kc

1,2
f c1,2
∞ /Kc

1,2
r

and K1,2
o = Ko

1,2
f c1,2
∞ /Ko

1,2
r , the ratio of the surface tension forces to the electro-

static forces is Γ = 2γεwR/L
2q2s∗c

2 (2ε31P
∗/Γ is the capillary number, with the

chosen velocity scale), and s∗ = s∗o/s
∗
c is the ratio of the saturation concentration

of the oil surface to the saturation concentration of the clay surface.
Austad et al. [1] performed experiments using brine with low salinity c1

∞ ≈ 1 ·
1025 m−3, c2

∞ ≈ 3·1024 m−3, and high salinity c1
∞ ≈ 1·1027 m−3, c2

∞ ≈ 5.4·1025 m−3,
hence we take these to be our low salinity and high salinity regimes, respectively.
In a given sample of reservoir rock there will be a range of pore throat sizes.
Nelson [23] studies the distribution of these throat sizes for various rocks, and for
the purposes of this paper we assume R = 10−6 m, which is typical for a sandstone
reservoir. The grain size, and hence the length of a typical pore throat, is typically
an order of magnitude larger, so we assume that L = 10−5 m. For the oil viscosity,
density, and interfacial tension, we use values determined for a range of oil samples
by Buckley [5]. Typically, γ ≈ 0.02 J m−2, with some variation depending on pH.
The viscosities of the oils used by Buckley ranged from 0.006−0.035 kg m−1 s−1, so
we let µo = 0.01 kg m−1 s−1. The oil densities were in the range 840− 900 kg m−3,
so we let ρo = 850 kg m−3. The viscosity of water is 8.9 · 10−4 kg m−1 s−1, and
the density of water is 1000 kg m−3. Flow rates in a reservoir are typically around
10−5 m s−1 (≈ 3 ft day−1), so, using Poiseuille’s law for flow through a cylinder,
∆P ∼ 8µwLV/R

2, we find that the typical pressure difference across a pore throat
is P ≈ 0.7 N m−2. Alternatively, we can estimate the pressure using Darcy’s law
Q = K∆P/µL. For K = 100 mD, we find that ∆P ≈ 1 N m−2, agreeing with our
previous estimation.

Lager et al. [15] studied core scale experiments at 102◦C, so we let T = 375◦K,
and hence by using εw = εwrε0, where εwr ≈ 56 [19] and ε0 ≈ 8.9 ·10−12 C2J−1 m−1

are the relative permittivity of water at 100◦C, and the permittivity of free space,
respectively, we find that εw ≈ 5·10−10 C2 J−1 m−1. We takeD+ ≈ 1.3·10−9 m2 s−1,
D− ≈ 2·10−9 m2 s−1, D2+ ≈ 7.9·10−10 m2 s−1, and D2− ≈ 1.1·10−9 m2 s−1, as these
are the mass diffusivities of sodium, chloride, sulfate, and calcium ions, respectively
[28]. We use the standard values for q ≈ 1.6 · 10−19 C and kB ≈ 1.4 · 10−23 J K−1.
Li and Xu [17] studied the surface charge densities for different clays for various
values of the pH. For a binary system containing kaolinite, a typical surface charge
has a range from approximately −5 · 10−4 to 5 · 10−4 C m−2. Hence, by supposing
that σc ≈ qs∗c , we estimate s∗c ≈ 1016 m−2.

Using these values, we find that ε1 ≈ 0.1 � 1. The Reynolds number is
Re ≈ 8.8 · 10−4 � 1, hence we will neglect the inertial terms in the Navier-
Stokes equations. The Peclet numbers are Pe+ ≈ 0.61, Pe− ≈ 0.39, Pe2+ ≈ 1,
Pe2− ≈ 0.72, hence we will assume that these are O(1). Note that the ions in
the model (Na+, Cl−, Ca2+) have radius ≈ 2 · 10−10 m, hence the continuum
assumption breaks down as we approach the high salinity regime. However, as we
are mainly interested in the effects of low salinity water, we will assume that we
can make this approximation. We also assume that the ions react instantaneously
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at the surfaces, that is, we assume that Λ1,2
c � 1 and Λ1,2

o � 1.
We find that ξ ≈ 98, and that, depending on the salinity, δ ranges from 10−3

to 10−5, hence, δ � ξ−1 � 1. In Section 3 we will derive an expression for σc
as a function of K1,2

c , and hence, by using the range of values for σc given by Li
and Xu [17], we will estimate the values of the dissociation constants. To find the
values for these constants, and the saturation concentrations, more accurately, an
experimental investigation would have to be undertaken; however, this is beyond
the scope of this paper. Using the estimated value for s∗c , we find that Γ ≈ 0.08, and
P ∗ ≈ 1.4 · 10−4, and hence we will find the solution in the limit P ∗ → 0. However,
as there can be large variations in the permeability and pore sizes between different
rocks, and even within the same type of rock, we will consider P ∗ = O(1) in order
to accommodate the wide-ranging conditions found in oil reservoirs. See Appendix
A for a table of values.

Neglecting terms proportional to ε1, Re, Λ1,2
c , and Λ1,2

o , equations (41) - (58)
read

uwzz = pwx +
1

δP ∗
(c+ − c− + 2c∗c2+ − 2c∗c2−)φx,

pwz = − 1

δP ∗
(c+ − c− + 2c∗c2+ − 2c∗c2−)φz,

uwx + wwz = 0,

 in Ωw, (59)

µ∗uozz = pox, poz = 0, uox + woz = 0, in Ωo, (60)(
c±z ∓ ξc±φz

)
z

= 0,
(
c2±
z ∓ 2ξc2±φz

)
z

= 0, in Ωw, (61)

δφzz =

{
c+ − c− + 2c∗c2+ − 2c∗c2− in Ωw,

0 in Ωo ∪ Ωc,
(62)

ε = 1 in Ωw, ε = ε1 in Ωo, ε = ε2 in Ωc, (63)
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subject to

pw = 1, c±,2± = 1, φ = 0, at x =0, (64)

pw = 0, c±,2± = 1, φ = 0, at x =1, (65)

uw = 0, [εφz]
+
− = 2s+

c + sc − 1, [φ]+− = 0,

K1
cc

+(1− sc − s+
c )− sc = 0,

K2
cc

2+(1− sc − s+
c )− s+

c = 0,

c±z ∓ ξc±φz = 0, c2±
z ∓ 2ξc2±φz = 0,

 at z =0, (66)

uw = uo, [εφz]
+
− = s∗(2s+

o + so − 1), [φ]+− = 0,

K1
oc

+(1− so − s+
o )− so = 0,

K2
oc

2+(1− so − s+
o )− s+

o = 0,

c±z ∓ ξc±φz = 0, c2±
z ∓ 2ξc2±φz = 0,

ht = ww − uwhx, µ∗uoz = uwz,

pw = po +
1

2P ∗
[
φ2
z

]− − Γhxx
2P ∗

,


at z =h, (67)

uwz = uoz = ww = wo = pwz = poz = c±z = c2±
z = φz = 0, at z =1, (68)

