Code of Practice for
Working Safely with Lasers

Originator name: Christopher Buxey
Section / Dept: FEPS
Implementation date: November 2018
Date of next review: November 2021
Related policies: Health and Safety Policy
Policy history: Version 4

Version History

<table>
<thead>
<tr>
<th>Version</th>
<th>Author</th>
<th>Revision Made</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Penny Giorgio</td>
<td>First Issue</td>
<td>February 2006</td>
</tr>
<tr>
<td>2</td>
<td>Chris Buxey</td>
<td>Revision</td>
<td>November 2011</td>
</tr>
<tr>
<td>3</td>
<td>Chris Buxey</td>
<td>Revision</td>
<td>March 2016</td>
</tr>
<tr>
<td>4</td>
<td>Chris Buxey</td>
<td>Revision</td>
<td>October 2018</td>
</tr>
</tbody>
</table>

Approval History

Committee Sign Off

<table>
<thead>
<tr>
<th>Version</th>
<th>Committee Name</th>
<th>Date of Sign Off</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Radiation Protection Committee</td>
<td>September 2016</td>
</tr>
<tr>
<td>4</td>
<td>Radiation Protection Committee</td>
<td>October 2018</td>
</tr>
</tbody>
</table>
Introduction

1.1 Purpose

1.1.1 The aim of this document is to outline the elements of good laser practice as it applies to all lasers and their use in the University.

1.2 Scope

1.2.1 This policy applies to staff, students, contractors and visitors who are working directly with lasers or who are carrying out any laser or non-laser work in a laser laboratory.

This document is not designed to replace guidance contained in the European Standard EN 60825-1:2014 *Safety of laser products*.

1.3 Equality Analysis

1.3.1 Consideration is given to the protected characteristics of all people groups identified in the Equality Act 2010. The protected characteristics are gender, age, race, disability, sexual orientation, religion/belief, pregnancy and maternity, and marriage/civil partnership.

Where necessary and practicable, reasonable adjustments will be made to ensure that training, information and working practice are safe and accessible.

1.4 Definitions

1.4.1 A Laser is defined as;

- Any device which can be made to produce or amplify electromagnetic radiation in the wavelength range from 180 nm to 1 mm primarily by the process of controlled stimulated emission.

1.4.2 A Laser Laboratory is defined as;

- Any laboratory that contains at least one laser of Class 1M, 2M, 3R, 3B or 4 where the laser has not been rendered Class 1 via engineering during normal operation.

1.4.3 A Laser Controlled Area is defined as;

- Any Laser Laboratory containing at least one laser of Class 3B or 4 where the laser has not been rendered Class 1 via engineering during normal operation.

1.4.4 A Laser Worker is defined as;

- Any member of staff, student or visitor who has completed the University of Surrey’s *Safe Use of Lasers* course and works in a Laser Laboratory (as defined in 1.4.2) either full or part time.

1.4.5 The following abbreviations are used in this policy;

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLSO</td>
<td>Co-ordinating Laser Safety Officer</td>
</tr>
<tr>
<td>DLSO</td>
<td>Departmental Laser Safety Officer</td>
</tr>
</tbody>
</table>
1.5 **Legislative context**

1.5.1 This policy complies with the requirements of the Health and Safety at Work Act 1974, the European Standard *Safety of laser products* (EN 60825-1:2014) and the Control of Artificial Optical Radiation at Work Regulations 2010. This policy also complies with the requirements of The Personal Protective Equipment at Work Regulations 1992 and the European Standard *Personal eye-protection equipment. Filters and eye-protectors against laser radiation (laser eye-protectors)* (EN 207:2017).

1.6 **Health & Safety Implications**

1.6.1 This Code of Practice forms part of the Health and Safety Policy.

2 **Code of Practice**

2.1 **Principles**

2.1.1 **Laser Hazards**

Lasers present a non-ionising radiation hazard and can cause damage to the eyes and skin. The use of lasers can also present a range of additional significant hazards, including fire hazards.

Lasers produce electromagnetic radiation that is coherent, monochromatic and has low angular divergence, and this laser “light” can cause damage to the eye or burns to the skin and can also present a fire or explosion hazard. The magnitude of the damage is dependent on the power output of the laser which also determines the classification of the laser. Further information of classification of lasers and the optical and biological effects of lasers is given in the appendices of this Policy.

The direct hazard of laser radiation is not the only risk associated with lasers. These are complex pieces of equipment that for instance can require a high voltage supply, can use highly toxic chemicals as the lasing medium, may be supplied with specialist gases and may need cooling. These supplies and the complex connections and processes involved introduce significant non-beam hazards, including mechanical and electrical hazards.

As indicated above, the beam and non-beam hazards of lasers have long been known and are well understood and controls exist to mitigate the risks involved. As a starting principle, the University expects all laser work to be carried out to meet a Class 1 classification wherever reasonably practicable. Where work is carried out at a classification other than Class 1, a written robust justification must exist.
2.1.2 Controls of Laser Hazards

This Code of Practice sets out the standards that must be achieved for all lasers. It lists:

- The responsibilities of Laser Workers, the Laser Supervisor (LS), Departmental Laser Safety Officers (DLSO) and the Co-ordinating Laser Safety Officer (CLSO).

- The documentation required and compulsory training available in order to get started as a laser user.

- The registration requirements for people and equipment.

- Risk assessment methodology for laser hazards is provided.

The appendices also include:

- The main implications of the laser standards and details of the laser classes.

- The contingency plans to be used in the event of an accident

- A brief summary of the biological effects of laser radiation.

Examples of laser accidents at other universities. These are included as illustrative examples of what can go wrong when people do not follow the correct procedures.

2.2 Procedures

2.2.1 Roles and Responsibilities

The Vice-Chancellor has overall responsibility for ensuring the effective management of all health and safety matters including laser safety in the University.

Radiation Protection Adviser (RPA)

The University’s Radiation Protection Adviser provides expert advice and consultation on the use of lasers in the University. The role of RPA is contracted to an external provider. Normally only the Head of Faculty, Coordinating Laser Safety Officer or a member of the University’s health and safety team would be in contact with the RPA when additional expertise is required. If normal laser users require discussion with the RPA, this must be arranged via the CLSO.

Head of Faculty or Department

The Head of Department where lasers are used must appoint, in consultation with the Co-ordinating Laser Safety Officer:

- a Laser Supervisor for each Laser Suite, and

- a Departmental Laser Safety Officer for the department if the department has three or more lasers (excluding lasers listed as exceptions in 3.3.1).

Coordinating Laser Safety Officer (CLSO)

The Coordinating Laser Safety Officer has a number of duties as outlined below.
- Approve the purchase and installation of new lasers
- Ban or restrict the use of any lasers that they deem inappropriate or unsuitable to the task
- Ensure that there is a sufficiently robust justification if Class 3B or Class 4 lasers are to be used without a Class 1 enclosure
- Provide guidance on completing registration forms and risk assessments
- Assist Laser Supervisors in drawing up SOPs (if assistance is required)
- Provide advice on laser safety issues (inc. appropriate labelling standards)
- Keep an up-to-date record of all lasers in the university (via forms LR1 & LR2)
- Keep an up to date record of all laser users (via LR3(P) forms)
- Provide regular laser safety training courses for new laser workers
- Organise refresher training for existing or returning laser workers
- Carry out yearly inspections of all university laser laboratories
- Review this Code of Practice document in line with the review date shown on page 1 of this document (or sooner if there are significant changes to legislation)
- Carry out a timely investigation into any laser-related Health & Safety incidents that are reported (working in conjunction with Faculty Health and Safety Advisers if general incident investigation is not part of the CLSO’s normal duties)

Departmental Laser Safety Officers (DLSO)

The DLSO supports the Head of Department and the CLSO by ensuring that this Code of Practice is implemented within their Department. The DLSO’s duties are outlined below.

- Understand the requirements of, and ensure compliance in their Department with this Policy.
- Keep the CLSO up to date with planned laser procurement or significant changes to laser laboratories in their department.
- Ensure that new laser workers are registered with the CLSO before they begin work
- Provide advice on completing LR1, LR2, LR3(P), LRA1 & LRA2 forms.
- Monitor the provision and use of laser safety goggles (when appropriate) by all people working with Class 3B and Class 4 lasers where the beam is not totally enclosed
- Ensure that undergraduates working with lasers are using the minimum power laser practicable and follow a written scheme of supervised work
• If they do not feel able to provide a full answer to an enquiry from a laser worker, they should refer the laser worker’s question to the CLSO

• Report any laser-related Health & Safety incidents that they are aware of to the CLSO and to the University via the normal incident reporting channels

Note that the CLSO will carry out the duties of the DLSO in Departments where there are less than three lasers.

Laser Supervisor (LS)

The Laser Supervisor should ideally be a Research Supervisor or Principle Investigator for the laser laboratory. The health and safety management of individual research projects is normally delegated to the LS who have a responsibility to ensure that all work is covered by risk assessments and where appropriate by written protocols. They should also ensure that their laser workers are effectively trained in the operating techniques required and that inexperienced members of staff are adequately supervised.

• The procurement of new lasers must be advised to the CLSO with full justification for requirement of new laser, and requirement for that class of laser. This must be accompanied by a completed LR1 or LR2 form and prior risk assessment for the intended use (see Appendix 2 for guidance). Only once the CLSO has approved the procurement can the laser be purchased.

• Laser Supervisors must register all their lasers (excluding lasers listed as exceptions in 3.3.1) with the CLSO who must update their records at the point of registration. The CLSO will store the records of registered lasers centrally. Registration is done using either the LR1 form (Appendix 8) or the LR2 form (Appendix 9), dependant on class.

• The Laser Supervisor must ensure that risk assessments and SOPs exist for all laser activities.

• The disposal of any laser when no longer required must be made in consultation with the DLSO (or CLSO) and the University Waste Administrator. The CLSO should update his register of lasers to record the disposal. Any lasers that are disposed of should be put beyond use and disposed of as electronic waste. If the lasing medium presents a hazard then it should be disposed of separately in the appropriate manner.

• Report any laser-related Health & Safety incidents that they are aware of or that they experience to the CLSO and to the University via the normal incident reporting channels

Laser Workers

Laser Workers have responsibility for their own safety and that of others who may be affected by their acts or omissions.

• Students involved in project work and working with Class 1M, 2M, 3R, 3B or 4 lasers (that have not been modified to be Class 1 via engineering) will be treated as laser workers and should be trained and registered as such. They should also be given close supervision if working with high-powered lasers.

• They must observe this Policy, any risk assessments or SOPs applicable to the lasers that will be used, and follow the guidance of supervisors and the DLSO or CLSO.
- Users should not leave a laser experiment running unattended unless a risk assessment has established that it is safe to do so.

- When performing open beam working with Class 3B or 4 lasers and there is the possibility of stray laser beams that could damage the eyes, the appropriate laser goggles must be worn.

- Report any laser-related Health & Safety incidents that they are aware of or that they experience to the CLSO and to the University via the normal incident reporting channels.

2.2.2 Laser Equipment Registration

All lasers, other than lasers listed as exceptions in 3.3.1, must be registered with the Co-ordinating Laser Safety Officer and used in accordance with this Code of Practice. All registered lasers and their use must be risk assessed by the Laser Supervisor in line with the guidance contained in this document. All risk assessments must be checked against the requirements of European Standard EN 60825 as outlined in Appendix 5.

