
An introduction to formal symbolic models
for verifying security protocols

Stéphanie Delaune

Univ Rennes, CNRS, IRISA

Saturday, April 14th, 2018

Verifying security protocols: a difficult task

◮ testing their resilience against well-known
attacks is not sufficient;

◮ manual security analysis is error-prone.

Verifying security protocols: a difficult task

◮ testing their resilience against well-known
attacks is not sufficient;

◮ manual security analysis is error-prone.

privacy issue

authentication issue

The register - Jan. 2010

Independent - Feb. 2016

A sucessful approach: formal symbolic verification

−→ provides a rigorous framework and automatic tools to analyse
security protocols and find their logical flaws.

A sucessful approach: formal symbolic verification

−→ provides a rigorous framework and automatic tools to analyse
security protocols and find their logical flaws.

Some examples of logical flaws:

◮ 2008: Authentication flaw in the Single
Sign-On protocol used e.g. in GMail

−→ Armando et al. using Avantssar

◮ 2010: a flaw in the french implementation of
the BAC protocol

−→ Chothia & Smirnov

Logical flaw on an example

aenc(sign(kAB , prv(A)), pub(B))

Is the Denning Sacco protocol a good key exchange protocol?

Logical flaw on an example

aenc(sign(kAB , prv(A)), pub(B))

Is the Denning Sacco protocol a good key exchange protocol? No !

Logical flaw on an example

aenc(sign(kAB , prv(A)), pub(B))

Is the Denning Sacco protocol a good key exchange protocol? No !

Description of a possible attack:

aenc(sign(kAC , prv(A)), pub(C))

Logical flaw on an example

aenc(sign(kAB , prv(A)), pub(B))

Is the Denning Sacco protocol a good key exchange protocol? No !

Description of a possible attack:

aenc(sign(kAC , prv(A)), pub(C))

sign(kAC , prv(A))

kAC

aenc(sign(kAC , prv(A)), pub(B))

Logical flaw on an example

aenc(sign(kAB , prv(A)), pub(B))

Is the Denning Sacco protocol a good key exchange protocol? No !

Description of a possible attack:

aenc(sign(kAC , prv(A)), pub(C))

sign(kAC , prv(A))

kAC

aenc(sign(kAC , prv(A)), pub(B))

A possible fix: aenc(sign(〈B, kAB〉, prv(A)), pub(B))

Two major families of models ...

... with some advantages and some drawbacks.

Computational model

◮ + messages are bitstring, a general and powerful adversary

◮ – manual proofs, tedious and error-prone

Symbolic model

◮ – abstract model, e.g. messages are terms

◮ + automatic proofs

Two major families of models ...

... with some advantages and some drawbacks.

Computational model

◮ + messages are bitstring, a general and powerful adversary

◮ – manual proofs, tedious and error-prone

Symbolic model

◮ – abstract model, e.g. messages are terms

◮ + automatic proofs

Some results allowed to make a link be-
tween these two very different models.

−→ Abadi & Rogaway 2000

Formal (symbolic) verification in a nutshell

|

Does the protocol

Modelling

satisfy

|= ϕ

a security property?

Formal (symbolic) verification in a nutshell

|

Does the protocol

Modelling

satisfy

|= ϕ

a security property?

Two main tasks

1. Modelling protocols, security properties, and the attacker

2. Designing verification algorithms and tools

Part I

Modelling protocols, security properties

and the attacker

Symbolic models in a nutshell

Some well-known existing models:

◮ strand spaces [Guttman et al., 99],

◮ Multiset Rewriting [Durgin et al., 99] - Tamarin tool

◮ spi-calculus [Abadi & Gordon, 97],

◮ applied-pi calculus [Abadi & Fournet, 01] - ProVerif tool

Symbolic models in a nutshell

Some well-known existing models:

◮ strand spaces [Guttman et al., 99],

◮ Multiset Rewriting [Durgin et al., 99] - Tamarin tool

◮ spi-calculus [Abadi & Gordon, 97],

◮ applied-pi calculus [Abadi & Fournet, 01] - ProVerif tool

They share some common ingredients:

◮ messages are abstracted by terms (perfect cryptography)

◮ the Dolev-Yao attacker who controls the entire network

◮ language with constructs for concurrency and communication

Messages as first-order terms

Terms are built over a set of names N , and a signature F .

t ::= n name n

| f (t1, . . . , tk) application of symbol f ∈ F

Messages as first-order terms

Terms are built over a set of names N , and a signature F .

t ::= n name n

| f (t1, . . . , tk) application of symbol f ∈ F

Example: representation of {a, n}k

◮ Names: n, k, a

◮ constructors: senc, pair,

senc

pair k

a n

Messages as first-order terms

Terms are built over a set of names N , and a signature F .

t ::= n name n

| f (t1, . . . , tk) application of symbol f ∈ F

Example: representation of {a, n}k

◮ Names: n, k, a

◮ constructors: senc, pair,

◮ destructors: sdec, proj1, proj2.

senc

pair k

a n

The term algebra is equipped with an equational theory E.

sdec(senc(x , y), y) = x proj1(pair(x , y)) = x

proj2(pair(x , y)) = y

Example: proj1(sdec(senc(〈a, n〉, k), k)) =E a.

Protocols as processes

−→ the applied pi calculus [Abadi & Fournet, 2001]

P, Q := 0 null process
in(c , x).P input
out(c , u).P output
if u = v then P else Q conditional
P | Q parallel composition
!P replication
new n.P fresh name generation

Protocols as processes

−→ the applied pi calculus [Abadi & Fournet, 2001]

P, Q := 0 null process
in(c , x).P input
out(c , u).P output
if u = v then P else Q conditional
P | Q parallel composition
!P replication
new n.P fresh name generation

Semantics →:

Comm out(c , u).P | in(c , x).Q → P | Q{u/x}

Then if u = v then P else Q → P when u =E v

Else if u = v then P else Q → Q when u 6=E v

Repl !P → P |!P

Going back to the Denning Sacco protocol (1/3)

A → B : aenc(sign(k, prv(A)), pub(B))
B → A : senc(s, k)

What symbols and equations do we need to model this protocol?

Going back to the Denning Sacco protocol (1/3)

A → B : aenc(sign(k, prv(A)), pub(B))
B → A : senc(s, k)

What symbols and equations do we need to model this protocol?

1. symmetric encryption: senc and sdec

sdec(senc(x , y), y) = x

Going back to the Denning Sacco protocol (1/3)

A → B : aenc(sign(k, prv(A)), pub(B))
B → A : senc(s, k)

What symbols and equations do we need to model this protocol?

1. symmetric encryption: senc and sdec

sdec(senc(x , y), y) = x

2. asymmetric encryption: aenc, adec, and pk

adec(aenc(x , pk(y)), y) = x

Going back to the Denning Sacco protocol (1/3)

A → B : aenc(sign(k, prv(A)), pub(B))
B → A : senc(s, k)

What symbols and equations do we need to model this protocol?

1. symmetric encryption: senc and sdec

sdec(senc(x , y), y) = x

2. asymmetric encryption: aenc, adec, and pk

adec(aenc(x , pk(y)), y) = x

3. signature: ok, sign, check, getmsg, and pk

check(sign(x , y), pk(y)) = ok and getmsg(sign(x , y)) = x

Going back to the Denning Sacco protocol (2/3)

A → B : aenc(sign(k, prv(A)), pub(B))
B → A : senc(s, k)

Going back to the Denning Sacco protocol (2/3)

A → B : aenc(sign(k, prv(A)), pub(B))
B → A : senc(s, k)

Alice and Bob as processes:

PA(ska, pkb) = new k.
out(c , aenc(sign(k, ska), pkb)).
in(c , xa). . . .

Going back to the Denning Sacco protocol (2/3)

A → B : aenc(sign(k, prv(A)), pub(B))
B → A : senc(s, k)

Alice and Bob as processes:

PA(ska, pkb) = new k.
out(c , aenc(sign(k, ska), pkb)).
in(c , xa). . . .