∇φ→ 0, as x2 + z2 →∞. (69)

In order to form a closed system, we require solvability conditions for c±, c2±, and
φ. These are obtained by integrating (47) and (48) from z = 0 to z = 1, which,
after imposing (66) and (67), read

Pe±
∫ 1

0

Dc±

Dt
dz =

∂

∂x

∫ 1

0

∂c±

∂x
∓ ξc±∂φ

∂x
dz, in Ωw, (70)

Pe2±
∫ 1

0

Dc2±

Dt
dz =

∂

∂x

∫ 1

0

∂c2±

∂x
∓ 2ξc2±∂φ

∂x
dz, in Ωw. (71)

3 Model Solution

In Section 3.1, we solve (61) and (62) subject to (64) - (71) to find expressions for
φ and c1,2±. In Section 3.2 we use these expressions to solve (59) and (60) subject
to (64) - (69), to find the shape and the velocity of the oil slug.

3.1 The Electric Potential

3.1.1 In the oil phase

To find φ in the oil phase, Ωo, we consider (62), which reads

φzz = 0. (72)

Hence, imposing (68), we get that φz ≡ 0 in the oil. To find φ(x, t) we will need
to first solve for φ in the water phase, and then impose (67).
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3.1.2 In the water phase

In the water phase, Ωw, integrating (61) twice and applying (66) yields

ck± = dk±e±kξφ, (73)

for some functions d±,2±(x, t), for k = 1, 2. By substituting (73) into (62), (70),
and (71), we find that

δφzz = d+eξφ − d−e−ξφ + 2c∗(d2+e2ξφ − d2−e−2ξφ), (74)

Pek±
[
∂

∂t

∫ 1

0

dk±e±kξφdz +

∫ 1

0

(uw · ∇)dk±e±kξφ dz

]
=

[∫ 1

0

dk±x e±kξφdz

]
x

. (75)

We expand in powers of δ to find that at leading order, φ ∼ φ0 + O(δ) and
d±,2± ∼ d±,2±0 +O(δ) satisfy

d+
0 e

ξφ0 − d−0 e−ξφ0 + 2c∗(d2+
0 e2ξφ0 − d2−

0 e−2ξφ0) = 0. (76)

It follows from (76) that φ0 = φ0(x, t), and therefore (75) reads

Pek±
[(
dk±0 e±kξφ0

)
t
+ (dk±0 e±kξφ0)x

∫ 1

0

uw dz

]
= (dk±0x e

±kξφ0)x. (77)

We observe that (77) admits constant solutions, and thus, by imposing (64) and
(65), we find that φ0 ≡ 0, d±,2±0 ≡ 1. By matching terms in (74) and (75) at higher
orders and, we find that φi ≡ 0, d±,2±i ≡ 0 for i ≥ 1; hence, φ ≡ 0, d±,2± ≡ 1.

However, after imposing (66) and solving φzz = 0 in the clay phase, this leads
to φz becoming unbounded as z → −∞, which contradicts (69). Hence, there are
boundary layers at the capillary wall, and at the oil-water interface, of size ε2 (to
be determined).

To look near the capillary wall, we define the rescaling z = ε2Z. As we expect
the thickness of the wetting film to be partly determined by the electrostatic forces
occurring between the two charged surfaces, we require h∗ = O(ε2). Otherwise,
there is a bulk region between the surfaces in which φ = 0, and therefore there is
no interaction between the two surfaces. Hence, we define the rescaling h = ε2H.
From (66) and (67), we observe that the rescaling φ = ε2Φ is required to balance
the terms in the boundary conditions. Substituting d±,2± = 1 into (74), and
expanding the resulting equation in terms of ε2 (assuming that ε2ξ � 1) yields

δ

ε22
ΦZZ = 2(1 + 4c∗)ξΦ +O(ε2). (78)

To balance the leading-order terms in (78) we find that ε2 =
(

δ
2ξ2(1+4c∗)

)1/2

= λ/R,

where λ =
(

εwkBT
2(c1∞+4c2∞)q2

)1/2

is the Debye length. Note that with this choice of

ε2, the assumption we made, that ε2ξ � 1, holds, and therefore the asymptotic
analysis is consistent.
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The equations governing the potential in the boundary layer at leading order
in ε2 read

ΦZZ = Φ, (79)

subject to

[Φ]+− = 0, [εΦZ ]+− = 2sc
+
0 + sc0 − 1, at Z = 0, (80)

[Φ]+− = 0, ΦZ |− = −s∗(2so+
0 + so0 − 1), at Z = H, x∗r < x < x∗f (81)

ΦZ → 0, as Z →∞,

{
0 < x < x∗r,

x∗f < x < 1,
(82)

Φ = 0, at x = 0, 1, (83)

where x∗f = xf/L and x∗r = xr/L are the dimensionless positions of the front and
rear of the menisci of the oil slug, respectively. Equation (82) is the matching
condition required to ensure that the potential in the boundary layer, Φ, matches
with the outer solution, φ0 = 0. Note that we have used the fact that φz = 0 in
the oil phase in deriving (81).

To solve (79) - (83) for Φ in the boundary layer, we need to find expressions
for sc0, sc

+
0 , so0, and so

+
0 . By substituting c±,2±0 = 1 into (66) and (67), we get

that

sc0 =
K1
c

1 +K1
c +K2

c

, sc
+
0 =

K2
c

1 +K1
c +K2

c

, (84)

so0 =
K1
o

1 +K1
o +K2

o

, so
+
0 =

K2
o

1 +K1
o +K2

o

. (85)

Using the relations for the surface charge densities, σc = 2s+
c + sc − 1, and σo =

2s+
o + so − 1, we find that

σc0 =
K2
c − 1

1 +K1
c +K2

c

, σo0 =
K2
o − 1

1 +K1
o +K2

o

. (86)

Note that σc0 and σo0 are constant along the capillary surface, and oil-water
interface, respectively, as at leading order the ion concentrations are constant.

Recalling that K1,2
c = K1,2

cf
c1,2+/K1,2

cr , we find that in order for the surface

charge densities to agree with the values found by Li and Xu [17] as the bulk
salinity varies, appropriate values for the dimensional dissociation constants are
K1
cf
/K1

cr ∼ 3 ·10−28 m3, and Kc
2
f/Kc

2
r ∼ 4.1 ·10−25 m3. In order to study the effect

of having different materials on the two surfaces, we suppose that the dissociation
constants are different on the two surfaces.