2.2.3 Training

Before any work with lasers, all potential laser workers must;

- Attend the University of Surrey’s Safe Use of Lasers course.

- Complete a LR3(P) Laser Worker registration form and submit it to the CLSO at the end of the above course.

Registration will take place automatically for all laser workers who complete the actions listed above.

Additionally new laser workers must receive appropriate instruction and guidance from their Laser Supervisor regarding the specific laser equipment that they will be using. They must also have confirmed with their Laser Supervisor that they have understood the contents of this Policy and other written guidance given to them.

2.2.4 Refresher Training

Existing registered laser workers are required to attend the Safe Use of Lasers course to have their training refreshed if they are working with lasers or planning to work with lasers in the immediate future and;

- It has been over three years since the last time they attended the course.

- They have not carried out any laser work at all for a period of 6 months or greater.

2.2.5 Laser Safety Information Folder

Each laser laboratory must include a Laser Safety Information Folder. This should include laser equipment registration documents, copies of the relevant risk assessments and the ocular accident contingency plans for the laboratory. A detailed description of the required contents of this folder is given in Appendix 3.

Alternatively, if a department stores all safety information electronically in a universally accessible system (e.g. an intranet page, a Share Point site, Academican,
etc), then this is an acceptable alternative provided that:

- There is a physical indication in the laboratory that this is the case and instructions on how to access the information.

- The information is readily accessible to laser workers in the laser laboratory, the DLSO and the CLSO, especially during annual inspections.

Electronic copies of the relevant documents stored on a personal file store or shared drive with limited access are not deemed acceptable electronic storage methods.

2.2.6 Signage and Operating Instructions

All lasers must be labelled appropriately as detailed European Standard EN 60825-1:2-14. See Appendix 12 for further details.

Operating instructions/procedures (SOPs) must be drawn up and implemented for the safe operation of all lasers (excluding lasers listed as exceptions in 3.3.1).

2.2.7 Class 1 as a Default

Class 1 lasers are laser systems where the laser light emissions accessible to the user never exceed the Maximum Permissible Exposure (MPE) for that wavelength of laser. Systems may be Class 1 either by operating at very low power or by having a higher optical power output entirely contained during normal use.

The University expects that all new laser processes that incorporate a Class 3B or Class 4 laser will be:

- Engineered to meet Class 1 standard by default (if not already supplied in a Class 1 enclosure by the manufacturer), or;

- Include a detailed and robust justification for open-beam work as part of their risk assessment that explains why meeting Class 1 standards is not reasonably practicable for this process.

It should be noted that the need for repeated or convenient access to the laser beam is not recognised as a robust justification for open beam work.

2.2.8 Laser Controls

Where justification for open beam work exists, all lasers (excluding lasers listed as exceptions in 3.3.1) used in the university must meet the minimum standards of control listed below.

- **Class 1M**
 - Prevent direct viewing with magnifying optics.

- **Class 2M**
 - Warn users not to stare into beam
 - Prevent direct viewing with magnifying optics

- **Class 3R**
- Prevent direct eye exposure to beam

Class 3B

- May only be used in a Laser Controlled Area
- Prevent direct eye exposure to beam
- Use only in a laboratory where access is restricted to laser workers and there are no means for the light to unintentionally leave the laboratory
- Connect laser to a room interlock system (either via shutter box or integral interlock connection) with external laser emission warning indicator, e.g. a ‘Laser On’ warning light box next to the door
- Include a key controlled activation system
- A visual and/or audible warning when there is active laser emission, e.g. an ‘Emission’ LED on the laser power supply
 - Modifications to this warning should be considered if any laser workers are sight or hearing impaired.
- A clearly defined beam path below eye level, shielded where necessary, without any unnecessary reflective components and a terminating beam stop.
 - If the laser laboratory users include laser workers for whom ‘eye level’ is significantly different from the average (e.g. wheelchair users), special consideration must be given to the beam path.
- Laser goggles for all users in the laser laboratory.

Class 4

- All requirements for Class 3B lasers, plus;
- Prevent direct skin exposure to beam

A more detailed description of these controls can be found in Appendix 13.

2.2.9 Laser Laboratory

A Laser Laboratory, as defined in 1.4.2, is a room or laboratory that must have the following features:

- A laser safety folder
- Controlled entry, such that only authorised laser workers can gain access (e.g. restricted swipe access)
- The laser supervisor for the laboratory identified on the laboratory door

Non-laser workers who wish to enter or work in a Laser Laboratory must either become laser workers or be escorted at all times by an existing laser worker. Exceptions are made for visiting laser equipment service engineers who have provided a sufficient risk assessment for their work.
2.2.10 Laser Controlled Area

A Laser Controlled Area, as defined in 1.4.3, is a room or laboratory that must have the following features:

- All the requirements for a Laser Laboratory, plus;
- The highest classification of laser that is present in the laboratory identified on the laboratory door
- An external warning indicator to show whether there is currently a laser hazard (e.g. a wall mounted warning light)
- An indication of the power and wavelengths of laser light present in the laboratory so that users can decide which goggles are required.
- All windows (including glass door panels) blocked in such a way that no laser light can escape the laboratory. If the laboratory contains a Class 4 laser then special consideration needs to be given to the blocking material to ensure it is suitable for the task.
- A room interlock system, so if the door is unexpectedly opened during laser operation, laser emission will cease. This can be achieved via either a direct connection to an interlock built into the laser power supply by the manufacturer, or by an external shutter. If an external shutter is used then it must be securely fixed in front of the laser such that when the shutter is closed there is no reasonable chance of access to laser emission.

Additionally, a Laser Controlled Area may have;

An interlock override that allows authorised laser workers to enter and leave the laboratory without tripping the room interlock system. Overrides must not be permanent and must reset after a short time delay. The time delay must not exceed 30 seconds and should be of a duration appropriate to the time it takes to enter and exit the laboratory.

2.2.11 Laser Goggles

Laser safety goggles of the appropriate type must be provided by the Laser Supervisor, maintained in good condition, stored appropriately and worn as required by risk assessment, SOPs and local rules by all laser workers working with Class 3B and 4 lasers where the beam is not totally enclosed.

If a laser worker in the laser laboratory is physically unable to wear laser goggles then the laser equipment must instead be modified to become Class 1, where this is not cost prohibitive.

- Laser goggles that can be worn over corrective lenses are readily available, so the wearing of corrective lenses is not deemed a sufficient reason to be physically unable to wear laser goggles.
- Mild discomfort, ‘inconvenience’ or similar are also not deemed sufficient reasons to be physically unable to wear laser goggles.

2.2.12 Undergraduates

Where ever it is reasonably possible, undergraduates will be limited to the use of Class 1 or Class 2 lasers.
Undergraduates that are required to work with lasers (excluding lasers listed as exceptions in 3.3.1) should become registered laser workers. Their work should involve the lowest power laser practicable and they are required to follow a written scheme of supervised work.

If there is a need to demonstrate a laser experiment to a group of students in a classroom or lecture theatre then Class 2 or visible Class 3R lasers may be used, providing that:

- The lecturer, technician or demonstrator operating the laser is a trained laser worker.
- The demonstration is ‘portable’ and not permanently installed in the lecture theatre.
- A suitable risk assessment is in place.
- The students are not unnecessarily exposed to the beam.

Under these specific circumstances the lecture theatre or classroom is **not** considered a laser laboratory and the usual requirements are waived.

2.2.13 Laser Pointers

Laser pointers that are being used for the manufacturers intended purposes as presentation tools in lecture theatres, classrooms and elsewhere on campus must not exceed Class 2 (1mw, 400nm - 700). Breaching this classification limit or using laser pointers in a dangerous manner other than for their intended purpose will be considered a disciplinary offence by the University.

Where there is a compelling educational need to break this classification limit while using laser pointers, (e.g. designating stars during a live astronomy lecture) there needs to be a robust written justification and assessment of the risks involved.

2.2.14 Entering Laser Laboratories for Other Purposes

Written instructions must be issued to staff or contractors (and to their managers) who have approval to enter a laser suite for specific purposes such as cleaning, waste collection and maintenance or servicing work.

2.2.15 Visiting Engineers

When engineers come into the University to install, maintain or repair any lasers, it is essential that the Laser Supervisor obtain a copy of their risk assessment, have a protocol for hand over procedure and exclude all other workers from the area unless they are involved in the maintenance procedure.

It is essential that Laser Supervisors (and DLSOs where applicable) consider whether maintenance work temporarily changes the maximum class of laser present in the laboratory (e.g. the removal of casing turning a previously exempt Class 1 laser into a Class 4 laser) and take the necessary precautions.

Remember that as the employer the University is responsible for handling any incident or accident involving an engineer if one should occur.

2.2.16 Using Class 3B and 4 Lasers Outside a Laser Controlled Area
Class 3B and 4 laser will **not** be used outside a Laser Controlled Area, unless specific written permission is given by the CLSO.

An exception will be made for;

- Class 3B lasers manufactured and sold as entertainment display lasers, and used in an unmodified form, providing that;
- They are not used for ‘crowd scanning’ effects

Their beam paths are terminated in a safe manner, so that they do not enter the windows of buildings on campus, leave the campus and enter public spaces or intersect with aircraft flight paths.

3 Governance Requirements

3.1 Responsibility

3.1.1 This Policy is monitored and regularly reviewed by the Coordinating Laser Safety Officer.

3.2 Implementation / Communication Plan

3.2.1 The Policy is communicated to all staff, students, contractors and visitors involved with lasers or laser laboratories.

3.3 Exceptions to this Code of Practice

3.3.1 This policy does not apply to;

- Class 1 laser devices that are classified by the manufacturer as Class 1, sold as Class 1 and used as the manufacturer intended without modification.
- Class 1C laser devices that are classified by the manufacturer as Class 1C, sold as Class 1C and used as the manufacturer intended without modification, in either halls of residence or businesses on campus.
 - Class 1C laser devices used for research purposes are **not** exempt.
- Class 2 laser devices that are classified by the manufacturer as Class 2, sold as Class 2 and used as the manufacturer intended without modification.
- Point-of-sale checkout scanners in shop on campus that are installed and used as intended by the manufacturer without modification, and which may be classified as 1M or 2M.

3.4 Supporting documentation

3.4.1 See Health & Safety website.
Appendix 1 – Getting Started

This appendix is intended as a summary of how a member of University of Surrey staff would begin the process of purchasing new laser equipment and establishing a new laser laboratory. It also covers the process for registration as a laser worker.

Procurement of New Lasers

Any worker wishing to purchase, hire, borrow or import a new laser to the University must notify the CLSO in advance. This notification must be accompanied by a laser registration form (either LR1 or LR2), a prior risk assessment (form LRA1) for the intended use and location and both the justification of the requirement for a new laser and that class of laser. The CLSO can restrict the use of a laser that they deem unsuitable or inappropriate to the task, so it is advisable to discuss the new laser with the CLSO before it arrives on site.

Laser Safety Training and Becoming a Laser Worker

All people intending to work in a Laser Laboratory (as defined in 1.4.2) must register as a Laser Worker. To do this they must complete the Laser Worker registration form (see Appendix 10) and attend the University of Surrey’s Safe use of lasers course, which is delivered by the CLSO. Details on how to enrol on this course can be found on the intranet here.

This training should be repeated every three years particularly for employees with responsibility for supervising and training others. Records of training are kept by the CLSO and the Health & Safety office, and it is advised that departments keep their own records as well. Provision of a training session is given by the CLSO on behalf of the Health and Safety Office once a month to cover safe working practice, laser classification, AELs, MPEs and Risk Assessment.

