
Modelling and Analysis of a Hierarchy of
Distance Bounding Attacks

Tom Chothia, Joeri de Ruiter and Ben Smyth

Introduction

• Contactless EMV & relay attacks

• A protocol to stop relay attacks on EMV

• A extension of the applied pi-calculus to model DB protocols

• Automatically checking previously defined symbolic properties.

• A Hierarchy of DB properties.

• Examples: Contactless EMV & NXP’s DB protocol.

Visa’s Protocols
Shop Card

SELECT 2PAY.SYS.DDF01

AIDs of all payment apps.

SELECT Visa app ID

PDOL

PDOL = Processing Options Data Object List

• list of data the reader must provide to the card.

PDOL
9F38189F66049F02069F03069F1A0295055F2A029A039C019F37045F2D02656E9000

which parses as:
9F38 | len:18 Processing Options Data Object List (PDOL)

9F66 len:04 Card Production Life Cycle
9F02 len:06 Amount, Authorised (Numeric)
9F03 len:06 Amount, Other (Numeric)
9F1A len:02 Terminal Country Code

95 len:05 Terminal Verification Results
5F2A len:02 Transaction Currency Code

9A len:03 Transaction Date
9C len:01 Transaction Type

9F37 len:04 Unpredictable Number

Visa’s
PayWave

Master-
card’s
PayPass

Shop Phone1 Phone2 Card
SELECT

AIDs

GPO

ATC,AC, SDAD, PAN

READ1

Static data

SELECT AID

AIDs

READ2

SSAD,Nc

READ2

SSAD,Nc

SELECT

AIDs

UN, amount GPO

ATC,AC,SDAD,PAN
AC, SDAD

Nc

Only
added
time
delay

Relay timing

• We measured the exact transaction
times for a number of cards.
• Fastest 330ms
• Slowest 637ms

• Fastest relayed transaction: 485ms

• Placement of card can have an
affect > 80ms for longest messages.

• ABN Amro (Dutch)
• Time for card to complete a purchase:

637ms
• Time for relay to complete a

purchase:627ms.

Attacker model

• We only want to stop someone using a relay to steal money or a car.
Nothing more, nothing less.

• We assume the relay adds a significant delay.

• We work in the symbolic model:
• Idealized crypto
• Message integrity
• No side channels

PaySafe

Pay
Wave

Uses New Command

MasterCard’s Relay
Resistance Protocol (RRP)

Timing profile sent by card

We check this as
auth. properity

NXP distance bounding protocol

• NXP sell a distance bounding smart card.

• NXP have patented a distance bounding J

• Patent documents are really hard to read L

“This need may be met by the subject matter according to the
independent claims. Advantageous embodiments of the present

invention are set forth in the dependent claims.”

NXP Protocol.

Can be split
into bytes

Only in one
version

Applied pi-calculus

in(x).P input
out<x>.P output
P | Q two processes running in parallel
!P infinite number of copies of process P
new a.P a new name “a”, e.g. a nonce, session key
let x=D in P else Q pattern matched e.g. encryption
event(P) event used for testing
t:P numbered phase jump, enforces order

Example

1. A -> B : na
2. B -> A : enc((na,nb), kab)
3. A -> B : nb

A and B correctly authenticate each other if
for every:
• event(endA(na,nb)) there is a unique

event(B_using(na,nb))
• event(endB(na,nb)) there is a unique

event(A_using(na,nb))

A = new na. out c<na>.
in c(x).let (=na,nb)=dec(x).
event(A_using(na,nb)).
out(nb).
event(endA(na,nb))

B = in(n). new nb.
event(B_using(na,nb)).
out c<enc((nb,na),kab)>.
in(y).let (=nb) = y.
event(endB(na,nb))

System = new kab.(!A | !B)

PaySafe Model
let Verifier =

out c<SELECT,AID>.
in c(pdol).
new UN.
out c<GET_PROCESSING_OPTIONS,UN,amount>.
in c(aip,afl,NC).
out c<GENERATE_AC>.
in c(SDAD,AC).
out c<READ_RECORD>.
in c(cCert).
let cKey, cId = checksign(cCert,getPubKey(BANK_ID)) in
let (=UN,=NC,=rAmount,ATC,AC)=checksign(SDAD,cKey) in
event Verified(cId).