The water phase can be split into five regions, shown in Figure 2; the bulk
region of water to the left of the oil slug (region I), the thin layer of water separating
the oil from the capillary walls (region II), the bulk region of water to the right
of the oil slug (region III), and the meniscus regions at each end of the oil slug
(regions IV and V). For 0 < x < x∗r (region I), Φ satisfies (79) subject to (82),
which can be solved to find

Φ = −Ae−Z , (87)
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where A(x) is defined for 0 < x < x∗f . Similarly, solving (79) subject to (82)
for x∗f < x < 1 (region III) yields the same expression, with A(x) defined for
x∗f < x < 1.

In the thin water layer between the oil and the clay surface, x∗c < x < x∗c + L∗o
(region II), where xc∗ = xc/L and L∗o = Lo/L are the dimensionless position of the
apparent contant point and length of the oil slug respectively, due to the choice of
scaling for the thickness of the layer, the clay-water and oil-water boundary layers
overlap. Hence, instead of a far field condition, Φ satisfies (79) subject to (81).
We solve this system to find

Φ = A sinhZ − A coshH + s∗σo0

sinhH
coshZ, (88)

for some function A(x) defined for x∗c < x < x∗c + L∗o.
Note that exactly the same analysis applies in regions IV and V as in region

II, yielding the same expression for Φ, (88). In region IV, as x→ x∗c the solution
trivially matches with the solution in region II, and as x → x∗r, we find that
H → ∞, hence Φ → −Ae−Z which matches the solution in region I. Similarly,
region V matches regions II and III.

3.1.3 In the clay phase

In the clay phase, Ωc, the leading order potential satisfies

φzz = 0, (89)

subject to

1

ε2
φ :=


−A x < x∗r,

−A cosh (h/ε2)+s∗σo0

sinh (h/ε2)
x∗r < x < x∗f ,

−A x > x∗f ,

z = 0, (90)

ε2φz = A− σc0, z = 0. (91)

From (69), we have that φ is bounded, and by integrating (89) we find that φz = 0.
Hence, by imposing (91), we see that A ≡ σc0.

Thus, we use this result to determine the potential in the water phase, namely

Φ =

{
σc0e

−Z in I, III,

σc0 sinhZ − σc0 coshH+s∗σo0

sinhH
coshZ, in II, IV, V.

(92)

Having found an expression for the electric potential in the water phase, we can
now solve Stokes’ equations for the fluid (59) and (60) by substituting (92) into
the expression for the body force. Hence, we are now in a position to find the
velocity profile of the fluids, uw and uo, and consequently the speed at which the
oil slug moves through the capillary.
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σo

σc

h ∼ h∗

h(x, t)

Thin Film Transition Meniscus

hxx ∼ Γ
r

Figure 3: Schematic diagram of the three regions at the front meniscus.

3.2 The Fluid Velocity

As the shape of the oil slug is unknown a priori, it must be found as part of the
solution. We will solve for the profile of the oil-water interface at the front and
rear (downstream and upstream) ends of the oil slug separately, noting that the
shape of the oil slug is different at each end due to the motion of the fluids in the
capillary. We will first find the shape of the front end, assuming that the oil-water
interface can be split into three distinct regions, shown in Figure 3. These are;
(i) a flat region with constant thickness, h∗ (to be determined), along the base
of the oil slug, in which the capillary forces balance the electrostatic forces, (ii)
a meniscus region with constant curvature, r+ (to be determined), in which the
capillary forces balance the surface tension forces, and (iii) a transition region
matching regions (i) and (ii), in which the capillary forces are balanced by the
electrostatic forces, and the surface tension forces.

We study the neighbourhood of the point where, from the macroscopic per-
spective, there appears to be a three phase contact (i.e. near x = xc + Lo). We
examine how the region of constant thickness matches with the region of constant
curvature, and hence we will determine h∗ and r+. Once we have found the shape
of the front end of the oil slug, we will use the transformation V 7→ −V , where V
is the velocity of the oil slug, in order to find the shape of the rear end, using the
fact that the front end advances at the same speed that the rear end recedes.

3.2.1 Shape of the oil-water interface

In order to balance the hydrostatic, electrostatic, and surface tension forces in
(59), (60), (66), and (67), we define the rescalings x− (x∗c +L∗o) = ε

1/2
2 X̄, z = ε2Z,
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h = ε2H, uw = ε
3/2
2 Ūw, uo = ε

3/2
2 Ūo, ww = ε22W̄w, wo = ε22W̄o, and t = ε−1

2 T̄ . At
leading order in the new variables, the equations read

ŪwZZ
= pwX̄ −

1

P ∗
ΦX̄ΦZZ , ŪwX̄

+ W̄wZ
= 0, (93 a,b)

µ∗ŪoZZ
= poX̄ , ŪoX̄ + W̄oZ = 0, (94 a,b)

pwZ =
1

P ∗
ΦZΦZZ , poZ = 0, (95 a,b)

subject to

Ūw = W̄w = 0, Z = 0, (96)

Ūw = Ūo, W̄w = W̄o = ŪHX̄ +HT̄ , ŪwZ
= µ∗ŪoZ , Z = H, (97)

pw = po +
1

2P ∗
Φ2
Z −

Γ

2P ∗
HX̄X̄ , Z = H, (98)

UoZ → 0, WoZ → 0, Z →∞. (99)

We also impose the constraint that uw and pw match with the velocity and pressure
respectively as X → ±∞. Note that (99) is the constraint that the velocity is
bounded in the bulk of the oil.

Integrating (95b) in the oil phase yields po = po(X̄, T̄ ). By substituting this
into (94a) and applying (99), we find that ŪoZ = 0, and poX̄ = 0. Hence, Ū0 =
Ūo(X̄, T̄ ), and po = po(T̄ ). By integrating (95a) and applying (98) we find that
the pressure in the water layer is given by

pw = po +
1

2P ∗
Φ2
Z |− −

Γ

2P ∗
HX̄X̄ . (100)

By substituting this into (93a), and applying (96) and (97), we find that the
horizontal velocity in the thin water layer is given by

Ūw =
1

4P ∗
(2Z − Z2)

(
ΓHX̄X̄ +

σc
2
0 + 2s∗σc0σo0 coshH + s∗2σo

2
0

sinh2H

)
X̄

. (101)

By integrating (93b) from Z = 0 to Z = H, applying (96) and (97), and substitut-
ing in the expression (92), we obtain the following thin-film equation describing
the thickness of the water layer, H(Y ), between the oil and the capillary wall,

HT̄ +

[
H3

6P ∗

(
ΓHX̄X̄ +

σc
2
0 + 2s∗σc0σo0 coshH + s∗2σo

2
0

sinh2H

)
X̄

]
X̄

= 0. (102)

In the limit X̄ → −∞ we impose the condition that the solution approaches a
constant value, H∗, to be determined. As X̄ → ∞ we require the solution to
match with the meniscus region. If we denote the radius of the meniscus by r+

(non-dimensionalised with R), we assume that r+ ∼ 1 − ε2r
+
1 + O(ε22). This is

simply the condition that the radius of the meniscus is approximately the radius
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of the capillary tube, and that the leading order correction, r+
1 , is of the order of

the thickness of the wetting layer (the + superscripts denote the front meniscus).
Hence, the boundary conditions we impose on H are H → H∗ as X̄ → −∞, and
HX̄X̄ → 1 as X̄ →∞.