Additional training on the specific laser(s) that they are using should then be provided by the LS or an appropriately qualified person appointed by the LS. The LS should also ensure that the new user has read the relevant risk assessments, received copies of any relevant schemes of work and above all, has an appropriate level of competency for their proposed laser work.

Registration of Lasers

All lasers, other than lasers listed as exceptions in 3.3.1, need to be registered with the CLSO. Form LR1 should be used to register lasers of Classes 1M, 2M and 3R (see Appendix 8) and form LR2 for Classes 3B and 4 (see Appendix 9). Note that multiple lasers may be registered on the LR2 form as long as they are all included in the same experiment/application.

The CLSO will then check the registered lasers to see that they are labelled in accordance with the guidance notes, operated in accordance with the guidance notes and will ensure that a suitable and sufficient risk assessment and SOP has been drawn up (usually by the LS) to cover their use.

SOPs are essential if you are using Class 3B or Class 4 lasers and the beam paths are not totally enclosed. They need to spell out the precautions that will be taken to ensure containment of the laser beam inside the experimental area and protection of the operatives.

Eye Examinations

Initial and routine eye examinations for laser workers are not required. However if a new laser worker has concerns about their eyesight this should be discussed with the Occupational Health Department.

Protective Equipment

If you are working with Class 3B or Class 4 lasers and the laser beam is not totally enclosed then you will probably need to wear laser safety goggles. These may also be considered necessary for work with some Class 3R lasers at invisible wavelengths, but this is dependant on the application.
It is important that goggles are worn which have the correct optical density for the laser you are using. As a general rule alignment goggles – that still allow the user to see where the beam is – are recommended for visible lasers whereas high optical density goggles should always be worn when working with invisible lasers. The goggles chosen need to conform to the appropriate standard: BS EN 207:2009 for total eye protection, and BS EN 208:2009 for alignment goggles.

If working with Class 4 lasers, and some Class 3B devices operating at UV wavelengths, you will have to consider the possible need for skin protection.

Undergraduate Work

If reasonably practicable, undergraduate work should be restricted to Class 1 or Class 2 experimental work, and visible 3R lasers for class/lecture demos. Sometimes it is possible to downgrade a higher powered laser by the use of neutral density filters or beam expanders. It is important to introduce students to good safety practice; a written scheme of work/protocol should be drawn up and posted in the laboratory. In addition, clear written instructions should be provided for each student experiment.

Students involved in project work and working with Class 3R, 3B or Class 4 lasers or modified Class 1M or 2M lasers will be treated as laser workers and should be registered as such. They should also be given close supervision if working with high-powered lasers.

Labelling of Lasers

Inherently safe lasers in Class 1 do not need warning labels but lasers which are Class 1 by engineering design and contain an embedded laser of higher power should be labelled as Class 1 and should also be labelled with the details of embedded laser and under what circumstances a user may be exposed to the beam, e.g. “Class 3B risk of exposure if panel removed”.

All other laser products should carry the appropriate warning labels in accordance with BS EN 60825-1. Recently manufactured lasers should all conform to this Standard. For full details of labels required see Appendix 12. Where lasers and laser systems are not adequately labelled (some American systems have very small labels that are hard to read and do not comply with the British Standard), labels should be obtained. Your CLSO and/or DLSO will advise on the correct labels.

Laboratory Design

The following considerations relate mainly to the use of Class 3B and 4 lasers but some may be appropriate for lower powered devices as well.

If practicable the laser laboratory should have a high level of illumination that will minimise pupil size and reduce the risk of stray laser light reaching the retina. Windows should be kept to a minimum and be protected by blinds or permanent coverings. These should be non-reflective and may need to be fireproof and/or composed of specially manufactured materials where Class 4 lasers are used.

Walls, ceilings and fittings should be painted with a light coloured matt paint to enhance illumination and minimise specular reflections. Reflecting surfaces such as the use of glass-fronted cupboards should be avoided.

Ventilation is important especially with higher-powered lasers if cryogens are used, or if toxic fumes are produced that need to be extracted and in this case it is important that the extraction is very close to the source. Facilities may also be needed for the handling of toxic chemicals that are associated with some dye lasers.

The laboratory should be equipped with appropriate fire fighting equipment.

Electrical supplies, switch and control gear should be sited in order to:-

- enable the laser to be shut down by a person standing next to the laser;
- enable the laser to be made safe in an emergency from outside the laser area;
- prevent accidental firing of a laser;
- provide an indication of the state of readiness of the laser;
• enable personnel to stand in a safe place;
• provide sufficient and adequate power supplies for all ancillary equipment and apparatus so that the use of trailing leads is minimised;
• if the laser is liquid cooled, situated in a position where they will not be effected by an accidental coolant leak.

Experimental set-up
Before starting to use your laser there are a number of basic risk reduction measures that should be considered.

• Can a lower powered laser be used?
• Can output power of laser be restricted if full power is not needed?
• Can intra-beam viewing be prevented by engineering design?
• Can laser be used in a screened off area - limiting potential for others to be affected?
• Can work be carried out in a total enclosure?
• Beam paths should be as short as possible, optical reflections should be minimised and the beam terminated with an energy absorbing non-reflective beam stop (unless the purpose of the beam is to be absorbed by another material or sample).
• Laser should be securely fixed to avoid displacement and unintended beam paths.
• If practicable align powerful lasers with low-power devices that are safe for accidental viewing, or reduce the power of the laser by turning it down or introducing neutral density filters. The aim should be to get the output power <1mw (N.B. some kW lasers will only be able to be turned down to a few watts). Alternatively remote viewing techniques can be used.
• Eliminate the chance of stray reflections - use coated optical components or shroud them so that only the intended beam can be refracted or reflected. Keep the optical bench free from clutter and remove jewellery, wrist watches etc.
• And don’t forget to have the laser pointing away from the laboratory entrance!

Once your new laser set-up is complete the CLSO will inspect it. If he is satisfied that you have met all the safety requirements he will sign your LR1/LR2 form and you may begin work. If he is not satisfied then you may be required to make adjustments before work can begin.

Paperwork
All the paperwork pertaining to the laboratory should be kept in a Laser Safety Information folder. See Appendix 3 for details on the folder and required paperwork.
Appendix 2 – Laser Risk Assessment

This appendix deals with writing risk assessments for lasers and laser processes. It includes a risk assessment template and guidance notes.

Why do I have to carry out a risk assessment?

It is important that an adequate risk assessment is carried out of every laser installation and associated equipment in each laser suite. Adequate risk assessments in the workplace are a requirement of the Management of Health and Safety at Work Regulations, plus written evidence of a risk assessment will be expected by the HSE when they carry out an inspection.

When do I have to carry out a risk assessment?

If you are using a pre-existing laser set-up to perform a well documented process with its own written standard operating procedure (SOP) then you will probably not be required to carry out a risk assessment as one will already exist. If this is the case then please make sure you have read and understood it before undertaking any work.

However, if any of the following apply then you will need to carry out a risk assessment.

- You are using a new laser/laser set-up
- You are performing a new experiment/laser process
- Neither of the above applies, but no risk assessment currently exists.

How do I carry out a risk assessment?

Carrying out a risk assessment will involve considering all the potential significant hazards from a laser process, recording how the hazards are currently controlled, identifying the residual risks and deciding if further controls are required. A significant hazard is something that could cause an injury requiring first aid, up to hospitalisation, long term disability or even death. The laser risk assessment form (form LRA1) is provided on page 15 as a template to help you.

If the need for further controls is identified then these should be recorded on form LRA2, along with the target dates by which to implement them.

Identifying optical and non-optical hazards

The classification of the laser identifies the optical hazard and it is important that all other associated hazards are identified and dealt with. The manufacturer's safety guidance material should help in identifying most of the associated hazards. The main non-optical hazards to look out for are as follows:

- **Electrical** - high voltages and capacitors used with pulsed lasers can present a serious hazard particularly during servicing
- **Collateral radiation** - this could include x-rays, UV, RF visible and IR radiation
- **Noxious fumes** - can be released from the action of high power lasers used in materials processing and surgery
- **Hazardous substances** - substances used in dye and excimer lasers can be toxic and carcinogenic, cleaning solutions may also be hazardous
- **Cryogenic liquids** - used with high-powered lasers can present a burning hazard, possible oxygen depletion hazard and possibly an explosion hazard from over-pressure of gases in a closed system
- **Fire and explosion** - high-powered (class 4) lasers can ignite materials and even relatively low-powered lasers (>35mW) can cause explosions in combustible gases and dusts
- **Mechanical hazards** - from gas cylinders, trailing cables and water hoses, cuts from sharp objects, handling difficulties with large work pieces, automated mechanical or robotics system, etc
- **Noise** - from discharging capacitor banks, from some pulsed lasers and from some air-cooled lasers
Other hazards may also arise from the environment in which the laser is used - adverse temperature and humidity, low light-level conditions, mechanical shock and vibration, interruptions to the power supply, computer software problems and ergonomic problems caused by poor design of the layout of equipment. Could cleaners inadvertently disturb equipment? Is unsupervised access allowed to the laboratory? The people who may be at risk also need to be identified. These may include cleaning, service personnel, other contractors, visitors and the public as well as trained operatives and other laboratory users.

How serious is the hazard?

When assessing the severity of a hazard is, it can be useful to use the scale detailed below of what could be the outcome if a person was exposed to the hazard.

- **Trivial** – May possibly require first aid
- **Slight** – Likely to require first aid.
- **Moderate** – Injury or temporary impairment that could result in either medical treatment being required or a hospital visit as an outpatient.
- **Severe** – Major injury that could result in lost time from work or a longer term hospital visit.
- **Very Severe** – Long term disability or Fatality

Any hazard that you would classify as non-trivial should be listed as a significant hazard on the LR1 form. Note that all hazards should be listed, even if control measures currently exist.

Which control measures?

In dealing with any hazard one should look first to eliminating the hazard if reasonably practicable and then to controlling the hazard by one of the methods listed below. They are listed in order of preference, so eliminating the hazard should always be attempted first, then, then engineering controls should be attempted next, and administrative controls should be attempted before resorting to personal protective equipment (PPE). This is sometimes referred to as the ‘hierarchy of control measures’.

- **Eliminate** – complete removal of the hazard (if practicable).
- **Engineering controls** - features incorporated by the manufacturer or added by the user to prevent or minimise human access to hazardous levels of laser radiation. They include: beam enclosures, beam tubes, protective barriers and guards, interlocked access panels etc.
- **Administrative controls** - include display of warning signs, local rules, schemes of work and written procedures.
- **Personal protective equipment** - PROTECTIVE EYEWEAR SHOULD BE THE LAST RESORT and, where unavoidable, should be appropriate for the power and wavelength of the laser used and the wavelength and optical density (or scale number for CE marked eyewear) should be clearly marked. For work with visible lasers, alignment goggles are recommended that permit the safe accidental viewing of the laser light. High OD goggles should always be used when working with invisible laser beams. Visible light transmission and the ability to see warning lights are important considerations when choosing safety eyewear. If protective clothing is needed it may need to be fireproof.

The laser beam controls normally required are indicated by the laser classification. They should be implemented unless a risk assessment justifying the adoption of alternative protective control measures indicates otherwise. A summary of protective control measures is given in Appendix 13. Whenever deviating from the norm it is important to record your justification of the control measures adopted.

What about residual risk?

