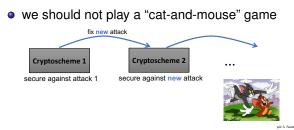
# Provable security models for distance-bounding

Ioana Boureanu



http://people.itcarlson.com/ioana/

based on joint works with with S. Vaudenay, K. Mitrokotsa & discussions with D. Gerault, G. Avoine and quite a few others




- 2 Why Provable Security for DB?
- Elements of Provable-Security Models in DB
- A Comparison of DB Security Definitions
- 5 Challenges and Directions in Provably Secure DB

### 1 Provable Security at a Glance

- 2 Why Provable Security for DB?
- 3 Elements of Provable-Security Models in DB
- A Comparison of DB Security Definitions
- **5** Challenges and Directions in Provably Secure DB

# How NOT to Analyse Security Against PPT Attackers?



 what we'd really need to show is security NOT against one attack but against a broad range of attackers

# How to Analyse Security Against PPT Attackers?

### Give a security definition

What is the security property that the scheme should achieve?



2 Define attacker model

How can the attacker interact with the scheme?

### 3 If needed, make an assumption

What do you pre-suppose for the security to hold?

### O the proof

Prove that scheme satisfies the security definition, if assumption holds

- $\Rightarrow$  the only way to break the scheme is to break assumption
  - $\bullet \ \Rightarrow \text{Secure against } \textbf{any} \text{ attack}$

• any attack within the model that does not break the assumption

#### Verify proo IB 2018

provable secure DB

# How to Analyse Security Against PPT Attackers?

### Give a security definition

What is the security property that the scheme should achieve?



2 Define attacker model

How can the attacker interact with the scheme?

### 3 If needed, make an assumption

What do you pre-suppose for the security to hold?

### Oo the proof

Prove that scheme satisfies the security definition, if assumption holds

- $\Rightarrow$  the only way to break the scheme is to break assumption
  - $\Rightarrow$  Secure against **any** attack
  - any attack within the model that does not break the assumption

#### Verify proo IB 2018

# How to Analyse Security Against PPT Attackers?

### Give a security definition

What is the security property that the scheme should achieve?



2 Define attacker model

How can the attacker interact with the scheme?

### If needed, make an assumption

What do you pre-suppose for the security to hold?

### Oo the proof

Prove that scheme satisfies the security definition, if assumption holds

- $\Rightarrow$  the only way to break the scheme is to break assumption
  - $\Rightarrow$  Secure against **any** attack
  - any attack within the model that does not break the assumption

#### Verify proof IB 2018

provable secure DB

# Why Security Definitions?



### Coming up with the right definition is non-trivial

Examples in public-key encryption, TLS, etc.

provable secure DB

### What About The Rest... Besides Definitions?

- for meaningful provable security, we need
  - the attacker model be suited to the application (debatable)
  - the proof be correct (NOT debatable)
- these are also non-trivial & often hard to argue and, respectively check



- Why Provable Security for DB?
- 3 Elements of Provable-Security Models in DB
- A Comparison of DB Security Definitions
- 5 Challenges and Directions in Provably Secure DB

### Why Provable Security for DB?



**(I)** 

- we've played the "cat-and-mouse" game
  - many arguments along the best-attack scenarios ...
  - many insecurities proven ...

- in a model without communication noise, best-known symmetric-key DB protocols and success probabilities of