We assume a quasi-static travelling wave solution, H(X̄, T̄ ) = H(Y ), where
Y = X̄ − X̄R(T̄ ), and X̄R is a reference point corresponding to the origin in the
reference frame moving with the oil slug, which can be chosen arbitrarily. In the
travelling wave coordinate, equation (102) becomes

P ∗V HY =

[
H3

6

(
ΓHY Y +

σc
2
0 + 2s∗σc0σo0 coshH + s∗2σo

2
0

sinh2H

)
Y

]
Y

, (103)

subject to

H → H∗ as Y → −∞, (104)

HY Y → 1 as Y →∞, (105)

where V = dX̄R/dT̄ is the velocity at which the oil slug moves. We integrate
(103) once to arrive at the equation

6P ∗V
(H −H∗)

H3
= ΓHY Y Y +

(
σc

2
0 + 2s∗σc0σo0 coshH + s∗2σo

2
0

sinh2H

)
Y

. (106)

Note that the unknown film thickness, H∗, appears in the boundary condition
(104). However, it can be shown that (104) and (105) impose the required number
of constraints to solve (106) for H(Y ), and to find H∗. (For details, see Appendix
B.)

In the limit Y → −∞, we assume that H ∼ H∗ + H̄, where H̄ is a small
perturbation. By substituting this into (106), applying H̄ → 0 as Y → 0, and
using the translational invariance of the problem, we find that

H ∼ H∗ + ek1Y , (107)

where k1 is a root of the characteristic equation associated with the linear o.d.e.
H̄ satisfies. (For details, see Appendix B.) We will use this limiting behaviour of
H as the initial condition when solving (106) via a shooting method in Section
4.1.

In the limit Y →∞, we assume that the radius of the meniscus is r+, that is,
we assume that HY Y ∼ 1

r+ . Thus the leading order term (in ε2) is given by

H ∼ 1

2
(Y + α+)2 + r+

1 , (108)

for some constant α+, which can be chosen arbitrarily due to the leading order
translational invariance of the problem. From this we can compute the leading
order correction to the radius of the meniscus, namely,

r+
1 = lim

Y→∞
H − 1

2
H2
Y . (109)
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Hence, by solving (106) we are able to determine the thickness of the thin film
region, H∗, the correction to the curvature in the front meniscus region, r+

1 , and
the shape of the transition region, H(Y ), matching the two outer regions.

To find the shape of the oil-water interface at the rear end of the oil slug, we
make the substitution V 7→ −V and solve (106) subject to (104) and (105). (This
is equivalent to substituting Y 7→ −Y .) In the limit Y → −∞, we assume that
H ∼ H∗ + H̄, where H̄ is a small perturbation. By substituting this into (106),
applying H̄ → 0 as Y → 0, and using the translational invariance of the problem,
we find that

H ∼ H∗ + ek1Y + Aek2Y , (110)

where k1 and k2 are roots of the characteristic equation associated the the linear
o.d.e. satisfied by H̄, and A is to be found.

In the limit Y → ∞, we find that, similarly to the front of the oil slug, H
satisfies

H ∼ 1

2
(Y + α−)2 + r−1 . (111)

Hence,

r−1 = lim
Y→∞

H − 1

2
H2
Y , (112)

where α− is an arbitrary constant corresponding to the translational invariance of
the problem, and r−1 is the leading order correction to the radius of curvature of
the rear meniscus, r− ∼ 1− ε2r−1 +O(ε22).

Note that as the film thickness, H∗, is determined by solving (106) at the front
of the oil slug, it is not an unknown of the rear-end problem. However, (104) and
(105) still impose the correct number of constraints, as the substitution V 7→ −V
introduces the unknown variable A.

3.2.2 Solution when P ∗ � 1

In order to find an analytical expression for H∗, we consider the limit P ∗ � 1.
Physically, this is the condition that the pressure difference across the capillary
tube is less than the electrostatic pressure between the charged interfaces. In this
limit, the shape of the oil slug will approximately be the shape at rest.

Integrating (106) yields

ΓHY Y +
σc

2
0 + 2s∗σc0σo0 coshH + s∗2σo

2
0

sinh2H
+ 6P ∗V

∫ ∞
Y

H −H∗

H3
dY ′ = Γ. (113)

By expanding H ∼ H0 + P ∗H1 + O(P ∗2), and H∗ ∼ H∗0 + P ∗H∗1 + O(P ∗2), and
considering the limit as Y → −∞ of (113), we find that, at leading order, the film
thickness is given by

H∗0 = cosh−1

(
s∗σc0σo0 +

√
(σc20 + Γ) (s∗2σo2

0 + Γ)

Γ

)
. (114)
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Integrating (113), we find that

Γ

2
H2

Y +
2s∗σc0σo0 + (σc

2
0 + s∗2σo

2
0) coshH∗

sinhH∗
− 2s∗σc0σo0 + (σc

2
0 + s∗2σo

2
0) coshH

sinhH

+6P ∗V

∫ Y

−∞
HY

∫ ∞
Y ′

H −H∗

H3
dY ′′dY ′ = Γ(H −H∗).

(115)

By considering the leading order terms, in the limit Y →∞, we find that

H0 ∼
1

2

(
Y + α+

)2
+

{
H∗0 +

(
σc

2
0 + s∗2σo

2
0

)
Γ

(cothH∗0 − 1) +
2s∗σc0σo0

Γ sinhH∗0

}
, (116)

as Y → ∞. Note that, by matching terms with (108), we see that the bracketed
term in (116) gives the first order correction to the radius of the meniscus,

r+
1 ∼ H∗0 +

(
σc

2
0 + s∗2σo

2
0

)
Γ

(cothH∗0 − 1) +
2s∗σc0σo0

Γ sinhH∗0
+O(P ∗). (117)

As the oil slug is moving, the front and rear menisci have different radii, and hence,
by the Laplace-Young equation (67), the pressure drop across the oil is dependent
on the difference between these two radii. To find the correction to the meniscus
radius at the rear end of the oil slug, we make the substitution V 7→ −V . However,
as the leading order correction to the radius of curvature (117) is independent of
V , this correction term cancels out when considering the difference between the
two ends the oil slug. Hence, the first order correction is required in order to find
the leading order difference between the two ends.