Residual risk measures the likelihood and potential severity of harm associated with a hazard after control measures are put in place. They can be measured on the scale detailed below.
Medium Risk – More controls may be required to adequately control the hazard
High Risk – Consult Health and Safety Adviser for further advice.
(see the ‘What comes after risk assessment?’ section later).

Risk assessment for operation outside normal use

Normally the risk assessment will describe the hazards and controls in place during normal operation. However these hazards may change outside of normal operation. For example a beam that is normally enclosed may be open during maintenance, presenting a greater hazard than normal.

If you are carrying out an activity with the laser or laser process that falls outside of normal operation then you will need a new risk assessment for this stage of the laser’s ‘life cycle’. The life cycle can include, but is not limited to, the following stages: Installation, Commissioning, Alignment, Normal Operation, Decommissioning and Disposal.

Guidance Notes for Completing the LRA1 Form

Assessment Number – The first assessment will always be 001. If you make further risk assessments for the same system at a later date then these will be 002, 003 and so on.

Assessed By – Your name goes here.

Life Cycle – Which part of the laser’s ‘life cycle’ is this risk assessment for? E.g. installation, operation, maintenance, decommissioning.

Assessment/Review Date – What date was the assessment written, and what date will it be reviewed to ensure that all the findings still apply? The standard review period is one year.

Activity/Laser Suite Assessed – What is the title of the project or name of the laser suite being assessed?

Location – What is the university room number where this activity will take place?

Significant Hazards – List all the identified significant hazards here.

People at Risk – Who is at risk from each hazard?

Existing Controls – What control measures exist to mitigate these hazards?

Are These Controls Sufficient – Do the currently existing controls ensure a low risk from the hazards?

What is the Residual Risk – After the control measures have been applied, is the remaining risk for each hazard low, medium or high?
Action Required?
If the residual risk is anything other than low, then additional action will be required (see ‘What comes after risk assessment?’ below).

Worked example
An example of a completed LRA1 form can be found on page 19. This is shown for reference and should *not* be taken as a definitive example of all the risks involved in a laser process. The ones listed are just examples!

What comes after the risk assessment?
Once you have completed the risk assessment you may or may not have identified the need for some additional action. If any of your hazards have a medium or high residual risk then you will need to complete form LRA2, which can be found on page 16.

Guidance Notes for Completing the LRA2 Form

Significant Hazards – List each of the hazards that were identified as having medium of high risk on form LRA1.

Actions Required – Identify what action is required to reduce this residual risk to ‘low’.

Assigned To – The name of the person responsible for completing the action.

Target Date – The date by which the action should be completed.

Comments – Was the action completed as planned, or where changes made to the action?

Date Completed – The date on which the action was completed.

Schemes of work
Once your risk assessment is complete then you need to make sure everyone who uses the laser/laser suite is aware of the findings. This is best achieved by producing a ‘Scheme of Work’ or ‘local rules document’. The exact format and contents of this document is up to the individual author, but it should clearly lay out all the procedures and precautions that the users should take when working with this laser, as well as basic operating instructions for the laser and experiment itself. Schemes of Work are *compulsory* for Class 3B and Class 4 lasers.

A recommended template for a Laser Scheme of Work (form LSW1) can be found on page 17, but this *format* is not compulsorily. The contents of this template are not exhaustive, but advisory. Users should edit and rewrite it as they see fit, deleting parts that are not appropriate to their specific laser process, and adding in additional information as required. The template includes guidance notes in red, caps and square brackets. These should be deleted once the user has finished editing the form. If you submit an LSW1 form with the LR2 form to the CLSO for approval and it still contains either the guidance notes or any default information that is not appropriate then you will be asked to rewrite that LSW1 form and the approval for your new laser will be delayed.

Remember that a Laser Scheme of Work should list all controls (engineering, administrative and PPE) that are in use, and all the rules and procedures that the registered users are expected to follow. There is no point in doing the risk assessment if the laser users are not aware of the results! This is why the LSW1 template contains a section at the end for the registered users to sign to say that they have read and understood the Scheme of Work.

Ongoing risk assessment
Finally, it should be noted that with the changing nature of experimental work it is important that the risk assessment is routinely reviewed. This is why form LRA1 contains the ‘Review Date’ field. Of course if significant changes are made to a laser, experimental set-up or laser suite before the review date, then a whole new risk assessment will be required as the hazards and controls are likely to have changed.
LASER RISK ASSESSMENT FORM (Form LRA1)

University of Surrey

<table>
<thead>
<tr>
<th>Assessment Number</th>
<th>Life Cycle</th>
<th>Assessment Date</th>
<th>Review Date</th>
<th>Activity/Laser Suite Assessed</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assessed By</td>
<td>Laser Class</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Significant Hazards</th>
<th>Groups of people who are at risk</th>
<th>List existing controls</th>
<th>Are these controls sufficient?</th>
<th>What is the residual risk factor from these hazards?</th>
<th>Actions Required? (Yes/No)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LASER RISK ASSESSMENT CORRECTIVE ACTION FORM (Form LRA2)
University of Surrey

<table>
<thead>
<tr>
<th>Significant Hazards</th>
<th>Actions Required</th>
<th>Assigned To</th>
<th>Target Date</th>
<th>Comments</th>
<th>Date Completed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LASER SCHEME OF WORK (Form LSW1)

This is the Laser Scheme of Work for Laboratory:

It was issued on:

It is due for review on:

The users of all lasers in this laboratory should follow the scheme of work given below.

The purpose of these laser safety procedures is to ensure no-one is exposed to laser radiation in excess of the maximum permissible levels, while at the same time allowing work to be undertaken using Class [INSERT ALL RELEVANT CLASSES] lasers. If equipment is moved or new procedures become necessary, there will be a requirement to perform a new risk-assessment and, where appropriate, changes made to the Risk Assessment document (form LRA1), Laser Registration document (form LR1/2) and this Scheme of Work (form LSW1).

1. Only registered laser workers are allowed in this laser suite unaccompanied. Non laser workers must be accompanied by a registered laser worker at all times. [DELETE IF LASER IS NOT IN DEDICATED LASER SUITE OR IF LASER IS CLASS 1 OR CLASS 2]

2. Only authorised laser workers, as detailed in the “List of Authorised Users” displayed on the door of this room / adjacent to the laser [DELETE AS APPROPRIATE] are permitted to use the lasers in this laser suite

3. All users should have read and understood the details of the LR1/LR2 form, LRA1 form and LSW1 forms associated with the lasers they are using.

4. The laser worker should sign out the interlock key for the laser required. [DELETE IF THE LASER IS NOT KEY OPERATED]

5. Prior to starting the experiment, the laser worker must affix appropriate safety notice(s) on the outside of the laser suite door. [DELETE IF NOTICES ARE PERMANENT OR NOT REQUIRED]

6. The laser worker should activate the room interlock. [DELETE IF LASER CLASS DOES NOT REQUIRE ROOM INTERLOCK]

7. Confirm that the laser to be used is securely mounted and fixed in the correct position. [DELETE OR AMEND IF NOT APPLICABLE]

8. The laser worker should check the beam path for stray objects. [DELETE IF INAPPROPRIATE OR NO ACCESS TO BEAM PATH]

9. The laser worker should confirm that the beam path enclosure is secure and external interlocks are in place. [DELETE OR AMEND IF BEAM PATH IS NOT ENCLOSED OR NO EXTERNAL INTERLOCKS ARE USED]

10. The laser power may now be powered on. It should always be powered on at the lowest possible power setting. [DELETE SECOND SENTENCE IF POWER SETTINGS ARE NOT AVAILABLE OR IF HIGHEST POWER SETTINGS ARE REQUIRED FOR START-UP]

11. Laser alignment should only be performed with the laser power at its lowest practical level / using the dedicated alignment lasers. [DELETE AS APPROPRIATE, OR DELETE]
The irradiance of the laser beam should not exceed the MPE for a Class 2 laser during alignment.

12. All optical alignments, tests for stray beams, placement of beam stops and preliminary tests should be performed with the laser set at the low irradiance described above.

13. Once alignment is complete all protective enclosures should be returned (if they have been removed).

14. Before the intensity of the laser beam is increased, the laser worker must ensure that no stray laser radiation escapes beyond the boundaries of the laser area / set-up / optical bench / application. Beam-viewers or laser-cards should be used to trace the paths of invisible laser beams.

15. Appropriate laser safety goggles must always be worn.

16. Only at this stage may the beam intensity be increased to the required level for the experiment.

17. If further optical adjustments are made, the intensity of the beam must be reduced to a safe level while these are carried out.

18. If at any time the fire alarms – or any other emergency alarm - sound then the laser worker should switch off the laser(s), remove the activation key and immediately evacuate the building in the usual way.

19. If an emergency occurs in the laser suite, follow the contingency plans on the attached sheet.

20. If an ocular accident occurs, the laser worker must follow the contingency plans on the attached sheet.

21. When the laser worker has finished with the laser it is their responsibility to shut it down and remove any warning signs from the door / deactivate interlock.

22. The laser worker should return the activation key and sign it back in.

Once you have read and understood this Scheme of Work, please fill in your details below. By signing this document you are agreeing to abide by the working practices that it describes.
WORKED EXAMPLE - LASER RISK ASSESSMENT FORM (Form LRA1) – WORKED EXAMPLE

<table>
<thead>
<tr>
<th>Assessment Number: 001</th>
<th>Life Cycle: Normal use</th>
<th>Assessment Date: April 2016</th>
<th>Activity/Laser Suite Assessed: Laser Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assessed By: John Smith</td>
<td>Laser Class: 3B</td>
<td>Review Date: April 2017</td>
<td>Location: Generic Lab 01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Significant Hazards</th>
<th>Groups of people who are at risk</th>
<th>List existing controls</th>
<th>Are these controls sufficient?</th>
<th>What is the residual risk factor from these hazards?</th>
<th>Actions Required? (Yes/No)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laser</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eye damage from laser emissions</td>
<td>Operator, other lab users</td>
<td>Laser emissions not accessible during normal use (engineering)</td>
<td>Yes</td>
<td>Low</td>
<td>No</td>
</tr>
<tr>
<td>High voltage power supply</td>
<td>Operator, other lab users</td>
<td>HV components not accessible during normal use (engineering)</td>
<td>Yes</td>
<td>Low</td>
<td>No</td>
</tr>
<tr>
<td>Beam Delivery</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eye damage from laser beam</td>
<td>Operator, lab users</td>
<td>Laser beam contained within metal tube (engineering)</td>
<td>Yes</td>
<td>Low</td>
<td>No</td>
</tr>
<tr>
<td>Laser Process</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laser heats sample, possibility of fire or fumes</td>
<td>Operator, lab users</td>
<td>Lowest practical power used as dictated in experiment SOP (admin)</td>
<td>Yes</td>
<td>Low</td>
<td>No</td>
</tr>
<tr>
<td>Environment & People</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laser beam 'escaping' through laboratory window</td>
<td>Members of the public</td>
<td>Beam contained within metal tube and protective material blocks windows (engineering)</td>
<td>Yes</td>
<td>Low</td>
<td>No</td>
</tr>
<tr>
<td>Exposure of cleaners or unauthorised/unexpected laboratory visitors</td>
<td>Cleaners, members of the public, other staff members</td>
<td>Swipe card system and laser hazard warning light prevent/discourage entry. Interlock ensures the beam is blocked if lab door is unexpectedly opened (engineering)</td>
<td>Yes</td>
<td>Low</td>
<td>No</td>
</tr>
</tbody>
</table>
Appendix 3 – Laser Safety Information Folder

Every laser laboratory must include a Laser Safety Information Folder. This may either be a physical copy, or the information may be stored electronically.