|         | Protocol           | Success Probability   |                       |                            |
|---------|--------------------|-----------------------|-----------------------|----------------------------|
|         |                    | Distance-Fraud        | MiM                   | Terrorist-Fraud            |
| ţ       | Brands & Chaum     | (1/2) <sup>n</sup>    | (1/2) <sup>n</sup>    | 1, negl                    |
| Ť       | Bussard & Bagga    | 1                     | (1/2) <sup>n</sup>    | 1, negl                    |
| Ť       | Čapkun et al.      | (1/2) <sup>n</sup>    | (1/2) <sup>n</sup>    | 1, negl                    |
| Ť       | Hancke & Kuhn      | (3/4) <sup>n</sup> -1 | (3/4) <sup>n</sup>    | 1, negl                    |
| Ť       | Reid et al.        | (3/4) <sup>n</sup> -1 | 1                     | (3/4) <sup>θn</sup> , negl |
| Ť       | Singelée & Preneel | (1/2) <sup>n</sup>    | (1/2) <sup>n</sup>    | 1, negl                    |
| Ť       | Tu & Piramuthu     | (3/4) <sup>n</sup>    | 1                     | (3/4) <sup>θn</sup> , negl |
| Ť       | Munilla & Peinado  | (3/4) <sup>n</sup>    | (3/5) <sup>n</sup>    | 1, negl                    |
| $\odot$ | Swiss-Knife        | (3/4) <sup>n</sup>    | (1/2) <sup>n</sup> -1 | (3/4) <sup>θn</sup> , negl |
| Ť       | Kim & Avoine       | (7/8) <sup>n</sup>    | (1/2) <sup>n</sup>    | 1, negl                    |
| Ť       | Nikov & Vauclair   | 1/ <i>k</i>           | (1/2) <sup>n</sup>    | 1, negl                    |
| $\odot$ | Avoine et al.      | (3/4) <sup>n</sup> -1 | (2/3) <sup>n</sup> -1 | $(2/3)^{\Theta n}$ , negl  |
| $\odot$ | SKI                | (3/4) <sup>n</sup>    | (2/3) <sup>n</sup>    | Y, Y                       |
| $\odot$ | Fischlin & Onete   | (3/4) <sup>n</sup>    | (3/4) <sup>n</sup>    | $\gamma = \gamma'$         |
| $\odot$ | DB1                | (1/2) <sup>n</sup>    | (1/3) <sup>n</sup>    | (2/3) <sup>θn</sup>        |
| $\odot$ | DB2                | $(1/\sqrt{2})^{n}$    | (1/2) <sup>n</sup>    | (1/√2) <sup>θn</sup>       |

best-known attacks ( $\theta < 1$  constant s.t.  $2^{-\theta n}$  negligible), by 2015

# Why Provable Security for DB? (II)

### • so, we've played the "cat-and-mouse" game



 many incorrect arguments for DB, in some existing proofs (e.g., insufficient assumptions or used assumptions wrongly, etc.)

# Why Provable Security for DB? (II)

- so, we've played the "cat-and-mouse" game
- many incorrect arguments for DB, in some existing proofs (e.g., insufficient assumptions or used assumptions wrongly, etc.)

Recall assumptions...

- if the adversary can break the scheme with a PRF, then he can break an idealised scheme whereby the PRF is replaced by a truly random function
- this argument is valid when both conditions below are met:
  - the adversary does not have access to the PRF key
  - the PRF key is only used by the PRF
- as far as distance-fraud is concerned, condition 1 is not met!
- in many designs for terrorist-fraud resistance, condition 2 is not met!

Recall assumptions...

- if the adversary can break the scheme with a PRF, then he can break an idealised scheme whereby the PRF is replaced by a truly random function
- this argument is valid when both conditions below are met:
  - the adversary does not have access to the PRF key
  - the PRF key is only used by the PRF
- as far as distance-fraud is concerned, condition 1 is not met!
- in many designs for terrorist-fraud resistance, condition 2 is not met!

Recall assumptions...

- if the adversary can break the scheme with a PRF, then he can break an idealised scheme whereby the PRF is replaced by a truly random function
- this argument is valid when both conditions below are met:
  - the adversary does not have access to the PRF key
  - the PRF key is only used by the PRF
- as far as distance-fraud is concerned, condition 1 is not met!
- in many designs for terrorist-fraud resistance, condition 2 is not met!

Recall assumptions...

- if the adversary can break the scheme with a PRF, then he can break an idealised scheme whereby the PRF is replaced by a truly random function
- this argument is valid when both conditions below are met:
  - the adversary does not have access to the PRF key
  - the PRF key is only used by the PRF
- as far as distance-fraud is concerned, condition 1 is not met!
- in many designs for terrorist-fraud resistance, condition 2 is not met!