By considering the O(P ∗) terms in (115), in the limit Y →∞, we find that

H1 ∼
6V

Γ

∫ ∞
−∞

(H0 −H∗0 )2

H3
0

dY ′, (118)

as Y → ∞. This is the O(P ∗) correction to the radius of the meniscus. By
making the substitution V 7→ −V for the rear-end calculations, the corrections to
the menisci radii (up to O(P ∗)) are

r±1 ∼ H
∗
0 +

(
σc

2
0 + s∗2σo

2
0

)
Γ

(cothH∗0 − 1) +
2s∗σc0σo0

Γ sinhH∗0
± 6P ∗V

Γ

∫ ∞
−∞

(H0 −H∗0 )2

H3
0

dY ′,

(119)
where ± corresponds to the front and rear menisci, respectively.

We will now study the macroscopic problem to see how these corrections to
the menisci radii, as well as the effect of having a thin water layer between the oil
slug and the capillary wall, affect the oil slug’s progression through the pore.

3.2.3 Macroscopic flux

In Sections 3.2.1 and 3.2.2, we focused on finding the shapes of the transition
regions between the thin wetting film and the outer menisci, at the front and rear
ends of the oil slug. In particular, we derived expressions for the thickness of the
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wetting film, and for the corrections to the menisci radii in the limit P ∗ → 0, (114)
and (119) respectively. When solving for the flow of oil through the capillary on the
macroscopic scale, the thin wetting film will be reduced to an effective boundary
condition along the oil-clay interface, and the corrections to the menisci will affect
the pressure jump across the oil-water interface at each end of the oil slug.

Returning to the macroscopic variables x, z, uw, uo, ww, and wo, the leading-
order equations governing the fluid dynamics, (59) and (60), read

uwzz = pwx, pwz = 0, uwx + wwz = 0, (120 a,b,c)

µ∗uozz = pox, poz = 0, uox + woz = 0. (121 a,b,c)

There are five distinct regions in which we solve these equations, as shown in
Figure 2. Region I is the bulk water region to the left hand side of the oil slug,
0 < x < x∗r, region II is the region primarily filled with oil, with a thin film of
water coating the capillary walls, x∗c < x < x∗c + L∗o, region III is the bulk water
region to the right hand side of the oil slug, x∗f < x < 1, region IV is the meniscus
region at the rear of the oil slug, x∗r < x < x∗c , and region V is the meniscus
region at the front of the oil slug, x∗c + L∗o < x < x∗f . Note, however, that as the
dimensional width of the meniscus regions is O(R), we find that x∗c − x∗r = O(ε1),
and x∗f − x∗c − L∗o = O(ε1), hence we can neglect regions IV and V from the
macroscopic flux equations, and impose the Laplace-Young boundary condition,
(67), on x = x∗c and x = x∗c + L∗o.

Letting P1 and P2 correspond to the pressures on the water side of the water-
oil interfaces at x = x∗c and x = x∗c + L∗o, respectively, the boundary conditions
(64)-(69) read

pw = 1, at x = 0, (122)

pw = P1, po = P1 +
Γ

2P ∗r−
, at x = x∗c , (123)

pw = P2, po = P2 +
Γ

2P ∗r+
, at x = x∗c + L∗o, (124)

pw = 0, at x = 1, (125)

uw = 0, at z = 0, (126)

uw = uo, µ∗uoz = uwz, pw = po, at z = ε2H
∗ (127)

pz = uwz = uoz = ww = wo = 0, at z = 1. (128)

From (120b) and (121b), we see that pw = pw(x) and po = po(x). By integrating
(120a) twice and applying (126) and (128), we find that in regions I and III,

uw = pwx

(
1

2
z2 − z

)
. (129)

Integrating (120a) and (121a), subject to (126)-(128), yields, correct to O(ε2),

uw = px

(
1

2
z2 + (ε2H

∗(µ∗ − 1)− µ∗) z
)

0 < z < ε2H
∗, (130)

uo =
1

µ∗
px

(
1

2
z2 − z + ε2H

∗(1− µ∗)
)

ε2H
∗ < z < 1, (131)
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in region II. By integrating (120c) from z = 0 to z = 1 in regions I and III, (120c)
from z = 0 to z = ε2H

∗ in region II, (121c) from z = ε2H
∗ to z = 1 in region II,

and applying (126)-(128), we find that

∂

∂x

[∫ 1

0

uwdz

]
= 0, in regions I, III, (132)

∂

∂x

[∫ ε2H∗

0

uwdz +

∫ 1

ε2H∗
uodz

]
= 0, in region II. (133)

Hence it follows that that pxx = 0 for 0 < x < 1, i.e. the pressure gradient is
constant. Using uw and uo, given by (129) - (131), and integrating (132) and
(133), we find that, correct to O(ε2),

Qw = −1

3
px, in regions I, III, (134)

Qw = 0, in region II (135)

Qo = − 1

µ∗
px

(
1

3
− ε2(1− µ∗)H∗

)
, in region II, (136)

where Qw =
∫
uwdz and Qo =

∫
uodz are the volumetric flow rates of water and

oil, respectively, in the lower half of the capillary tube. Hence, by applying (122)
- (125) to pxx = 0, we find that correct to O(ε2) in regions I, II, and III,

Qw =
1

3x∗c
(1− P1), I (137)

Qo =
1

µ∗L∗o

{
P1 − P2

3

+ ε2

[
Γ

6P ∗
(r−1 − r+

1 )− (P1 − P2)(1− µ∗)H∗
]}

,
II (138)

Qw =
1

3(1− x∗c − L∗o)
P2, III (139)

respectively. (In region II, Qw = O(ε22), so we neglect this term.)
Since we assume that the slug fills almost the whole width of the channel, we

have that by conservation of volume Q := Qo ∼ Qw. Hence, by solving the three
equations, (137) - (139), for the three unknowns, P1, P2, and Q, we find that

Q ∼ 1

1 + (µ∗ − 1)L∗o

{
1

3
+ ε2

[
Γ

6P ∗
(r−1 − r

+
1 ) +

µ∗L∗o
1 + (µ∗ − 1)L∗o

(µ∗ − 1)H∗
]}
. (140)

To derive expressions for r±1 and H∗, we solve (106) subject to (104) and (105).
However, as V is the speed at which the slug is moving, Q = Qo = V . Hence,
(106) is dependent on Q. In order to solve (106) and (140), we expand Q ∼
Q0 + ε2Q1 + O(ε22), and V ∼ V0 + ε2V1 + O(ε22). At leading order in ε2, we find
that (140) reduces to

Q0 = V0 =
1

3

[
1

1 + (µ∗ − 1)L∗o

]
. (141)
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Substituting this expression for V0 into (106), and solving subject to (104) and
(105), yields the profile of the front meniscus region, H(Y ), at leading order in
ε2. In particular, this gives us H∗, and, by using (109), H(Y ) can be used to find
r+

1 . To find r−1 , we solve (106) subject to (104) and (105) with the substiution
V0 7→ −V0, and the obtained value of H∗ in (104). From this we obtain H(Y ),
and consequently we compute r−1 using (112).