If a physical copy is provided then it must be easily accessible to people in the laser laboratory. The folder should preferably be a standard A4 sized ring-bind folder labelled as ‘Laser Safety Information’ or similar. It is recommended that the folder is red or another high visibility colour.

The folder should be divided into eight sections, labelled as follows. It is also acceptable for these sections to be placed within a general laboratory health and safety folder, so long as they are still clearly labelled and the folder is easily identifiable as containing the laser safety information.

1. **Scheme of Work** – Form LSW1 (see Appendix 2).
2. **Laser Operating Instructions** – Copies of any standard operating procedures, instructions or manuals that exist for the lasers in the laboratory.
3. **Laser Risk Assessments** – Copies of forms LRA1 and LRA2 (if appropriate) for all lasers in the laboratory (see Appendix 2).
4. **LR1 Forms** – Copies of the LR1 form for all lasers in the laboratory (see Appendix 8).
5. **LR2 Forms** – Copies of the LR2 form for all lasers in the laboratory (see Appendix 9).
6. **Contingency Plans** – A copy of the Ocular Accident Contingency Plans (see Appendix 4).
7. **Copy of Laser COP Document** – A copy of this Laser Code of Practice document.
8. **Laser Survey Form** – A copy of the Laser Survey Form (see Appendix 14).

Please note that the folder should contain *fully completed* copies of all the forms specified. Checking the contents of the safety folder will always be part of every laser safety inspection.

Alternatively, if a department stores all safety information electronically in a universally accessible system (e.g. an intranet page, a Share Point site, Academican, etc), then all the forms listed above may instead be stored electronically (although it is still advisable to have an easily accessible physical copy of the Ocular Accident Contingency Plans. Remember also that there needs to be a physical indication in the laboratory that the documents are stored electronically and instructions on how to access the information.

In the case of electronic storage the information must be readily accessible to laser workers in the laser laboratory, as well as the DLSO and the CLSO, especially during annual inspections. This means that electronic copies of the relevant documents stored on a personal file store or shared drive with limited access are not deemed acceptable electronic storage methods.
Appendix 4 – Ocular Accident Contingency Plans

Any laser incident (i.e. an accident or near-miss) must be reported to the Coordinating Laser Safety Officer and the Faculty Health & Safety Adviser. A University Incident Report web form must be completed at www.surrey.ac.uk/reportnow which will provide information to the Central Health & Safety Office.

For Immediate Ocular Injury Accidents

Following an incident/accident where eye injury is immediately apparent, the casualty should be sat in an upright position, rather than laying down, to avoid debris settling on the retina. If the injuries are severe enough to induce shock in the casualty, then normal First Aid procedures for the treatment of shock override this consideration.

Any equipment and laser systems involved must be isolated pending a full investigation by the CLSO. **DO NOT CONTINUE WORKING** with the system that caused the accident.

If there is injury or suspected injury to the eye, the injured person should see a specialist ophthalmologist at the Royal Surrey County Hospital as soon as possible, and definitely within 24 hours. The injured person should not drive and should be accompanied by a colleague or who is not also injured or a member of security, or transported in an ambulance if necessary. If an ophthalmologist is not available at the RSCH, the injured person should be sent within 24 hours to Moorfields Eye Hospital where the medics are experienced in dealing with laser eye injuries.

The Coordinating Laser Safety Officer must report any injury to the Occupational Health Department to ensure follow up for the injured person.

Details of the laser beam should accompany the casualty to hospital. These should include type of laser system, classification, wavelength, power/energy per pulse and pulse duration. You should have a copy of this page readily available in your laser laboratory in case of an accident. The details of the laser can be recorded below so the injured person or his/her colleague can take this page with them.

Royal Surrey County Hospital
Accident and Emergency Department open 24 hours a day
Address: Egerton Road, Guildford, GU2 7XX
Telephone Number: 01483 571122

Moorfields Eye Hospital
Accident and Emergency Department open 24 hours a day
Address: 162 City Road, London, EC1V 2PD
Telephone: 020 7253 4696

Nearest Underground Station: Old Street, Northen Line

Laser Details

<table>
<thead>
<tr>
<th>Laser System:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Classification:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wavelength:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Power / Energy per Pulse:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pulse Duration:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

It is advisable to have one pre-completed copy of this plan for every laser in the laser laboratory.
Appendix 5 – Legislation and Standards for Lasers

The safety of laser products is covered by BS EN 60825-1:2014. This BS is a ‘euronorm’ based upon the International Electrotechnical Commission’s IEC 60825-1. The 60825 standard encompasses a range of standards for manufacturers and users on lasers, fibre optic systems, safety eyewear, laser guards, components etc.

The ‘Control of Artificial Optical Radiation at Work Regulations 2010’ is a European Directive on the minimum health and safety requirements for workers exposed to artificial optical radiation. It was transposed into UK law in April 2010. Legally-binding exposure limits now apply for worker exposure to laser radiation, but these are identical to the MPEs defined in 60825-1. This regulation also includes the requirement to carry out risk assessment for artificial optical radiation sources.

Of particular importance for users is the Technical Report PD IEC/TR 60825-14:2004 which is a detailed user's guide that incorporates a risk assessment approach to laser safety. You are advised to refer to this document if you are seeking further guidance on determining MPEs (maximum permissible exposure levels), evaluating risk, control measures, interlock systems, calculations and biophysical considerations. The CLSO also has access to software designed to aid in calculating MPEs.

All the British Standards on laser safety are available online and your CLSO, DLSO or LS will direct you to the relevant website.

Appendix 6 – Laser Classification

LASER stands for Light Amplification by the Stimulated Emission of Radiation but is defined in BS EN 60825 as ‘any device that can be made to produce or amplify electromagnetic radiation in the wavelength range from 180nm to 1mm primarily by the process of controlled stimulated emission’. LEDs were included in the scope of previous editions of 60825-1, however these are now covered by lamp safety standards and are no longer covered by laser safety standards.

The higher the class of laser the greater the optical hazard it presents. The classification is based upon the measured radiation through a given aperture at a set distance (see Annex A.2 of BS EN 60825-1:2014), and AELs (Accessible Emission Levels) have been set for each class of laser (see Tables 3-8, p34-39 BS EN 60825-1:2014). In the class descriptions below the lasers can be of any wavelength within the full range (i.e. 180nm to 1mm) unless a restriction is stated.

Class 1 Lasers

The AEL is less than or equal to the MPE.

These are normally safe to both skin and eye either because of their inherently low power or because they are a totally enclosed system where access to higher levels of laser radiation is not possible during normal operation. However if access panels of a totally enclosed system are removed for servicing, etc, then the laser product is no longer Class 1 and the precautions applicable to the embedded laser must be applied.

Class 1C Lasers

These are laser products which are designed explicitly for contact application to the skin or non-ocular tissue, normally for medical or cosmetic procedures. They are designed such that it is not possible for the laser to operate when they are not in contact with the skin. When they are in contact with the skin there is no ocular hazard. During operation the exposure levels may exceed the MPE for the skin as necessary for the intended procedure.

Class 1M Lasers

These are laser products, emitting in the wavelength range 302.5nm to 4000nm, whose total output is in excess of that normally permitted for Class 1 laser products but because of their diverging beams or very low power density do not pose a hazard in normal use and satisfy the measurement conditions for a Class 1M product. However they may be hazardous to the eyes under certain conditions if gathering optics (magnifying products) are used with them:-
a) With a diverging beam if optics are placed within 100mm of the source to concentrate/collimate the beam.

b) With a large diameter collimated beam viewed with binoculars or a telescope.

Class 2 Lasers

These are laser products that only emit visible radiation in the wavelength range 400nm to 700nm and whose output is less than the appropriate AEL. They are safe for accidental viewing as protection is afforded by the aversion and blink responses (for exposures less than 0.25 seconds). There is no hazard to the skin.

Class 2M Lasers

These are laser products that only emit visible radiation in the wavelength range 400nm to 700nm, whose total output is in excess of that normally permitted for Class 2 laser products but because of their diverging beams or very low power density are safe for accidental viewing during normal use and satisfy the measurement conditions for a Class 2M product. However they may be hazardous to the eyes under certain conditions if gathering optics (magnifying products) are used with them:

A) With a diverging beam if optics are placed within 100mm of the source to concentrate/collimate the beam.

b) With a large diameter collimated beam viewed with binoculars or a telescope.

Class 3R Lasers

These are laser products that present only a low risk of eye damage as their output is restricted to no more than 5 times the AEL for visible Class 2 lasers (5 x 1 mW = 5mW) or no more than 5 times the AEL for Class 1 devices at other wavelengths. Direct eye exposure should be prevented. There is no hazard to the skin.

Class 3B Lasers

These are laser products that are hazardous to the eye for direct intrabeam viewing and from specular reflections but diffuse reflections are normally safe unless you are close to the beam (less than 13.5 cm away). They may be hazardous to the skin at some wavelengths at the upper limit of the class. Output levels must be less than the appropriate AEL for Class 3B devices. Maximum power is 500 mW.

Class 4 Lasers

These are high power devices that exceed the AELs for Class 3B devices and are always hazardous to the eyes and skin from direct viewing and from specular reflections. Diffusely reflected beams should be assumed harmful to the eyes and skin unless proven otherwise by risk assessment. Both direct and scattered beams have sufficient energy to ignite materials and produce hazardous fumes. Their use requires extreme caution.

Example AELs

As an example, the AELs for He-Ne lasers emitting a narrow beam in Continuous Wave mode at 632.8nm are listed below. These are a specific example and are not definitive for all lasers.

- Class 1 & 1M: 0.25 mW
- Class 2 & 2M: 1 mW
- Class 3R: 5 mW
- Class 3B: 500 mW

These limits will also apply to other narrow beam CW lasers operating in the wavelength range 400-700nm except for Class 1 and 1M devices where there are further restrictions for wavelengths 400-500nm. See BS EN 60825-1:2014 for full details.
Appendix 7 – Maximum Permissible Exposure Levels (MPEs)

MPEs reflect the current state of our knowledge in relation to the hazard posed by laser radiation to different biological tissues. It is obviously important to know what levels of laser radiation are considered to be safe and MPEs represent the maximum level to which eye or skin can be exposed without suffering short or long-term damage. With the use of appropriate safety factors (to take into account the possibility of photosensitivity in the subject, etc) MPEs have been established for two different scenarios:

- direct ocular exposure - intrabeam viewing
- exposure of the skin.

MPEs vary according to the wavelength, exposure time, tissue at risk and, for visible and near infrared radiation, the size of the retinal image. For MPEs and tables of values see p57-59 of BS EN 60825-1:2014 or p62-66 of PD IEC TR 60825-14:2004.

Examples of MPEs for a Continuous Wave He-Ne laser operating at 632.8nm are as follows:

- intrabeam viewing 0.63 mW.cm\(^{-2}\)
- skin exposure 778 mW.cm\(^{-2}\)
Appendix 8 – Laser Registration Form LR1

Laser registration form LR1 can be found on the next page. This form is for registering lasers of Class 1M, 2M and 3R. It is also for registering lasers of Class 1C that do not fall within the exceptions detailed in 3.3.1.

Guidance on completing form LR1

Department – Which department owns the laboratory in which the laser will be used? This should be the sub department rather than the faculty, e.g. Physics rather than FEPs for example.