# Why Provable Security for DB? (III)

• so, we've played the "cat-and-mouse" game



- so, many incorrect arguments for DB in some existing proofs (e.g., PRF assumption used wrongly.)
  - [Boureanu-Mitrokotsa-Vaudenay Latincrypt 2012]: many DF attacks and MiM attacks, by "programmable PRFs" in protocols where the security claim was "if the PRF assumption holds, then the protocol is secure"
  - the PRF assumption holding may not always be sufficient an assumption for DB security !
  - design solutions/correction put in place, PRF masking, circular-keying PRF security, but they needed bringing together [Boureanu Mitrokotsa Vaudenay 2013 – 2015]

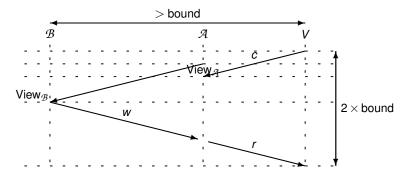


2 Why Provable Security for DB?

### Elements of Provable-Security Models in DB

- A Comparison of DB Security Definitions
- 5 Challenges and Directions in Provably Secure DB

# The "BMV" Model: The Beginnings...


- appeared in 2013 [Boureanu-Mitrokotsa-Vaudenay ISC 2013]
- continued to evolve ...[Boureanu-Vaudenay Inscrypt 2014], [Boureanu-Mitrokotsa-Vaudenay JoCS 2015]... and beyond
- the "BMV" model is based on the principle of interactive proofs
- a formal model, dubbed "DFKO", existed from before [Dürholz-Fischlin-Kasper-Onete ISC 2011]; session-based (different "patterns" over sessions to model relaying and MiM.. and TF)
- a formal framework, existed from before [Avoine et al 2009], which is more an attacker-model framework than a full provable-security formalism

# **BMV: Explicit Time in the Communication Model**

#### • participants have location

- insecure broadcasting + messages have a purported destination
- all communication are subject to a transmission-speed limit
- a message sent at time t<sub>sent</sub> from loc<sub>A</sub> is visible at loc<sub>B</sub> at time t<sub>received</sub> ≥ t<sub>sent</sub> + d(loc<sub>A</sub>, loc<sub>B</sub>)
- several adversarial instances, each with a location
- multiple instances but one **distinguished instance of** *V*; instances within a distance ≤ *B* are close-by; others are far-away
- adversaries can impersonate and change the message destination but cannot defeat the laws of physics: a malicious instance at *loc*<sub>M</sub>, at time *t*<sub>act</sub> could to block messages from *loc*<sub>A</sub> to *loc*<sub>B</sub> received at time  $t_{received} \ge t_{act} + d(loc_M, loc_B)$
- honest instances only see messages for which they are purported recipient
- all communication is subject to random noise
  - adversaries receive noiseless communication
  - when time is not considered, honest participants receive noiseless messages

### BMV: "Fundamental" Lemma — used in security proofs



#### Lemma

For each U, let  $View_U$  be his view just before receiving c. We say that a message by U is independent from c if it is the result of applying U on  $View_U$ , or a prefix of it.

There exists A and a list w of messages independent from c such that if V receives r within at most  $2 \times \text{bound time, then } r = A(\text{View}_{\mathcal{A}}, c, w).$ 

# **BMV: DB Experiment as Interactive Proofs – Summary**

interactive proof for proximity [Boureanu-Vaudenay Inscrypt 2014]

- a verifier party (its instances are honest)
- a prover party (its instances may be malicious)
- a secret to characterise the prover (in the symmetric case)
- concurrency: many provers+ verifiers + malicious participants

#### orrectness/completeness:

- if the honest prover is close to the verifier, the verifier accepts

#### • "honest-prover" security:

- Pr[V accepts]= negl, for any experiment where:
  - the prover is honest and
  - all its instances are far-away
- captures man-in-the-middle, impersonation, relay attack, mafia-fraud

#### soundness:

- a honest prover does not leak (too much) secret information
- captures terrorist-fraud
- (generalised) distance-fraud resistance (capturing distance-hijacking)
- distance-hijacking resistance [Vaudenay FC 2015]

# **BMV: A Glance at a Generalised DB Threat Model**

(Generalised) Distance-Fraud Definition ( $\alpha$ -resistance to distance-fraud). ( $\forall s$ ) ( $\forall P^*$ ) ( $\forall locy$  such that  $d(locy, loc_P) > \mathbb{B}$ ) ( $\forall r_k$ ), we have

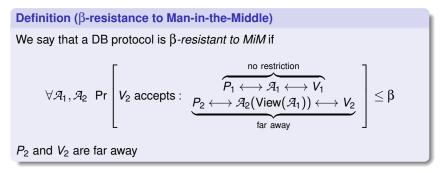
$$\Pr_{r_{V}}\left[\mathit{Out}_{V}=1: \underset{P^{*}(x) \longleftrightarrow V(y;r_{V})}{(x) \longleftrightarrow V(y;r_{V})}\right] \leq \alpha$$

where  $P^s$  is any (unbounded) dishonest prover. In a concurrent setting, we implicitly allow a polynomially bounded number of honest P(x') and V(y') close to V(y) with independent (x',y').