PaySafe Model
let Prover =

in c(=SELECT,=AID).
new NC. new ATC.
out c<PDOL>.
in c(=GET_PROCESSING_OPTIONS,UN,amount).
out c<AIP,AFL,cNC>.
in c(=GENERATE_AC, amount).
let macKey = genKey(cATC, sharedKey(idP)) in
let AC = mac((cAmount,cUN,cATC), macSessionKey) in
let SDAD = sign(UN,NC,amount,ATC,AC),getPrivKey(idP)) in
out c<cSDAD,AC>.
in c(=READ_RECORD).
out c<cCardCert>.

Extended Applied pi-calculus for DB

in(x).P
out<x>.P
P | Q
!P
new a.P
let x = D in P else
event(P)

startTimer.P
stopTimer.P

Locations: L = [P] or L | L

Eg.
[EMVCard] | [ShopReader]
[EMVCard | ShopReader]

Local

c<n>

c(x)challenge

response

c<n>

c(x)

Remote Local

c<n>

c(x)

(a) (b) (c)

c<m>
c(y)

c<m>
c(y)

c<m>
c(y)

We write [Process]<number of timers running>

[in c(x).P | out c<n>.Q]r -> [P{n/x} | Q]r

[out c<n>.Q]r | [P]0 -> [Q]r | [out c<n>|P]0

[out c<n>.Q]r -> [out c<n> | Q]r

PaySafe Model
let Verifier =

out c<SELECT,AID>.
in c(pdol).
new UN.
out c<GET_PROCESSING_OPTIONS,UN,amount>.
in c(aip,afl,NC).
startTimer. out c<GENERATE_AC>.
in c(SDAD,AC). stopTimer.
out c<READ_RECORD>.
in c(cCert).
let cKey, cId = checksign(cCert,getPubKey(BANK_ID)) in
let (=UN,=NC,=rAmount,ATC,AC)=checksign(SDAD,cKey) in
event Verified(cId).

[Verifiers] | [Provers]

[Verifiers | Provers]

Verifiers = !(new amount.!Verifier)
Provers = !(new id. let idP = id in

let cCert = sign(getPubKey(idP), idP),
getPrivKey(BANK_ID)) in

!event Start(idP). Prover]

Defining DB Protocols

To define a DB protocol we (P(id),V,n)
• Provers P(id) is of the form P(id)=!new id.new n.let .. !Q
• Verifier V is of the form V=!new n.!V’, and can perform event verified(id).

We write: verified(id):S to mean the verifier accepts a run from prover “id”

S ->* [new id.P|X]|L -> [P{a/id}|X] ->*
[event(verified(a)|Y] | R

We write “ [V(id)|…] | … ” for “verified(id):[V|…] | … ”
• E.g. [V(id)|P(id’)] | [P(id)|A]

Definitions for the symbolic literature

• Relay/Mafia Fraud: attackers relay and interfere with messages

• Lone Distance Fraud: remote dishonest prover tricks the verifier

• Distance Hijacking: remote dishonest prover uses a local honest prover

• Terrorist Fraud: A remote dishonest prover* and local attacker

• Assisted Distance Fraud: remote dishonest prover* and local attacker and
honest prover

[A | P(id)] | [V | A]
BirminghamNew York

Matt+PhoneMe+Phone POSCard

Relay Attack

• There exists relay attack against the protocol P and V if there exists A
such that

[V(id)|A] | [P(id)|A]

I.e.
[V | A] | [P(id) | A]
->* [X] | [new id.Q | Y]
-> [X] | [Q{a/id} | Y]

[event verified(a).R | W] | [Z]

Distance Fraud

• Dishonest prover DP-A(id) = !new id.<board cast all secret values> | A

• Lone Distance Fraud: A dishonest prover remotely authenticates to a
verifier.