Laboratory – The room number and name (if applicable) of the laboratory in which the laser is used.

Laser Supervisor – The name of the laser supervisor for the laboratory listed above.

Make, Model and Serial Number – The name of the laser manufacturer, the model or the laser and its serial number.

Laser Details – This should be a brief description of the laser, including any noteworthy details that have not been listed elsewhere in this form.

Class – The class of the laser, as provided by the manufacturer or as determined by yourself if you have modified the laser to be used in a way other than intended by the manufacturer. The BS/EU class should be listed (in numbers) rather than the American class (in Roman numerals).

Lasing medium – What material is the laser based around? E.g. Helium Neon.

Wavelength range – What is the full range of wavelengths the laser is capable of producing? This should always be the full range, not just the range that you intend to use. If the laser only outputs at a single wavelength then just list that.

Mode of operation – Does the laser operate as Continuous Wave (CW), Pulsed or both?

Maximum power / pulse energy – List the maximum power for the laser if CW or the maximum pulse energy if pulsed. Again, this should be the maximum that the laser is capable of outputting rather than the maximum that you are intending to use.

Initial beam diameter – The diameter of the beam at the laser aperture. If the beam is elliptical then please enter the x and y diameter of the beam. Remember to include your units.

Beam Divergence – The divergence of the laser beam in radians. This information should be available from the manufacturer.

Brief Description of Use – What do you plan to use the laser for?

Risk Assessment - A risk assessment of the activity should be attached to the LR1 form. For details of carrying out risk assessments please see Appendix 2.
LASER REGISTRATION (Form LR1)

LASER REGISTRATION FOR CLASSES 1C, 1M, 2M & 3R

University of Surrey

<table>
<thead>
<tr>
<th>Department:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory:</td>
</tr>
<tr>
<td>Laser Supervisor:</td>
</tr>
<tr>
<td>Make, Model and Serial Number:</td>
</tr>
</tbody>
</table>

Laser Details:

Class:

Lasing medium:
Wavelength range:
Mode of operation:
Maximum Power/
Or pulse energy:
Beam Diameter:
Beam Divergence:

Brief Description of Use:

(Attach Risk Assessment)

Signature:
Date:

Registration and Risk Assessment Approved
Signature of CLSO (or DLSO):
Date:

FOR SAFETY OFFICE USE

<table>
<thead>
<tr>
<th>LASER CLASS</th>
<th>Date Inspected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signature CLSO:</td>
<td></td>
</tr>
</tbody>
</table>

Version 4 (October 2018)

31 of 51
Appendix 9 – Laser Registration Form LR2

Laser registration form LR2 can be obtained from the sources listed below. This form is for registering lasers of Class 3B and 4.

Where to obtain Form LR2

A physical copy of form LR2 can be obtained from either the CLSO or your DLSO (where applicable). An electronic copy of form LR2 can be obtained from the Health & Safety Department intranet page.

Guidance on completing form LR2

Department – Which department owns the laboratory in which the laser will be used? This should be the sub department rather than the faculty, e.g. Physics rather than FEPs for example.

Laboratory – The room number and name (if applicable) of the laboratory in which the laser is used.

Laser Supervisor – The name of the laser supervisor for the laboratory listed above.

Part 1. Laser Identification and Specifications

Laser Medium - What material is the laser based around? E.g. Helium Neon.

Manufacturer – The name of the company who manufactured the laser.

Model – The model name of this laser.

Serial Number – The unique serial number of this laser, normally found on the casing or sometimes in the accompanying documentation. If the laser head and laser power supply have separate serial numbers then please list both.

Maximum Power - List the maximum power output of the laser. This should be the maximum that the laser is capable of outputting rather than the maximum that you are intending to use. For a pulsed laser this is the average maximum pulse power, not the peak.

Maximum Pulse Energy – List the maximum pulse energy of the laser. This should be the maximum that the laser is capable of outputting rather than the maximum that you are intending to use. Mark ‘N/A’ if not a pulsed laser.

Wavelength Range – What is the full range of wavelengths the laser is capable of producing? This should always be the full range, not just the range that you intend to use. If the laser only outputs at a single wavelength then just list that.

Wavelength Used – What wavelength or wavelength range will you be using in your experiment or activity?

Power Used - What power or power range will you be using in your experiment or activity?

Pulse Energy Used – What pulse energy or pulse energy range will you be using in your experiment or activity? Mark ‘N/A’ if not a pulsed laser.

Pulse Duration – What is the duration or the laser pulse? This value is normally given in seconds. Mark ‘N/A’ if not a pulsed laser.

Pulse Repetition Rate – At what frequency do the laser pulses repeat? This value is normally given in hertz. Mark ‘N/A’ is not a pulsed laser.

Beam Diameter(s) – The diameter of the beam at the laser aperture. If the beam is elliptical or rectangular then please enter the x and y diameter of the beam. Remember to include your units.

Beam Shape – What shape is the beam at the laser aperture? E.g. circular, elliptical, rectangular, etc.

Beam Divergence – The divergence of the laser beam in radians. This information should be available from the manufacturer. If the beam has different rates of divergence in the x and y planes then please list both values.

Laser Class - The class of the laser, as provided by the manufacturer or as determined by yourself if you have modified the laser to be used in a way other than intended by the manufacturer. The BS/EU
class should be listed (in numbers) rather than the American class (in Roman numerals).

Part 2. Description of Activity or Research Project
This section should include one or two paragraphs giving a brief description of how the laser will be set-up within the laser suite, what experiment or activity is being attempted with the laser and what you are trying to achieve. You may include a diagram if you wish.

The duration of the activity can be listed as a finite number of months or year, or simply as ‘ongoing’ if the set-up is essentially permanent.

Part 3. Identification of Non-Beam Hazards
This section lists potential non-beam hazards that may be attached to a Class 3B or 4 laser. It is intended to make you consider what extra hazards there might be beyond the danger of the laser beam itself. If you do not believe a particular hazard applies to your laser then you may simply answer ‘No’. However if a hazard does apply, please give a more detailed answer beyond ‘Yes’, e.g. if toxic gases are present, which gases are they?

In a multiple laser set-up, some of these non-beam hazards may apply to only some of the lasers and not others. If this is the case please indicate to which laser your answer(s) apply.

Part 4. Identification of People at Risk
This section requires you to list the people who might be at risk from beam and non-beam hazards. You may list them by name in the case of known colleagues (e.g. Alice, Bob, etc) or by group if not known (e.g. other laboratory users, cleaners, etc). Remember to consider the possibility of unexpected visitors as well as the people who regularly use the laboratory.

Part 5. Risk Assessment
This section requires you to attach a completed LRA1 form, which can be found along with guidance notes in Appendix 2 of this document. The information you have already entered in parts 3 and 4 for the LR2 form will help you complete the risk assessment.

Part 6. Control Measures and Scheme of Work
This section requires you to identify any circumstances under which your laser will be used with an open or partially enclosed beam. If your application has neither then you may just answer ‘NO’. If open or partially enclosed beams are present then you must have a written protocol (Scheme of Work) detailing the control measures used to make the beam safe to work with. See Appendix 2 for guidance notes of Schemes of Work.

Part 7. Authorised Users and New User Training
This section is a ‘competency matrix’. Here you are required to list the laser workers who will initially be authorised to use the laser. Additional users can of course be added at a later date. You will also be required to list the people who will be authorised to train new users. Normally this will be the Laser Supervisor, but he/she may wish to appoint particularly competent users as being able to also deliver training. A list of authorised users is required to be present in close proximity to the laser, or on the entrance to the laser suite.

Alternatively, if your department maintains an electronic competency matrix for equipment (e.g. via Academican) then this is an acceptable alternative. You should make a note of this in this section of the LR2 form and include the Academican link or name of the equipment so that the user list can be verified when required.

If you answer ‘NO’ to the presence of the user list (in either form) then you will be required to produce one before work begins.

Part 8. Protective Eyewear
This section is used to list the protective eyewear that is available for use with the lasers detailed in part 1.

Manufacturer - The name of the company who manufactured the laser goggles.

Wavelength – The wavelengths over which the goggles are designed to function, as indicated on the goggles. It is probable that the goggles may function over several different ranges, so please list them all.
Optical Density – The Optical Density (OD) of the laser goggles, as indicated on the goggles. This is likely to vary across different wavelengths, so please list the appropriate OD value next to each wavelength range listed in the previous column.

Number Available – How many pairs of these goggles are available?

Location Stored – Where are the goggles stored when not in use? Ideally this should be a location that is accessible without entering the laser suite or laser controlled area, so that users may put on the goggles without accessing the hazard area.

Part 9. Emergency Action

This section requires you to list the measures that need to be taken to eliminate all beam and non-beam hazards in the event of an emergency, e.g. personal injury, fire, chemical leak, etc. This may be as simple as pressing an emergency stop button to immediately terminate power to the laser, or it may be a more involved procedure. Please bear in mind that these are emergency procedures and should be designed to eliminate hazards to personal above hazards to equipment. Sometimes a quick shutdown might be harmful to a laser system, but in an emergency it must be carried out anyway.

The second part of this section asks you to list any other action that may be required to make the laser suite safe for the Emergency Services to enter. Often there will not be any additional instructions for them, but sometimes there might be additional measures required to make the suite safe for fire fighters, for example.

Part 10. Emergency Contact

This section will normally list the details of the Laser Supervisor (so in this case ‘Position’ will be ‘Laser Supervisor’) and a mobile telephone number where he/she can normally be reached in the event of an emergency, especially an out of hours emergency. However in some circumstances another person may be nominated. Just make sure that he/she agrees first! In this case ‘Position’ should list their job title, such as ‘Technician’ or ‘Research Associate’, etc.

Part 11. Monitoring of Control Measures

The person named in this section will normally be the Laser Supervisor. A frequent laser suite user could be named instead (if they agree), but the ultimate legal responsibility would still rest with the Laser Supervisor; the user would effectively be reporting to them. The person named in this section will need to report to the Laser Supervisor if they believe any control measures have ceased to be effective for whatever reason. This could be mechanical failure on engineering controls, damaged laser goggles, etc. It can be a good idea to make the checking of control measures a regularly scheduled event.

Part 12. Review of Risk Assessment

When you completed your risk assessment form LRA1 you should have decided on a review date. The information on form LR2 should also be reviewed on this date. If the review reveals that the information on the form needs to be updated then please complete a new LR2 form and submit it to your CLSO for approval.

You will also need to list any conditions that might require an earlier review, e.g. the end of a project or significant changes to the set-up.

Signatures

Once the form is complete the Laser Supervisor should sign and date in this box to indicate that they have given their approval and confirmed that everything included in the form is correct. The CLSO will also sign and date the form once they have seen the completed forms and the physical laser installation and offered any additional advice, where applicable.
Appendix 10 – Laser Worker Personal Registration Form LR3(P)

All prospective users of lasers must complete this form before work starts. Users include employees, students and visitors carrying out experimental work under contract or otherwise.

Guidance on completing form LR3(P)

1. Personal Details
Enter the personal details requested. Note that you should supply a phone number on which you can be contacted while you are at the University, such as a mobile number or office number. Please do not list home numbers. The same applies to the e-mail address that you provide.

2. Work Details
A brief description of the project in which you are planning to use lasers, including an estimate start and finish date. If a finish date is not known or the project is ongoing then please state this.