### generalised distance fraud:

- P(x) far from all V(x)'s want to make one V(x) accept (interaction with other P(x') and V(x') possible anywhere)
- ullet ightarrow also captures distance hijacking
- generalised mafia fraud, to MiM:
  - learning phase:  $\mathcal{A}$  interacts with many P's and V's
  - attack phase: P(x)'s far away from V(x)'s,
     A interacts with them and possible P(x')'s and V(x')'s,
     A wants to make one V(x) accept
- generalised terrorist fraud, to collusion fraud:
  - P(x) far from all V(x)'s interacts with A and makes one V(x) accept, but View(A) does not give any advantage to mount a man-in-the-middle attack

# Man-in-the-Middle: More details


Practical & Provably Secure Distance-Bounding [Boureanu-Mitrokotsa-Vaudenay ISC 2013, JoCS 2015]

(Generalised) Mafia-Fraud

**Definition** ( $\beta$ -resistance to MiM).  $(\forall s)(\forall m, \ell, z)$  polynomially bounded,  $(\forall A_1, A_2)$  polynomially bounded, for all locations such that  $d(loc_{P_1}, loc_{Y_1}) > \mathbb{B}$ , where  $j \in \{m + 1, ..., \ell\}$ , we have

 $\Pr\left[ \begin{matrix} (x,y) \leftarrow Gen(1^{j}) \\ Out_{V} = 1: P_{1}(x), \dots, P_{m}(x) \longleftrightarrow \mathcal{A}_{l} \longleftrightarrow V_{1}(y), \dots, V_{t}(y) \\ P_{m+1}(x), \dots, P_{\ell}(x) \longleftrightarrow \mathcal{A}_{2}(View_{\mathcal{A}_{l}}) \longleftrightarrow V(y) \end{matrix} \right] \leq \beta$ 

over all random coins, where  $Vlew_{R_i}$  is the final view of  $A_i$ . In a concurrent setting, we implicitly allow a polynomially bounded number of P(x'),  $P^*(x')$ , and V(y') with independent (x', y'), anywhere.



 captures relay attacks; man-in-the-middle attacks; impersonation; leakage of credentials

IB 2018

provable secure DB



- 2 Why Provable Security for DB?
- Elements of Provable-Security Models in DB
- A Comparison of DB Security Definitions
- 5 Challenges and Directions in Provably Secure DB

$$\underbrace{P^* \longleftrightarrow \mathcal{A} \longleftrightarrow V}_{\text{far away}}$$

- informally, valid TF: a malicious, far-away prover P\* helps an adversary A to show that P\* is close to a verifier V, without giving A another advantage ("advantage" often equates to key-leakage)
- TF-resistance: a malicious, far-away prover P\* helps an adversary A to show that P\* is close to a verifier V ⇒ A gets an advantage, i.e.,

 $\forall P^*, \mathcal{A}$ . Pr[V accepts ] high  $\Rightarrow \exists B$ . Pr[B(ViewA) passes ] high

- formally show a TF: exhibit some (P\*, A) such that Pr[V accepts] high , and then show that ∀B, Pr[B(ViewA) passes] negl
- .... unusual security property
   IB 2018
   provable secure DB

$$\underbrace{P^* \longleftrightarrow \mathcal{A} \longleftrightarrow V}_{\text{far away}}$$

- informally, valid TF: a malicious, far-away prover P\* helps an adversary A to show that P\* is close to a verifier V, without giving A another advantage ("advantage" often equates to key-leakage)
- TF-resistance: a malicious, far-away prover P\* helps an adversary A to show that P\* is close to a verifier V ⇒ A gets an advantage, i.e.,

 $\forall P^*, \mathcal{A}$ . Pr[V accepts] high  $\Rightarrow \exists B$ . Pr[B(ViewA) passes] high