PB(skb, pka) = in(c , xb).
if check(adec(xb, skb), pka) = ok then

new s.
out(c , senc(s, getmsg(adec(xb, skb))))

Going back to the Denning Sacco protocol (3/3)

PA(ska, pkb) =
new k.

out(c, aenc(sign(k, ska), pkb)).
in(c, xa). . . .

PB(skb, pka) =
in(c, xb).
if check(adec(xb , skb), pka) = ok then

new s.

out(c, senc(s, getmsg(adec(xb , skb))))

Going back to the Denning Sacco protocol (3/3)

PA(ska, pkb) =
new k.

out(c, aenc(sign(k, ska), pkb)).
in(c, xa). . . .

PB(skb, pka) =
in(c, xb).
if check(adec(xb , skb), pka) = ok then

new s.

out(c, senc(s, getmsg(adec(xb , skb))))

Example: a simple scenario

PDS = new ska, skb.
(

PA(ska, pk(skb)) | PB(skb, pk(ska)
)

Going back to the Denning Sacco protocol (3/3)

PA(ska, pkb) =
new k.

out(c, aenc(sign(k, ska), pkb)).
in(c, xa). . . .

PB(skb, pka) =
in(c, xb).
if check(adec(xb , skb), pka) = ok then

new s.

out(c, senc(s, getmsg(adec(xb , skb))))

Example: a simple scenario

PDS = new ska, skb.
(

PA(ska, pk(skb)) | PB(skb, pk(ska)
)

(Comm)
−−−−−−→ new ska, skb, k.

(

in(c , xa). . . .
| if check(adec(aenc(sign(k, ska), pkb), skb), pka) = ok then
new s.out(c , senc(s, getmsg(adec(aenc(sign(k, ska), pkb), skb))))

)

Going back to the Denning Sacco protocol (3/3)

PA(ska, pkb) =
new k.

out(c, aenc(sign(k, ska), pkb)).
in(c, xa). . . .

PB(skb, pka) =
in(c, xb).
if check(adec(xb , skb), pka) = ok then

new s.

out(c, senc(s, getmsg(adec(xb , skb))))

Example: a simple scenario

PDS = new ska, skb.
(

PA(ska, pk(skb)) | PB(skb, pk(ska)
)

(Comm)
−−−−−−→ new ska, skb, k.

(

in(c , xa). . . .
| if check(adec(aenc(sign(k, ska), pkb), skb), pka) = ok then
new s.out(c , senc(s, getmsg(adec(aenc(sign(k, ska), pkb), skb))))

)

(Then)
−−−−−→ new ska, skb, k.

(

in(c , xa). . . .
new s.out(c , senc(s, getmsg(adec(aenc(sign(k, ska), pkb), skb))))

)

Going back to the Denning Sacco protocol (3/3)

PA(ska, pkb) =
new k.

out(c, aenc(sign(k, ska), pkb)).
in(c, xa). . . .

PB(skb, pka) =
in(c, xb).
if check(adec(xb , skb), pka) = ok then

new s.

out(c, senc(s, getmsg(adec(xb , skb))))

Example: a simple scenario

PDS = new ska, skb.
(

PA(ska, pk(skb)) | PB(skb, pk(ska)
)

(Comm)
−−−−−−→ new ska, skb, k.

(

in(c , xa). . . .
| if check(adec(aenc(sign(k, ska), pkb), skb), pka) = ok then
new s.out(c , senc(s, getmsg(adec(aenc(sign(k, ska), pkb), skb))))

)

(Then)
−−−−−→ new ska, skb, k.

(

in(c , xa). . . .
new s.out(c , senc(s, getmsg(adec(aenc(sign(k, ska), pkb), skb))))

)

this represents a normal execution between two honest participants

Trace-based security properties

Confidentiality (as non-deducibility)

For all processes A, for all execution A | P →∗ Q,
we have that Q is not of the form
new ñ.(out(c , s).Q′ | Q′′) with c public.

Trace-based security properties

Confidentiality (as non-deducibility)

For all processes A, for all execution A | P →∗ Q,
we have that Q is not of the form
new ñ.(out(c , s).Q′ | Q′′) with c public.