3. Previous Laser Experience
Please list any other establishments where you have previously worked with lasers. If you do not have any previous experience then please state this.

4. Conditions Applying to Registration
Once you have completed the form please sign it and have your Laser Supervisor sign it. Your Laser Supervisor will be the academic supervisor of the laser laboratories in which you are planning to work. If you are planning to work in more than one laser laboratory then you only need to obtain the signature of the supervisor for the laboratory where you will spend the majority of your time. Note that your Laser Supervisor should sign the form before you attend the Laser Safety Training course. On successful completion of the course the CLSO will then sign and retain your LR3(P) form.
LASER WORKER PERSONAL REGISTRATION (Form LR3(P))

UNIVERSITY OF SURREY RADIATION PROTECTION SERVICE
PERSONAL REGISTRATION FORM

University of Surrey

1. PERSONAL DETAILS

<table>
<thead>
<tr>
<th>Surname:</th>
<th>Forename(s):</th>
<th>Title:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Faculty and Department:</th>
<th>University Library No:</th>
<th>Date of Birth:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Work Phone or Extension No:</th>
<th>E-mail Address:</th>
<th>Staff/UG/PG/Visitor:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. WORK DETAILS

Description of Work and/or Project Title:

Planned Start Date: | Expected Finish Date: |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. PREVIOUS LASER EXPERIENCE

<table>
<thead>
<tr>
<th>Establishment and Address:</th>
<th>Description of Work:</th>
<th>Period:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. CONDITIONS APPLYING TO REGISTRATION

I have read and understood the University Code of Practice for Safe Working with Lasers. I agree to not commence work with lasers until I have undertaken mandatory training provided by the Coordinating Laser Safety Officer and also received details of Local Rules and Special Operating Procedures that may apply to my work area(s) from my Laser Supervisor(s). I agree that I will comply with them once given.

Signature: ___________________________ Date: ______________

As Laser Supervisor I agree that I will provide details of Local Rules and Special Operating Procedures that may apply to the work area(s) of the above Laser Worker before they commence work.

Laser Supervisor Signature: _______________ Date: ______________

As CLSO I confirm that the above has received the mandatory training on the Safe Use of Lasers.

CLSO Signature: _________________________ Date: ______________

The Coordinating Laser Safety Officer will retain a copy of this form and send a copy to the Health and Safety Office.

CLSO Comments:
APPENDIX 11 - WHO DOES WHAT IN LASER SAFETY AT SURREY

This checklist is intended as a guide to actions required by Laser Workers, Laser Supervisors and other members of the laser safety community. The list is not intended to be definitive but acts as a quick reference for compliance with this Policy. There may be further actions required by the users, supervisors, and officers in compliance with Faculty or Department safety strategies.

<table>
<thead>
<tr>
<th>Action</th>
<th>Laser Worker</th>
<th>LS</th>
<th>DLSO</th>
<th>CLSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advise DLSO/CLSO of new laser or modification to existing one.</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Complete registration forms LR1 or LR2 along with risk assessment, SOP and Safety Rules and send copies to CLSO.</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Provide Laser Safety Training for new laser users.</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Enrol on Laser Safety Training course.</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complete personal registration form LR3(P) and bring to Laser Safety Training course.</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Retain Risk assessment form for the information of all users and to be available for HSE inspection.</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Check risk assessment and new laser set-up BEFORE any work commences. Sign off if satisfied.</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Provide advice to Laser Supervisors on risk assessments, SOPs and the safety of laser set-ups.</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Provide advice on laser eye protection.</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Read and understand this Policy.</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Read and understand Guidance notes, SOP and local rules for the laser suite in which they will be working.</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advise supervisor and occupational health on any eye defects other that short sight.</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix 12 – Laser Signs and Labels

This appendix is intended to give an overview of the most common types of laser labels. Where more detailed specifications exist that are beyond the scope of this appendix a reference is made to the relevant standards document.

Designated Laser Control Areas

The points of access to areas in which Class 3B or Class 4 laser products are used must be marked with warning signs complying with BS 5378. The signs shall incorporate the following information:

1) Hazard warning symbol (detailed spec on p50 of BS EN 60825-1:2014)
2) Highest class of laser in the area
3) Name of Laser Supervisor with contact details

Laser Labels

Laser labels are required for all laser products except for low power Class 1 devices. They are designed to give a warning of laser radiation, the class of laser, basic precautions and the laser’s characteristics.

The laser warning uses the same symbol as for the door sign in an appropriate size for the laser to be labelled and should be clearly visible. Supplementary information should be black text on a yellow background in accordance with p50 of BS EN 60825-1:2014.

Where the size of the laser product does not permit the affixing of a reasonably sized label then a sign should be displayed in close proximity to the laser with all appropriate information on.

Details of wording required on explanatory labels for each of the Classes is given below. Normally all the labels described in this appendix will be attached by the manufacturer, but if this is not the case then it is up to the laser purchaser to attach suitable versions of their own.

Class 1

No laser hazard warning symbol.

Explanatory label bearing the words:

CLASS 1 LASER PRODUCT

Additional information is required for products that are Class 1 by engineering design giving details of the risk of exposure if panels are opened, etc. See the ‘Panels and Interlocked Panels’ section later on in this appendix.

Alternatively, the following label may be used.
Class 1M
Label with laser hazard warning symbol.
Explanatory label bearing the words:

 LASER RADIATION
 DO NOT EXPOSE USERS OF
 TELESCOPIC OPTICS
 CLASS 1M LASER PRODUCT

The words 'OPTICAL INSTRUMENTS' can be supplemented with either 'BINOCULARS OR
TELESCOPES' for a large diameter collimated beam or 'MAGNIFIERS' for a highly diverging beam.
Alternatively, the following label may be used.

Class 1C
Label with laser hazard warning symbol.
Explanatory label bearing the words:

 LASER RADIATION
 FOLLOW INSTRUCTIONS
 CLASS 1C LASER PRODUCT
Alternatively, the following label may be used.

Class 2
Label with laser hazard warning symbol.
Explanatory label bearing the words:

Class 2M
Label with laser hazard warning symbol.
Explanatory label bearing the words:
Alternatively, the following label may be used.

Class 3R
Label with laser hazard warning symbol.
Explanatory label bearing the words:

![Class 3R Label](image)

The words 'AVOID DIRECT EYE EXPOSURE' can be replaced with 'AVOID EXPOSURE TO BEAM' if desired.

Alternatively, the following label may be used.

Class 3B
Label with laser hazard warning symbol.
Explanatory label bearing the words:

![Class 3B Label](image)
Alternatively, the following label may be used.

Class 4
Label with hazard warning symbol.
Explanatory label bearing the words:

Alternatively, the following label may be used.

Aperture Labels for Class 3R, Class 3B & Class 4 lasers
Each Class 3R, Class 3B and Class 4 laser product shall have affixed a label close to each aperture through which laser radiation in excess of the AEL for Class 1 or Class 2 is emitted bearing the words:

Alternatively the wordings ‘APERTURE FOR LASER RADITION’ or ‘AVOID EXPOSURE - LASER RADIATION IS EMITTED FROM THIS APERTURE’ are also acceptable.
Alternatively, the following label may be used.

![Radiation Output and Standards Information](image)

Radiation Output and Standards Information

All laser products, except for Class 1 and Class 1M products, shall have an attached explanatory label which includes the following information:

- maximum output of laser radiation
- pulse duration (if applicable)
- emitted wavelength(s)
- name and publication date of classification standard

Class 1 and Class 1M products may instead have this information contained within the information for the users (e.g. the SOP).

Panels and Interlocked Panels

Panel for a Class 1 laser enclosure may require additional labels if removing them permits human access to laser radiation. Please see p56-57 of BS EN 60825-1:2014 for further details.

Invisible Laser Radiation

If a laser product emits laser radiation outside the range 400 nm – 700 nm then the text ‘LASER RADIATION’ on the warning labels described above should be replaced with the text ‘INVISIBLE LASER RADIATION’. Please see p-57 of BS EN 60825-1:2014 for further details.
Appendix 13 – Summary of Protective Control Measures

<table>
<thead>
<tr>
<th>CLASS</th>
<th>PROTECTIVE CONTROL MEASURES</th>
</tr>
</thead>
</table>
| 1 | No protective control measures for normal use.
Please note that special precautions may be needed for service work on embedded laser products that are Class 1 by engineering. |
| 1M | Prevent direct viewing with magnifying optics. \(^1\)
Please note that fitting external optics that decrease beam divergence may affect classification. |
| 1C | Use as directed by manufacturer. \(^1\) |
| 2 | Do not stare into beam.
Do not direct the beam at other people or into public areas. |
| 2M | Do not stare into beam. \(^1\)
Do not direct the beam at other people or into public areas.
Terminate beam at end of useful path with a non-specular beam stop.
Prevent direct viewing with magnifying optics. (NB fitting external optics that decrease beam divergence may affect classification) \(+ see footnote\) |
| 3R | Prevent direct eye exposure to the beam. \(^1\)
Do not direct the beam at other people or into public areas. |
| 3B and 4 | Class 3B and Class 4 laser products should not be used without first carrying out a risk assessment to determine the protective control measures necessary to ensure safe operation. Where reasonably practicable engineering means should be used reduce the laser class to a totally enclosed Class 1 laser product.
The use of any Class 3B or Class 4 laser without an interlocked enclosure will require a written scheme of work. Even with an enclosure written procedures may be necessary especially if the user is involved in any alignment procedures that require over-riding of interlocks.
Class 3B and Class 4 laser products require the control of access to the area where the laser is operated by the use of a remote interlock, the use of key control, emission indicators, beam shutters, removal of reflecting surfaces from near the beam path, beam enclosures wherever practical, the use of eye protection and protective clothing as appropriate, training of staff and the appointment of a Laser Safety Officer. |

Non-Beam Hazard Protective Control Measures

Special attention should also be given to other non-optical hazards such as risk of electric shock, hazardous chemicals, cryogenic liquids and flying debris from targets to name but a few. It is often the non-optical hazards that pose the greatest risk - one could be blinded in one eye from a powerful laser but electrocution could be fatal. Some non-optical hazards may be present with even Class 1 laser products.