[V(id)] | [DP-A(id)]

• Distance Hijacking: remote dishonest prover uses a local honest
prover

[V(id)|P(id’)] | [DP-A(id)]

Terrorist Frauds

• Terrorist Fraud, TP-A(id): = A | oracle for all functions and values

• Terrorist Fraud: A remote dishonest prover* and local attacker
[V(id) | A] | [TP-A(id)]

• Assisted Terrorist Fraud: remote dishonest prover* and local attacker and honest
prover

[V(id) | P(id’) | A] | [TP-A(id)]

• Assisted Distance Fraud: remote dishonest prover* and local attacker and honest
prover

[V(id)|DP-A(id’)] |[TP-A(id)]

Distance Fraud
[V(id)] | [DP-A(id)]

Mafia fraud/Relay
[V(id)|A] | [P(id)|A]

Terrorist Fraud
[V(id)|A] | [TP-A(id)]

Distance Hijacking
[V(id)|P(id’)] | [DP-A(id)]

Assisted Distance Fraud
[V(id)|DP-A(id’)] |[TP-A(id)]

Props
• Our building blocks form a

hierarchy.

• Each level is strictly more expressive
than the one below.

• Replacing any process with the one
above it, at a particular location,
makes the attacker more powerful.

0

P(id) A

P(id)|A

TF-A(id)

DF-A(id)

Some equalities between processes

When testing for “id”

• P(id) is more powerful that P(id’)
• TF-A(id) is more powerful that TF-A(id’)
• DP-A-A(id) is more powerful that DP-A-

A(id’)

[V(id)|A] | [P(id)|A]
= [V(id)|A] | [P(id)|A | P(id’)]

P(id) = P(id)|P(id’)
TP-A(id) = TP-A(id) | P(id’)
TP-A(id) = TP-A(id) | TP-A(id’)
DP-A-A(id) = DP-A-A(id) | P(id’)
DP-A-A(id) = DP-A-A(id) | TP-A(id’)
DP-A-A(id) = DP-A-A(id) | DP-A-A(id’)

TP-A(id) = TP-A(id) | A
DP-A(id) = DP-A(id) | TP-A(id)
DP-A(id) = DP-A(id) | A

Distance Fraud
[V(id)] | [DP-A(id)]

Mafia fraud/Relay
[V(id)|A] | [P(id)|A]

Terrorist Fraud
[V(id)|A] | [TP-A(id)]

Distance Hijacking
[V(id)|P(id’)] | [DP-A(id)]

[V(id)|A] | [TP-A(id’)|P(id)]

We have that:
TP-A(id) = TP-A(id) | A

P(id)|A < TP-A(id)
TP-A(id) = TP-A(id) | TP-A(id’)

[V(id)|A] | [TP-A(id’)|P(id)]
= [V(id)|A] | [TP-A(id’)|P(id)|A]
< [V(id)|A] | [TP-A(id’)|TP-A(id)]
= [V(id)|A] | [TP-A(id’)]

Assisted Distance Fraud
[V(id)|DP-A(id’)] |[TP-A(id)]

Distance Fraud
[V(id)] | [DP-A(id)]

Mafia fraud/Relay
[V(id)|A] | [P(id)|A]

Terrorist Fraud
[V(id)|A] | [TP-A(id)]

Distance Hijacking
[V(id)|P(id’)] | [DP-A(id)]

[V(id)|A] | [TP-A(id’)|P(id)]

Assisted Distance Fraud
[V(id)|DP-A(id’)] |[TP-A(id)]

[V(id)|P(id’)|A] | [TP-A(id)]

[V(id)|TP-A(id’)] | [TP-A(id)]

Other Properties

• All possible combinations of our processes give us 16,384 scenarios.

• We disregard scenarios in which the prover and verifier are co-located and
there is a prover: 1,792 scenarios

• (For now) only one of P(id),P(id)|A,TP-A(id),DP-A(id): 512 scenarios.