The first-order correction to the volumetric flow rate, Q1 = V1, is then found
from (140), namely

Q1 = V1 =
1

1 + (µ∗ − 1)L∗o

{
Γ

6P ∗
(r−1 − r

+
1 ) +

µ∗L∗o
1 + (µ∗ − 1)L∗o

(µ∗ − 1)H∗
}
. (142)

For P ∗ � 1, we can make use of the expressions (114) and (119) to get that

Q = V ∼ 1

1 + (µ∗ − 1)L∗o

{
1

3
+

ε2
1

1 + (µ∗ − 1)L∗o

[
L∗oµ

∗(µ∗ − 1)H∗0 −
2

3

∫ ∞
−∞

(H0 −H∗0 )2

H3
0

dY ′
]}

. (143)

It should be noted that due to the integral term, even in this asymptotic
limit, (106) needs to be solved numerically. However, this computation is made
significantly simpler for two reasons. First, as the integral term occurs in the
first-order (in P ∗) correction to the meniscus radius, we only require the leading
order term of the integral (as we have neglected O(P ∗2) terms). Hence, we set
the left-hand side of (106) to zero, integrate twice to obtain (115) (with P ∗ set to
zero), and thus we only need to solve a first-order ode for H. Second, since we
have an expression for the film thickness, (114), we can solve (115) as an initial
value problem, whereas for the full numerical solution we need to use a shooting
method, as this boundary condition is unknown.

4 Numerical Solution

In Section 4.1, we describe how to solve (106) subject to (104) and (105) numer-
ically to find the shape of the front and rear ends of the oil slug, for P ∗ = O(1).
In Section 4.2, we describe how to find the volumetric flow rate of the oil slug, Q,
using the solution obtained in Section 4.1. We plot Q and the film thickness, h∗,
for different values of P ∗ as the salinity is varied.

To study the effect of having different materials on the two surfaces, we in-
troduce a dimensionless parameter, χ, such that K1,2

of
/K1,2

or = χK1,2
of
/K1,2

or . This
parameter is a measure of the reactiveness of the oil-water interface with the ions,
relative to the clay-water interface. Unless stated otherwise, we will set χ = 10−3.

We will plot Q and h∗ against P ∗, to compare the numerical solution for
P = O(1) with the asymptotic solution in the limit P ∗ → 0. In the computations
we choose L∗o = 0.5 and s∗o = s∗c , and, except where stated otherwise, use the
parameter values given in Appendix A.

As the dimensionless parameters, K1,2
c = K1,2

cf
c1,2+
∞ /K1,2

cr , K1,2
o = K1,2

of
c1,2+
∞ /K1,2

or ,

and ε2 = (εwkBT/2(c1
∞ + 4c2

∞)q2)
1/2
/R depend on the concentration of ions, c1,2

∞ ,
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in order to vary the salinity in our numerical computations, we must vary these
parameters simultaneously. We define c1,2

low to be the bulk concentrations of mono-
valent and divalent ions, respectively, in the low salinity regime, and c1,2

high to be
the bulk concentrations of monovalent and divalent ions, respectively, in the high
salinity regime.

We define intermediate concentrations by c1,2
int = c1,2

low + 10τ (c1,2
high − c1,2

low), for
a parameter τ ∈ (−∞, 0]. (We choose a power law for τ as the concentrations
span multiple orders of magnitude.) By defining the dimensionless parameters in
the problem using c1,2

int instead of c1,2
∞ , we get that the dimensionless parameters in

the intermediate regimes are related to the dimensionless parameters in the low
salinity regime by

K1,2
c int = K1,2

c low

(
1 + 10τ

(
c1,2
high

c1,2
low

− 1

))
, (144)

K1,2
o int = K1,2

o low

(
1 + 10τ

(
c1,2
high

c1,2
low

− 1

))
, (145)

ε2int = ε2low

(
1 + 10τ

(
c1
high + 4c2

high

c1
low + 4c2

low

− 1

))−1/2

. (146)

Hence, using τ , we can study the effect of varying the salinity with a single pa-
rameter. In the limit τ → −∞ we recover the low salinity regime, and for τ = 0
we recover the high salinity regime. In the computations we approximate τ = −∞
by τ = −6.

4.1 Shape of the oil-water interface

To find the shape of the oil-water interface at the front end of the oil slug, we
solve (106) subject to (104), (105), and (141) using a shooting method, since the
thickness of the wetting layer, H∗, is unknown a priori. We use the form of H as
Y → −∞, (107), and its derivatives as the initial values in (106), with an initial
guess for H∗. We use an RK4 method to solve (106) for H(Y ), compute the limit
of the curvature, HY Y , as Y →∞, and vary H∗ until this is equal to 1.

To find the shape of the oil-water interface at the rear end of the oil slug, we
solve (106) subject to (104), (105), and (141), with the substitution V 7→ −V .
Again, we use a shooting method with the form of H as Y → −∞, (110), and its
derivatives as the initial values. However, for the rear-end computation, we use A
as the shooting parameter, as H∗ is determined by the solution at the front end of
the oil slug. We use an RK4 method to solve (106) for H(Y ), compute the limit
of the curvature, HY Y , as Y →∞, and vary A until this is equal to 1.

In Figure 4, we plot the front and rear transition rear profiles, H(Y ), for
P = 1.4 · 10−4, 1, 10, 20. We see that the front meniscus is always monotonic, but
that non-monotonic solutions are possible for the rear meniscus. This is because
the characteristic equation of (106) under a perturbation, H = H∗ + H̄, admits
imaginary solutions for V < 0.
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Figure 4: Plots of the rear and front oil-water interface profiles, H(Y ), in the low
salinity regime, τ = −6, for P = 1.4 · 10−4, 1, 10, 20.