\(^1\) Classes 1M, 1C, 2M and 3R may also require training of staff, care with beam paths and specular reflections - see BS EN 60825:2014 and PD IEC TR 60825-14:2004 for more details.
Appendix 14 – Summary of BS EN EN 60825-1 Manufacturer and User Requirements

<table>
<thead>
<tr>
<th>REQUIREMENT</th>
<th>CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote Interlock Connection</td>
<td>Connection provided by the manufacturer for door or enclosure interlock for Class 3B and Class 4 lasers.</td>
</tr>
<tr>
<td>Safety Interlocks</td>
<td>Provided by manufacturer for access panels on Class 3R, 3B and 4 laser systems.</td>
</tr>
<tr>
<td>Key Control</td>
<td>A key or similar device is required to control access to Class 3B or 4 lasers. The laser should be inoperative when the key is removed. Normally provided by manufacturer.</td>
</tr>
<tr>
<td>Emission Indicator</td>
<td>An audible or visible indicator should be provided by the manufacturer for each Class 3R (invisible wavelengths only), Class 3B and Class 4 laser system to indicate when the laser is switched on, or when the capacitor banks are charging in the case of a pulsed laser.</td>
</tr>
<tr>
<td>Beam Attenuator or Shutter</td>
<td>Should be provided by the manufacturer for each Class 3B or Class 4 laser system as a means of temporarily blocking the laser beam.</td>
</tr>
<tr>
<td>Beam Termination</td>
<td>The user should ensure that all beam paths are terminated at the end of their useful path. Does not apply to Class 1 devices.</td>
</tr>
<tr>
<td>Beam Level</td>
<td>The user should endeavour to set-up the laser so that the beam is not at eye level.</td>
</tr>
<tr>
<td>Beam Enclosure</td>
<td>Provided by the user to guard against specular reflections from Class 3R, Class 3B and Class 4 lasers - can mean anything from screening the experimental area or piping the beam up to a total enclosure.</td>
</tr>
<tr>
<td>Eye Protection</td>
<td>Required for open beam work with invisible Class 3R and all Class 3B and Class 4 devices. Normally provided by the user.</td>
</tr>
<tr>
<td>Protective Clothing</td>
<td>Mainly required for Class 4 lasers but be careful with Class 3B UV lasers as well, may need fire resistant material for some lasers. Normally provided by the user.</td>
</tr>
<tr>
<td>Eye Examinations</td>
<td>Only required after an accident but may be important to people with poor eyesight working with Class 3B or Class 4 lasers. This is the user's responsibility.</td>
</tr>
<tr>
<td>Training</td>
<td>Required for people working with any Class 3 or Class 4 laser and any modified Class 1M or Class 2M devices. Enrolling is the user's responsibility.</td>
</tr>
<tr>
<td>Laser Labels</td>
<td>Required for all lasers except low power Class 1. Normally provided by manufacturer.</td>
</tr>
<tr>
<td>Door/Area Signs</td>
<td>Required for Class 3B and Class 4 lasers indoors and also for Class 1M, 2M and 3R if used outdoors. This is the user's responsibility.</td>
</tr>
</tbody>
</table>
Laser Survey Form

The following can be used by a Laser Worker or Laser Supervisor to double check that everything has been covered when completing form LR1 or LR2, or as part of a safety audit by a DLSO or CLSO. Completing this survey form is optional and is not a required part of laser registration. It is provided for advice and guidance only.

The following laser survey form takes all the manufacturing and user requirements listed above into account and provides a checklist to see if the laser installation is observing all the requirements recommended by BS EN 60825. Grey boxes indicate that the precaution is not required for that class of laser. Where a box cannot be ‘ticked off’ the user should be employing some other protective measure justified by a risk assessment.

<table>
<thead>
<tr>
<th>LASER SURVEY FORM</th>
<th>DEPT:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date:</td>
<td>LAB:</td>
</tr>
<tr>
<td>Manufacturer:</td>
<td>Laser Medium:</td>
</tr>
<tr>
<td>Model & Serial Number:</td>
<td>Wave length:</td>
</tr>
</tbody>
</table>

PRECAUTIONS

<table>
<thead>
<tr>
<th></th>
<th>1M</th>
<th>2</th>
<th>2M</th>
<th>3R</th>
<th>3B</th>
<th>4</th>
<th>1(E)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote Interlock</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safety Interlocks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key Control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emission Indicator</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beam Attenuator/Shutter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beam Terminator</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beam Level</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beam Enclosure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eye Protection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protective Clothing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eye Examinations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Training</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laser Labels</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Door/Area Signs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Class 1(E) Lasers those that are Class 1 by engineering only, not due to inherently safe power levels.

Laser installation: Satisfactory / Not Satisfactory (Delete as appropriate)

Additional control measures required:

... ..
... ..
... ..

Survey performed by: ...
Appendix 15 – Optical Hazards & Biological Effects of Laser Radiation

Penetration of laser radiation into the eye

Please note that short pulsed high peak-power lasers are particularly hazardous to the eye, especially at wavelengths that reach the retina, as they deliver a lot of energy in a short period of time that can cause irreversible damage. Near infra-red lasers are also particularly hazardous because users can't see the beam but it is still focused onto the retina and users will only be aware of it after damage has been caused.

Penetration of laser radiation into the skin

The skin can tolerate a great deal more exposure than the eye and less research has been done on damage mechanisms. In general all lasers can cause surface burns of the skin and with high-powered lasers there would be no warning of this occurring. Near infra-red lasers are again of particular concern because they are more penetrating and can reach the subcutaneous layer.
Summary of biological effects associated with excessive exposure to optical radiation

<table>
<thead>
<tr>
<th>Spectral Region</th>
<th>Eye</th>
<th>Skin</th>
</tr>
</thead>
<tbody>
<tr>
<td>UV-C (180-280nm)</td>
<td>Photokeratitis</td>
<td>Erythema (sunburn)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Accelerated skin ageing increased</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Increased pigmentation</td>
</tr>
<tr>
<td>UV-B (280-315nm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UV-A (315-400nm)</td>
<td>Photochemical cataract</td>
<td>Pigment darkening</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Photosensitive reactions</td>
</tr>
<tr>
<td>Visible (400-780nm)</td>
<td>Photochemical and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>thermal retinal injury</td>
<td></td>
</tr>
<tr>
<td>IR-A (780-1400nm)</td>
<td>Cataract, retinal burn</td>
<td>Skin burn</td>
</tr>
<tr>
<td>IR-B (1.4μm- 3.0μm)</td>
<td>Aqueous flare, cataract,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>corneal burn</td>
<td></td>
</tr>
<tr>
<td>IR-C (3.0μm- 1mm)</td>
<td>Corneal burn only</td>
<td></td>
</tr>
</tbody>
</table>

More detailed information on biological effects can be found in Annex D, pg86 of BS-EN 60825-1:2014. This is also repeated as Annex C to PD IEC TR 60825-14:2004.
Appendix 16 – Examples of Laser Accidents

This appendix contains examples of laser accidents that have previously occurred in other universities and research environments.

1. Accident at a Midlands University in the UK in 1999

Late one afternoon a postgraduate student was aligning two lasers at different wavelengths that had been set up in a relatively new configuration. The beam from a dye laser (720nm, 10 mJ, 10 ns pulse at 10 Hz) was passed through a dichroic mirror coated for high reflection at 266 nm in order to combine it with the beam from a fourth harmonic Nd:YAG laser (266 nm, 50 mJ, 10 ns pulse at 10 Hz). This configuration resulted in a partial reflection from the rear of this mirror (approximately 5% of the dye laser) in an upward direction.

Temporarily forgetting the presence of the stray beam, the person leaning over the top of the apparatus received a single pulse of light from the dye laser reflection. This immediately left a large blind spot in the person’s central vision in one eye. The person was not wearing protective eyewear as it was claimed they could not see that the beams they were aligning were coincident (but both were at invisible wavelengths so they could only see the fluorescence). The experiment was shut down and the user was accompanied to the local hospital Eye Unit. On examination the person was informed that there was a small burn on the fovea and that he would be referred to a consultant as a matter of urgency.

As to the absence of beam enclosures (drainpipes had been used previously), because of the orientation of the experiment being changed these had not been re-incorporated at this stage. The source of the reflection had allegedly been identified prior to the injury and this had been listed as an action to do by the injured person. There was some concern with regard to the examination and advice received from the local hospital Eye Unit. It was concluded that the most appropriate action was to get the injured person to the Moorfields Eye Hospital, Accident and Emergency Unit as soon as possible (the afternoon after the incident) to obtain a second examination. It was confirmed that the fovea had been damaged leading to a blind spot and peripheral blurring in the left eye. As a consequence the following may be of use to others:

a) Risk assessments need to be scrutinised, monitored and audited so that it can be shown that they are suitable and sufficient. Essentially three elements related to the optical hazard need to be covered (i.e. initial set up/alignment, normal operation/tweaking and the introduction of new components) and protocols detailing precautions need to be in place. Appropriate justification of procedures outside of conventional guidance need to be documented. Associated hazards need to be dealt with also.

b) The importance of following procedures, such as eliminating stray beams/reflections and enclosing exposed beams as far as reasonably practicable needs to be strongly re-emphasised. Human factors need to be taken into account especially where there may be hazardous open beam work; in this case an eagerness to get results may have been a contributory factor.

c) Procedures in the event of an injury or suspected injury need to be in place and effective.

2. Accident at Los Alamos National Laboratory, California USA, 2004

On 14th July 2004 an undergraduate student was injured whilst working with a Nd:YAG laser in the Chemistry Division. The work involved the use of two lasers one to analyse particles (L1) and one to generate and suspend particles in a target chamber (L2). On the day in question the Principle Investigator (PI) was using L1 in flash-lamp mode to illuminate the suspended particles. After firing and shutting down L2 the PI removed the beam stop from behind the target chamber and looked inside whilst L1’s flash lamps continued to operate. When the student bent down to look too she
immediately saw a flash and a reddish-brown spot in her left eye - a hole had been burnt in her retina.

An investigation followed and PI claimed that he was operating L1 with the Q-switched trigger cable disconnected from the pulse generator, however the investigating team confirmed that the laser could not lase under those conditions.

The accident investigation team found the following failures of management and procedures:-

- Neither the PI nor the student were wearing laser eye protection and there were no engineered safety measures in place.
- The PI did not recheck beam alignment or laser condition or check for beam reflections on July 13 or 14.
- The PI prepared an insufficiently detailed risk assessment/scheme of work and had not updated it to reflect experimental changes.
- The student had not received proper pre-job training and had been asked to sign up to the scheme of work after the accident.
- Responsible line managers had not monitored PIs safety practices.
- The Line Manager and Laser Safety Officer had signed off PIs risk assessment/scheme of work without noting the lack of detail.
- Management did not ensure that PI followed the Local Rules.
- No PI training in relation to mentoring students.

As a result of this incident the Los Alamos Lab was required to review its procedures, improve safety management and improve training of mentors and students to ensure that this type of incident would hopefully not occur again.

Four top scientists faced disciplinary action after the accident and the Principal Investigator was sacked.

Both these accidents have similarities. In neither case was safety eyewear being worn. In both cases 2 lasers were being used and the individual was struck in the eye with a pulse from a pulsed laser that they were not expecting. If you are viewing an experimental set-up either:

- a proper shutdown procedure must be followed before looking down beam-paths without safety eyewear, or
- safety eyewear must be worn, or
- viewing should be via a video camera in a safe location.
Appendix 17 – Useful Links

Information sources

Further information on laser safety can be found from accessing the Public Health England (PHE) guidance documents at:

The International Commission on Non-Ionising Radiation Protection (ICNRP) has a useful bibliography of recent publications on optical safety many of which can be freely downloaded from:

http://www.icnirp.org/pubOptical.htm

Lasers will not normally be used outdoors in the University, except by special arrangement with the CLSO, see section 2.2, “Using Class 3B and 4 Lasers Outside a Laser Controlled Area”. But if lasers are used outdoors the Civil Aviation Authority (CAA) must be notified using the following form:

http://publicapps.caa.co.uk/modalapplication.aspx?appid=11&mode=detail&id=4366

Laser Safety Equipment and Software

Lasermet sell an extensive range of laser safety products and laser safety software. They also offer a design and safety consultancy service and were founded by one of the leading laser experts in the UK - Prof Brian Tozer. A lot of useful information can be found on their site at:

http://www.lasermet.com/

Laser Physics UK market a range of laser safety eyewear, power meters, optical components, safety barriers, curtains and blinds and laser safety software. Details can be found at:

http://www.laserphysics.co.uk/

Thorlabs, Inc. sell a range of laser related equipment, including power meters, beam path shielding and laser googles. Their full product range can be found at:

http://www.thorlabs.com/