• Apply our inequalities: 72 scenarios.

• Apply our equalities: 28 scenarios.

Distance Fraud
[V(id)] | [DP-A(id)]

[V(id)|TP-A(id’)] | [P(id)]

Mafia fraud/Relay
[V(id)|A] | [P(id)|A]

[V(id)] | [P(id)|A]

[V(id)|P(id’)] | [P(id)|A]

[V(id)|P(id’)] | [P(id) | TP-A(id’)]
[V(id)|A|P(id’)] | [P(id)]

Terrorist Fraud
[V(id)|A] | [TP-A(id)]

[V(id)|P(id’)|A] | [TP-A(id)]

Distance Hijacking
[V(id)|P(id’)] | [DP-A(id)]

V(id)] | [TP-A(id)]

[V(id) | TP-A(id’)] | [TP-A(id)]

[V(id)|DP-A(id’)] | [P(id)]

Assisted Distance Fraud
[V(id)|DP-A(id’)] | [TP-A(id)]

[V(id)|A] | [P(id)]

[V(id)|TP-A(id’)] | [P(id)|A]

[V(id)|P(id’)|A] | [P(id)|A]

[V(id)|DP-A(id’)] | [P(id)|A]

[V(id)] | [P(id) | DP-A(id')]

[V(id)] | [P(id)|TP-A(id')]

[V(id)] | [TP-A(id)|DP-A(id')]
[V(id)|A] | [TP-A(id’)|P(id)]

[V(id)|P(id’)] | [TP-A(id)|DP-A(id’)]

[V(id)|P(id’)] | [TP-A(id)]
[V(id)|P(id’)] | [P(id) | DP-A(id’)]

[V(id)|TP-A(id’)] | [P(id)|TP-A(id’)]

[V(id) | DP-A(id’)] | [P(id) | TP-A(id’)]

[V(id)|A|P(id’)] | [P(id)|TP-A(id’)]

Some Heuristics

If the prover doesn’t time bound the verifier, and remote
communication is possible (or uninteresting to us):

[V(id) | X | A] | [Y] vs. [V(id) | X | A] | [Y | A]

With no local attacker TP-A & DP-A will normally have the same power:

[V(id) | X] | [Y | TP-A(x)] vs [V(id) | X] | [Y | DP-A(x)]

Distance Fraud
[V(id)] | [DP-A(id)]

Mafia fraud/Relay
[V(id)|A] | [P(id)|A]

[V(id)] | [P(id)|A]

[V(id)|P(id’)] | [P(id)|A]

Terrorist Fraud
[V(id)|A] | [TP-A(id)]

[V(id)|P(id')|A] | [TP-A(id)]

Distance Hijacking
[V(id)|P(id')] | [DP-A(id)]

Assisted Distance Fraud
[V(id)|DP-A(id')] | [TP-A(id)]

Uncompromised Distance Bounding/β-secure
[V(id)|DP-A(id')] | [P(id)|DP-A(id’)]

Relay Hijacking
[V(id)|P(id')|A] | [P(id)|A]

[V(id)] | [P(id)|DP-A(id')]

[V(id)|A] | [P(id)|TP-A(id')] [V(id)|P(id')] | [P(id)|DP-A(id')]

[V(id)|P(id')|A] | [P(id)|DTP(id')]

Key:
P(id): honest provers with identity “id”
V(id): verifier wishing to verifier “id”
A: attacker process
TP-A(id): terrorist provers, acting as “id”
DP-A(id): dishonest provers, acting as “id”

Distance Fraud
[V(id)] | [DP-A(id)]

Mafia fraud/Relay
[V(id)|A] | [P(id)|A]

[V(id)] | [P(id)|A]

[V(id)|P(id’)] | [P(id)|A]

Terrorist Fraud
[V(id)|A] | [TP-A(id)]

[V(id)|P(id')|A] | [TP-A(id)]