4.2 Velocity of the oil slug

To find the velocity of the oil slug correct to O(ε2), we use the method described
in Section 4.1 to determine the profile of the front and rear menisci, H±(Y ) re-
spectively, and the film thickness, H∗. By substituting H+(Y ) into (109), and
H−(Y ) into (112), we obtain the first order corrections to the front and rear radii
of curvature, r±1 . Hence, we determine the velocity of the oil slug by substituting
H∗ and r± into (140).

In Figure 5(a), we plot the volumetric flow rate, Q, against the bulk concen-
tration of ions, varying the salinity from low salinity, τ = −6, to high salinity,
τ = 0. We see that the flow rate increases by approximately 7% when the salin-
ity is reduced, suggesting that this mechanism may contribute to the low salinity
effect.

In Figure 5(b), we plot the film thickness, h∗ = ε2H
∗, as a function of the

salinity, for the same range of salinities as in Figure 5(a). We choose the rescaling,
h∗ = ε2H

∗, so that the choice of non-dimensionalisation does not depend on the
Debye length (and hence the salinity). We see that h∗ increases from 1.2 · 10−5

to 2.5 · 10−3 as the salinity decreases, which corresponds to a dimensional thick-
ness ranging from 1.2 · 10−11 m to 2.5 · 10−9 m. The low salinity estimates are
of a similar order of magnitude to experimental results (for example, see Lee et
al. [16], who found that the thickness ranges from 8 · 10−10 m to 1.5 · 10−9 m).
However, the high salinity estimate is significantly lower, by approximately two
orders of magnitude. One possible explanation for this discrepancy is that at high
salinities the film thickness becomes comparable with the size of the ions, and the
continuum assumption no longer applies. The finite ion size creates an additional
repulsion between the surfaces, which will lead to the continuum approximation
underestimating the thickness of the water film. It is also likely that there is con-
siderable error in estimates for the saturation concentrations and the dissociation
constants, s∗c , s

∗
o, Kf

1,2
c , Kr

1,2
c , Kf

1,2
o , and Kr

1,2
o .
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Figure 5: Plots of the volumetric flow rate, Q, and the film thickness, h∗, as the
salinity is varied, found by solving (106) and (140) numerically, subject to (104)
and (105).

We study the effect of varying s∗c by varying Γ (as Γ = 2γεwR/L
2q2s∗c

2). In
Figure 6, we plot the film thickness, h∗, against Γ, for τ = −1.3, and c∗ = 0, 0.1
(as this corresponds to a 0.1M solution of NaCl with and without trace amounts of
divalent ions, at concentrations of 0M, and 0.01M respectively, which we can use to
compare with the results of Lee et al. [16]). We see that in the presence of divalent
ions at a concentration of 0.01M, the film thickness is bounded by approximately
6.7 ·10−4. However, when divalent ions are not present, the film thickness appears
to be unbounded. As the film thickness is sensitive to trace amounts of divalent
ions, in order to compare the theory with the results of Lee et al., a more detailed
breakdown of the composition of the brine used is required. However, the increase
in the film thickness observed with the removal of the divalent ions is consistent
with the MIE mechanism.

In Figure 7(a), we compare the numerical solution for Q, given by (106) and
(140), subject to (104) and (105), with the asymptotic solution in the limit P ∗ → 0,
given by (143), for P ∗ ranging from 10−5 to 1. We see that the numeric solution
agrees with the asymptotic solution to within 0.2% for P ∗ < 1. In Figure 7(b), we
compare the asymptotic expression for the film thickness, H∗, in the limit P ∗ → 0,
(114), with the numerically computed values. There is agreement to within 2%,
for P ∗ < 0.1.

5 Conclusion and Discussion

In this paper, we have presented a model for the steady motion of an oil slug
through a pore throat, assuming that low salinity oil recovery can be explained
by multicomponent ionic exchange (MIE). Transient effects were neglected by
assuming Re � 1. We also assumed that the rates at which the ions react with
the surfaces are fast in comparison to the typical relaxation time of the charged
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Figure 6: Plots of the film thickness, h∗, as Γ, is varied, for τ = −1.3 and c∗ =
0, 0.1, found by solving (106) and (140) numerically, subject to (104) and (105).
The solid line, c∗ = 0, represents a pure 0.1M solution of NaCl, and the dotted
line, c∗ = 0.1, represents a 0.1M solution of NaCl containing 0.01M CaCl2.

surfaces in the viscous fluid.
We obtained an analytic expression for the velocity of the oil slug, (140),

assuming that the aspect ratio of the oil slug was small. Further, in the asymptotic
limit P ∗ � 1 (P ∗ = εwP/q

2s∗c
2), a simplified expression (143) for the velocity was

derived, as well as an analytical expression for the thickness of the wetting film
between the oil and the capillary, (114).

H∗0 = cosh−1

(
s∗σc0σo0 +

√
(σc20 + Γ) (s∗2σo2

0 + Γ)

Γ

)
, (114)

Q0 = V0 =
1

3

[
1

1 + (µ∗ − 1)L∗o

]
, (140)

Q = V ∼ 1

1 + (µ∗ − 1)L∗o

{
1

3
+

ε2
1

1 + (µ∗ − 1)L∗o

[
L∗oµ

∗(µ∗ − 1)H∗0 −
2

3

∫ ∞
−∞

(H0 −H∗0 )2

H3
0

dY ′
]}

. (143)

Numerical results showed that for the values considered, the flow rate increases
by approximately 7% when transitioning from high salinity to low salinity regimes,
which could contribute to the increase in oil recovery often observed in core scale
experiments.

While care was taken to estimate reasonable values for the parameters, one of
the main limitations of our numerical results is that the values of s∗o, s

∗
c , Kkc , and

Kko , for k = 1, 2, are difficult to estimate without more data, and can have a sig-
nificant impact on the theoretical results obtained. An experimental investigation
to determine the correct values of these parameters would improve the accuracy
of the results.
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Figure 7: Plots of the volumetric flow rate, Q, and the film thickness, H∗, against
P ∗, for 10−5 < P ∗ < 1, in the 0.1M NaCl regime, τ = −1.3. The solid lines
represent the numerical solutions to (106) and (140), subject to (104) and (105),
and the dashed lines represent the asymptotic solutions, (143) and (114), in the
limit P ∗ → 0.

Another issue is due to the fact that, as the salinity decreases, the Debye length,
λ, increases. If λ becomes too large, then we can no longer make the assumption
that ε2 = λ/R is small, and hence (140) is no longer valid. The system (59)-(69)
then needs to be solved numerically. On the other hand, as λ decreases, the width
of the water film becomes comparable to the size of the ions. This will restrict
the movement of ions in and out of the water film, reducing the effect of the low
salinity injection. At some point, the continuum model will break down, and an
alternative model for ion movement in the thin film would need to be considered.