Authentication (as a correspondence property)

1. add events of the form endB(. . .) or beginA(. . .) in processes

2. write a query:
∀xB, xA, xK .endB(xB, xA, xK) ⇒ beginA(xA, xB, xK).

For all processes A, for all execution A | P →∗ Q that goes
through the event endB(b, a, k), the event beginA(a, b, k) has
been executed before.

Equivalence-based security properties

Vote privacy
the fact that a particular voter voted in a
particular way is not revealed to anyone

VA(yes) | VB(no)
?
≈ VA(no) | VB(yes)

Equivalence-based security properties

Vote privacy
the fact that a particular voter voted in a
particular way is not revealed to anyone

VA(yes) | VB(no)
?
≈ VA(no) | VB(yes)

Unlinkability
the fact that a user may make multiple uses of a service
or a resource without others being able to link these uses
together.

! new k.! P(k)
?
≈ ! new k.P(k)

Equivalence-based security properties

Vote privacy
the fact that a particular voter voted in a
particular way is not revealed to anyone

VA(yes) | VB(no)
?
≈ VA(no) | VB(yes)

Unlinkability
the fact that a user may make multiple uses of a service
or a resource without others being able to link these uses
together.

! new k.! P(k)
?
≈ ! new k.P(k)

Testing equivalence P ≈ Q

P ≈ Q iff (P | A)⇓c ⇔ (Q | A)⇓c for any process A

where R ⇓c means that R can evolve and emits on public channel c .

Part II

Designing verification algorithms and tools

State of the art in a nutshell

for analysing confidentiality/authentication properties

Unbounded number of sessions

◮ undecidable in general [Even & Goldreich, 83; Durgin et al, 99]

◮ decidable for restricted classes [Lowe, 99]

[Rammanujam & Suresh, 03] [D’Osualdo et al., 17]

−→ tools: ProVerif, Tamarin, Maude-NPA, . . .

State of the art in a nutshell

for analysing confidentiality/authentication properties

Unbounded number of sessions

◮ undecidable in general [Even & Goldreich, 83; Durgin et al, 99]

◮ decidable for restricted classes [Lowe, 99]

[Rammanujam & Suresh, 03] [D’Osualdo et al., 17]

−→ tools: ProVerif, Tamarin, Maude-NPA, . . .

Bounded number of sessions

◮ a decidability result (NP-complete)
[Rusinowitch & Turuani, 01; Millen & Shmatikov, 01]

−→ tools: AVANTSSAR platform, . . .

ProVerif [Blanchet, 01]

ProVerif is a verifier for cryptographic protocols that may prove
that a protocol is secure or exhibit attacks.

http://proverif.inria.fr

Advantages

◮ fully automatic, and quite efficient

◮ a rich process algebra: replication, else branches, . . .

◮ handles many cryptographic primitives

◮ various security properties: secrecy, correspondences,
equivalences

http://proverif.inria.fr

ProVerif [Blanchet, 01]

ProVerif is a verifier for cryptographic protocols that may prove
that a protocol is secure or exhibit attacks.

http://proverif.inria.fr

Advantages

◮ fully automatic, and quite efficient

◮ a rich process algebra: replication, else branches, . . .

◮ handles many cryptographic primitives

◮ various security properties: secrecy, correspondences,
equivalences

No miracle

◮ the tool can say “can not be proved”;

◮ termination is not guaranteed

http://proverif.inria.fr

ProVerif

ProVerif implements a resolution strategy well-adapted to
protocols.

Approximation of the translation in Horn clauses:

◮ the freshness of nonces is partially modeled;

◮ the number of times a message appears is ignored, only the
fact that is has appeared is taken into account;

◮ the state of the principals is not fully modeled.

−→ These approximations are keys for an efficient verification.

Experimental results

−→ ProVerif works well in practice.

Protocol Result ms

Needham-Schroeder shared key Attack 52
Needham-Schroeder shared key corrected Secure 109
Denning-Sacco Attack 6
Denning-Sacco corrected Secure 7
Otway-Rees Secure 10
Otway-Rees, variant of Paulson98 Attack 12
Yahalom Secure 10
Simpler Yahalom Secure 11
Main mode of Skeme Secure 23

Pentium III, 1 GHz.