- formally show a TF: exhibit some (P\*, A) such that Pr[V accepts] high , and then show that ∀B, Pr[B(ViewA) passes] negl
- .... unusual security property
   IB 2018
   provable secure DB

$$\underbrace{P^* \longleftrightarrow \mathcal{A} \longleftrightarrow V}_{\text{far away}}$$

- informally, valid TF: a malicious, far-away prover P\* helps an adversary A to show that P\* is close to a verifier V, without giving A another advantage ("advantage" often equates to key-leakage)
- TF-resistance: a malicious, far-away prover P\* helps an adversary A to show that P\* is close to a verifier V ⇒ A gets an advantage, i.e.,

 $\forall P^*, \mathcal{A}$ . Pr[V accepts ] high  $\Rightarrow \exists B$ . Pr[B(ViewA) passes ] high

 formally show a TF: exhibit some (P<sup>\*</sup>, A) such that Pr[V accepts] high , and then show that ∀B, Pr[B(ViewA) passes] negl

$$\underbrace{P^* \longleftrightarrow \mathcal{A} \longleftrightarrow V}_{\text{far away}}$$

- informally, valid TF: a malicious, far-away prover P\* helps an adversary A to show that P\* is close to a verifier V, without giving A another advantage ("advantage" often equates to key-leakage)
- TF-resistance: a malicious, far-away prover P\* helps an adversary A to show that P\* is close to a verifier V ⇒ A gets an advantage, i.e.,

 $\forall P^*, \mathcal{A}$ . Pr[V accepts ] high  $\Rightarrow \exists B$ . Pr[B(ViewA) passes ] high

 formally show a TF: exhibit some (P<sup>\*</sup>, A) such that Pr[V accepts] high , and then show that ∀B, Pr[B(ViewA) passes] negl

.... unusual security property
 provable secure DB

# "DFKO": SimTF Definition for TF-resistance ...

[Düerholz-Fischlin-Kasper-Onete ISC2011]

**SimTF Security** 

We say that a DB protocol is SimTF-secure if

 $\forall P^*, \mathcal{A}, \exists B \text{ s. that } p_B \geq p_A,$ 

where

$$p_A = \Pr[V \text{ accepts in } P^* \longleftrightarrow \mathcal{A} \longleftrightarrow V]$$

$$p_B = \Pr[V \text{ accepts in } B(View(\mathcal{A})) \longleftrightarrow V]$$

and

in  $P^* \longleftrightarrow \mathcal{A} \longleftrightarrow V$  there is NO adversarial interaction in the rapid-bit exchange phase

... Hmmm, but OK ...

# "BMV": TF-resistance v0.1

[Boureanu-Mitrokotsa-Vaudenay Lightsec 2013]

### $(\gamma,\gamma')$ -resistance to TF

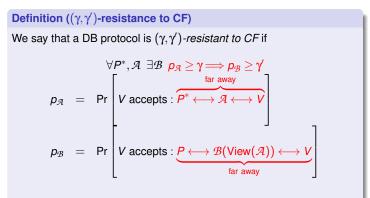
We say that a DB protocol is  $(\gamma, \gamma')$ -resistance to TF if

$$orall {m P}^*, {m A}, \; \exists {m B} \; {
m s.} \; {
m that} \; {m 
ho}_{m A} \geq \gamma \, \Rightarrow \, {m 
ho}_{m B} \geq \gamma'$$

where  $P^*$  and V are far-away and

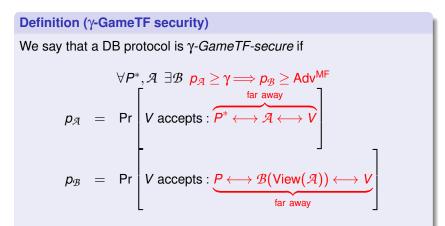
$$p_A = \Pr[V \text{ accepts in } P^* \longleftrightarrow \mathcal{A} \longleftrightarrow V]$$
$$p_B = \Pr[V \text{ accepts in } B(View(\mathcal{A})) \longleftrightarrow V].$$

# "BMV vs FO": SimTF vs. $(\gamma, \gamma')$ -resistance to TF


### Modulo Some Difference in what $\mathcal{A}$ can do...

### SimTF-secure $\Leftrightarrow$ ( $\gamma$ , $\gamma$ )-resistant to TF

# "BMV": Collusion-Fraud Resistance v1


[Boureanu-Mitrokotsa-Vaudenay ISC 2013]