Distance Hijacking
[V(id)|P(id')] | [DP-A(id)]

Assisted Distance Fraud
[V(id)|DP-A(id')] | [TP-A(id)]

Uncompromised Distance Bounding
[V(id)|DP-A(id')] | [P(id)|DP-A(id’)]

Relay Hijacking
[V(id)|P(id')|A] | [P(id)|A]

[V(id)] | [P(id)|DP-A(id')]

[V(id)|A] | [P(id)|TP-A(id')] [V(id)|P(id')] | [P(id)|DP-A(id')]

[V(id)|P(id')|A] | [P(id)|DTP(id')]

Key:
P(id): honest provers with identity “id”
V(id): verifier wishing to verifier “id”
A: attacker process
TP-A(id): terrorist provers, acting as “id”
DP-A(id): dishonest provers, acting as “id”

Terrorist attackerNo terrorist attacker

Remote attacker only

Remote and local attackers

Trusted devices only

Some untrusted devices

Distance Fraud
[V(id)] | [DP-A(id)]

Mafia fraud/Relay
[V(id)|A] | [P(id)|A]

[V(id)] | [P(id)|A]

[V(id)|P(id’)] | [P(id)|A]

Terrorist Fraud
[V(id)|A] | [TP(id)]

[V(id)|P(id')|A] | [TP(id)]

Distance Hijacking
[V(id)|P(id')] | [DP-

A(id)]

Assisted Distance Fraud
[V(id)|DP-A(id')] | [TP(id)]

Uncompromised Distance Bounding
[V(id)|DP-A(id')] | [P(id)|DP-A(id’)]

Relay Hijacking
[V(id)|P(id')|A] | [P(id)|A]

[V(id)] | [P(id)|DP-A(id')]

[V(id)|A] | [P(id)|TP(id')] [V(id)|P(id')] | [P(id)|DP-A(id')]

[V(id)|P(id')|A] | [P(id)|TP(id')]

[V(id)|P(id’)]

[V(id)]

[V(id)] | [A]

[V(id)|P(id’)|A]

[V(id)|P(id’)] | [A]

[V(id)|A]

[V(id)] | [P(id’)]

[V(id)] | [P(id’)|A]

[V(id)|A] | [P(id’)|A] [V(id)] | [DP-
A(id’)]

[V(id)|DP-A(id’)]

[V(id)|A] | [TP(id’)]

[V(id)|P(id’)] | [P(id)]

[V(id)] | [P(id)]

[V(id)|P(id’)] | [DP-A(id’)]

[V(id)|P(id’)|A] | [TP-A(id’)]

Basic correctness
properties

Distance bounding
properties

Authentication
properties

Checking Mobility

• What about a prover than is in range and then moves away?

We can check this as a injective correspondence

E.g. Relay Hijacking: [V(id)|P*(id)|A] | [P(id)|A]

where P*(id) as P(x), but starts with event(start(id)).

• We then check if:

event(verified(id)) => a unique event(start(id)).

Automatically Checking

• We translate our DB calculus into the applied pi-calculus, and use ProVerif to check
processes automatically.

• The translation uses 3 phases:
• Phase 1, before the timer start
• Phase 2, while the timer is running
• Phase 3, after the time stops.

startTimer jumps from phase 1 to phase 2.
stopTimer jumpes from phase 2 to phase 3.

Process at the same location as the verifier can act in all phases
Process at a different location can only act in Phase 1 and Phase 2.

Papers

Financial Crypto 2015:
• PaySafe, idea and example of checking in the applied pi-calculus,

automated checked of relay attacks.

• Current draft paper:
• DB extensions, Hierarchy, MasterCard & NXP protocols. Automatic checking

of all attacks.

Conclusion

• We build a model of distance bounding in which we abstract away from
exact times:
• All local communication and operations can be performed within the time bound
• All communication with remote locations will take longer then the time bound.

• We enumerate and order possible symbolic DB properties
• And link them to particular attacker models.

• Examples from MasterCard and NXP

• Links to computational model?