Part III

Main limitations

Dolev-Yao attacker

As any participant, the attacker can intercept, build, and send
messages without introducing any delay.
−→ not suitable to analyse distance bounding protocols

We need a model that takes into account:

◮ the fact that transmitting a message takes time,

◮ the location of participants.

How existing symbolic models/tools can be extended/adapted to
analyse distance bounding protocols?

−→ see talks given by T. Chothia, J. Toro-Pozo, and A. Debant

Handling low-level operators

Distance bounding protocols often rely on some low-level operators.

Single bit message: Symbolic models do not allow one to reason at
this level.
−→ this is a problem to model rapid phases in distance bounding.

Algebraic properties of low level operators: A faithful model need
to take into account the algebraic properties of those operators:

Example: exclusive-or operator

(x ⊕ y) ⊕ z = x ⊕ (y ⊕ z) x ⊕ 0 = x

x ⊕ y = y ⊕ x x ⊕ x = 0

−→ those operators are only partially supported in existing
verification tools.

Towards probabilistic models

Existing symbolic verification tools do not allow one to model
probabilistic behaviours.

the protocol is declared unsecure as soon as there is a behaviour of
the attacker that allows one to reach a bad state.

Towards probabilistic models

Existing symbolic verification tools do not allow one to model
probabilistic behaviours.

the protocol is declared unsecure as soon as there is a behaviour of
the attacker that allows one to reach a bad state.

To say that a bad state is reachable with probability at most p, we
need to introduce probability in our modelling
−→ e.g. partially observable Markov decision processes

Some recent works by R. Chadha et al.

◮ Verification of randomized security protocols LICS, 2017

◮ Modular Verification of Protocol Equivalence in the Presence
of Randomness ESORICS, 2017

Privacy-type properties

In comparison to trace-based security properties

◮ a more recent research area

◮ more difficult to analyse (we have to compare sets of traces).

Privacy-type properties

In comparison to trace-based security properties

◮ a more recent research area

◮ more difficult to analyse (we have to compare sets of traces).

State-of-the art for traditional protocols

◮ ProVerif (and Tamarin) consider a strong form of equivalence,
namely diff-equivalence.
−→ not suitable to analyse e.g. unlinkability of the BAC
protocol.

◮ Verification tools for a bounded number of sessions suffer
from the well-known state explosion problem
−→ only able to analyse very few sessions of the protocol, e.g.
2 or 3 processes in parallel.

Privacy-type properties

In comparison to trace-based security properties

◮ a more recent research area

◮ more difficult to analyse (we have to compare sets of traces).

State-of-the art for traditional protocols

◮ ProVerif (and Tamarin) consider a strong form of equivalence,
namely diff-equivalence.
−→ not suitable to analyse e.g. unlinkability of the BAC
protocol.

◮ Verification tools for a bounded number of sessions suffer
from the well-known state explosion problem
−→ only able to analyse very few sessions of the protocol, e.g.
2 or 3 processes in parallel.

Open challenge: extending existing verification tools to be able to
analyse privacy-type properties on distance bounding protocols.

POPSTAR in a nutshell (2017-2022)

Reasoning about Physical properties Of
security Protocols

with an Application To contactless Systems

Main issues:
◮ specificities of contactless systems are not well understood;
◮ a lack of formal model to reason about these systems.

Main outcomes:
◮ solid foundations to reason about physical properties;
◮ new algorithms and tools to analyse the security and privacy

of modern protocols;
◮ make the upcoming generation of nomadic contactless devices

more secure.

POPSTAR in a nutshell (2017-2022)

Reasoning about Physical properties Of
security Protocols

with an Application To contactless Systems

https://project.inria.fr/popstar/

Advertisement - Regular job offers:

◮ PhD positions and Post-doc positions;

◮ One research associate position (up to 3 years).

−→ contact me: stephanie.delaune@irisa.fr

https://project.inria.fr/popstar/
stephanie.delaune@irisa.fr