**collusion-fraud**, informally: P(x) far from all V(x), interacts with  $\mathcal{A}$  and V(x) accepts on this, but  $View(\mathcal{A})$  does any not give  $\mathcal{A}$  any further advantage to mount a MiM



# "DFKO": Game-TF Security

[Fischlin-Onete ACNS 2013]



Adv<sup>MF</sup> is the best probability that a verifier accepts in a mafia-fraud attack. (For adversaries with bounded complexity.)

# "BMV vs FO": GameTF vs. $(\gamma, \gamma')$ -resistance to CF

### Modulo Some Difference in what $\mathcal{A}$ can do...

GameTF-secure  $\Leftrightarrow (\gamma, Adv^{MF})$ -resistant to CF

# "BMV": Soundness v1 ...

### [Vaudenay ProvSec 2013] and [Boureanu-Vaudenay Inscrypt 2014]

- if the verifier accepts with probability at least γ, then one can extract the secret from the view of close-by participants (which

here is  $\mathcal{A}$ )

Definition  $((\gamma, \gamma', m)$ -soundness). We say that a DB protocol is  $(\gamma, \gamma', m)$ sound if f or any distinguished experiment exp( $\gamma$ ) in which V accepts with probability at least  $\gamma$ , there exists a PPT algorithm  $\mathcal{E}$  called extractor, with the following property. Bg  $\mathcal{E}$  running experiment exp( $\mathcal{V}$ ) secent lines, in some execations denoted  $\exp_i(V)$ ,  $i = 1, \ldots, M$ , for M of expected value bounded by m, we have that

 $Pr[Out_V = 1 : \mathcal{E}(View_1, ..., View_M) \leftrightarrow \mathcal{V} | Succ_1, ..., Succ_M] \ge \gamma'$ 

where View, denotes the view of all close-by participants (except V) and the transcript seen by V in the run  $\exp_1(V)$ , and  $Succ_i$  is the event that V accepts in the run  $\exp_i(V)$ .

#### **Definition (γ-m-soundness)**

We say that a DB protocol is  $\gamma$ -m-sound if

 $\forall exp \exists \mathcal{E} \\ \Pr[\mathcal{E}(\text{View}_1, \dots, \text{View}_m) = x | \text{Succ}_1, \dots, \text{Succ}_m] = 1 - \operatorname{negl}(n)$ 

exp is an experiment such that

- provers are far away
- $\Pr[V \text{ accepts}] \ge \gamma$

 $\mathcal{E}$  runs *m* times exp: exp<sub>1</sub>,..., exp<sub>*m*</sub>,

View, denotes the view of all close-by participants in exp,

 $Succ_i$  is the event that V accepts in  $exp_i$ 

IB 2018

# "BMV": $\gamma$ -*m*-soundness vs. $(\gamma, \gamma')$ -resistance to CF

#### Theorem

 $\gamma$ -*m*-soundness  $\Rightarrow$  ( $\gamma$ , 1 – negl)-resistance to CF,

for  $\gamma$  such that  $\gamma^{-1}$  is polynomially bounded

### **Protocols and Proofs...**

### ... in "BMV" model

• Handan Kilinc - tomorrow

### ... in "DFKO" model

David Gerault – tomorrow



- 2 Why Provable Security for DB?
- Elements of Provable-Security Models in DB
- A Comparison of DB Security Definitions
- **5** Challenges and Directions in Provably Secure DB

### Challenges

- the BMV and FO models do have difference in time-modelling, in relay-modelling, in what the attackers can do ...
- plenty of security definitions (too many?) to suit different designs? (OK or KO?)
- these definitions do NOT always overlap (especially if we do not iron out model-differences)
- TF-resistance hinders designs (i.e., renders them communication-expensive), yields hard-to-follow proofs, generally lowers MiM-security

### **Directions**

- maybe tailor the security defs. + model to the application, but do it sensibly (see e.g. [Boureanu Gerault Lafourcade Onete WiSec2017] for examples to the contrary)
- mechanise crypto-proofs in ... Easycrypt ?

### Conclusions

# THANK YOU!