In order to get an accurate estimate of how the increase in velocity due to
low salinity effects at the pore scale would affect flow in an oil reservoir, a larger
scale model needs to be developed. Our future aim is to homogenise the pore
scale model described in this paper, assuming a microscopic network of capillaries
containing flow governed by (140), to describe the flow at the core scale in order to
address the flow over larger length scales. Further, due to the similarities between
the MIE and pH increase mechanisms, by considering different reactions in place
of (20) and (21), and following the same procedure, different mechanisms for the
low salinity oil recovery process can be compared. The benefit of such models
is the ability to translate chemical-scale mechanisms into core-scale results. By
comparing experimental results with such a model, we hope to obtain a better
understanding of the low salinity process.
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Appendix A

Dimensional Parameters
Parameter Value Reference Notes

c1
∞ 1 · 1025 − 1 · 1027 m−3 [1]
c2
∞ 3 · 1024 − 5.4 · 1025 m−3 [1]
R 10−6 m [23]
L 10−5 m [23]

λ 1.5 · 10−9 − 2 · 10−10 m λ = (εwkBT/2 (c1
∞ + 4c2

∞) q2)
−1/2

γ 0.02 J m−2 [5]
µo 0.01 kg m−1 s−1 [5]
µw 8.9 · 10−4 kg m−1 s−1 [5]
ρo 850 kg m−3 [5]
ρw 1000 kg m−3 [5]
P 0.7 N m−2 P ∼ 8µwLV/R

2

T 375◦K [15]
D±,2± 7.9 · 10−10 − 2 · 10−9 m2 s−1 [28]
s∗c 1016 m−2 [17] Estimate using σc = qs∗c .
s∗o 1016 m−2 [17] Estimate using σo = qs∗o.

K1
cf
/K1

cr 3 · 10−28 m3 [17] See Section 3.1.2.

K2
cf
/K2

cr 4.1 · 10−25 m3 [17] See Section 3.1.2.

K1
of
/K1

or 3 · 10−31 m3 [17] See Section 3.1.2.

K2
of
/K2

or 4.1 · 10−28 m3 [17] See Section 3.1.2.

εwr 56 [19]
ε0 8.9 · 10−12 C2J−1 m−1

q 1.6 · 10−19 C
kB 1.4 · 10−23 J K−1

Dimensionless Parameters
Parameter Value Expression Notes

ε1 0.1 R/L
ε2 1.5 · 10−3 − 2 · 10−4 λ/R
Re 8.8 · 10−4 ρwPR

2/µ2
w

Pe±,2± 0.39− 1 PR2/D±,2±µw
δ 10−3 − 10−5 s∗c/c

1
∞R

P ∗ 1.4 · 10−4 εwP/q
2s∗c

2

ξ 98 q2s∗cR/εwkBT
ρ∗ 0.85 ρo/ρw
µ∗ 11 µo/µw
c∗ 0.3− 0.05 c2

∞/c
1
∞

Λ1,2
c � 1 PR2/µwL

2K1,2
cr Assume reactions are fast.

Λ1,2
o � 1 PR2/µwL

2K1,2
or Assume reactions are fast.

K1
c 3.3 · 10−3 − 3.3 · 10−1 Kc

1
fc

1
∞/Kc

1
r

K2
c 1.2− 22 Kc

2
fc

2
∞/Kc

2
r

K1
o 3.3 · 10−6 − 3.3 · 10−3 Ko

1
fc

1
∞/Ko

1
r

K2
o 1.2 · 10−3 − 2.2 · 10−2 Ko

2
fc

2
∞/Ko

2
r

Γ 0.08 2γεwR/L
2q2s∗c

2
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Appendix B

At first glance it may appear that there are not enough boundary conditions to
solve the third order differential equation, (106). In order to examine this, we
consider the behaviour of H as Y → ±∞.

As Y → −∞, we suppose that H = H∗ + H̄, for some small H̄(Y ), and we
find that the perturbation satisfies

H̄Y Y Y − aH̄Y − bH̄ = 0, (147)

where

a =
2

Γ sinh3H∗

[
(s∗2σo

2
0 + σc

2
0) coshH∗ + (cosh2H∗ + 1)s∗σo0σc0

]
, (148)

b =
6P ∗V

ΓH∗3
. (149)

The solution to this is given by

H̄ = A1e
k1Y + A2e

k2Y + A3e
k3Y , (150)

where ki are the roots of k3 − ak − b = 0. By rescaling k = b1/3k̂, we can show
that finding these roots is equivalent to finding the roots of

k̂3 − a

b2/3
k̂ − 1 = 0. (151)

This equation has precisely two roots with negative real part, and one root with
positive real part, for any real value of ab−2/3. A plot of the real part of these
roots is given in Figure 8.
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We require H̄ to decay as Y → −∞. At the front meniscus, V > 0, so b > 0;
hence, the coefficients of the two exponentials corresponding to the roots with
negative real part must be zero. For this reason, the boundary condition H → H∗

(for unknown H∗) as Y → −∞ eliminates two degrees of freedom of the solution,
rather than one.

By translational invariance, we can set the final coefficient in (150) to be unity
without loss of generality. Hence, as Y → −∞ in the front meniscus region, the
film thickness is given by

H ∼ H∗ + ek1Y . (152)

The remaining degree of freedom, H∗, is constrained by the condition HY Y → 1
as Y → ∞. Hence, the two boundary conditions (104) and (105) are sufficient
to solve (106) (for V > 0, i.e. at the front of the oil slug), and to determine H∗.
Numerically, we find H∗ by using a shooting method. That is, we treat (106)
as an initial value problem, using (152) as the initial value, and vary H∗ until
limY→∞HY Y = 1.

At the rear meniscus, we solve the same differential equation with V < 0.
Hence, b < 0, so k = b1/3k̂ has only one root with negative real part, and thus
only one coefficient is determined (to be zero) in (150). After setting one of the
remaining coefficients to be unity by translational invariance, there is still one
coefficient that needs to be determined. Explicitly,

H ∼ H∗ + ek1Y + Aek2Y , (153)

as Y → −∞, for some A to be determined. Since H∗ is determined by the solution
to the equation at the front meniscus, this leaves one unknown to be found. This
additional constraint comes from the condition HY Y → 1 as Y → ∞. Hence,
(104) and (105) are sufficient to solve (106) for V < 0, provided H∗ is known.
This is what we expect; the shape of the front end of the oil slug determines the
film thickness, which in turn determines the shape of the rear end of the oil slug,
i.e. the information travels in the direction of the flow.

To determine A numerically, we solve (106) using a shooting method, sim-
ilarly to the V > 0 case. We use (153) as the initial value, and vary A until
limY→∞HY Y = 1.
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