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Abstract

This paper provides a bird’s eye view of the behavioural New Keynesian literature.
We discuss three key empirical regularities in macroeconomic data which are not ac-
counted for by the standard New Keynesian model, namely, excess kurtosis, stochastic
volatility, and departures from rational expectations. We then present a simple be-
havioural New Keynesian model that accounts for these empirical regularities in a
straightforward manner. We discuss elaborations and extensions of the basic model,
and suggest areas for future research.
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1 Introduction

The New Keynesian three equation model has defined monetary policy orthodoxy since
the 1990s. Important contributions to the literature include Goodfriend and King (1997),
McCallum and Nelson (1997), Clarida et al. (1999), and Woodford (2003). Large scale New
Keynesian models, building on the contributions of Smets and Wouters (2003) and others,
became increasingly popular at the turn of the millennium. These models are now used
in a variety of central banks and policy institutions, guiding monetary policy and shaping
forecasts around the world. Among other things, the New Keynesian orthodoxy is closely
associated with inflation targeting and central bank independence.

Around the same time that the New Keynesian three equation model was emerging,
economists working in various fields began to explore formal models of bounded rationality
and heterogeneous expectations. An important early paper is Evans and Ramey (1992),
which embeds costly expectation technologies into a simple macroeconomic model. The
authors demonstrate that positive costs of prediction can prevent the emergence of rational
expectations equilibria, as the increase in utility associated with accurate prediction may
not be worth the costs of accessing those predictions. Their model builds on the earlier
theories of consistent and inconsistent learning pioneered in the 1980s.

Evans and Ramey (1992) argue that the optimality of rational expectations is suspect
if the costs of their formulation are not taken into account. Essentially, the imposition
of rational expectations on macroeconomic models becomes the ultimate free lunch, as
agents are endowed with a considerable amount of information at zero cost. Instead, the
authors propose that, “any model of expectation formation must begin with an appropriate
specification of expectational preferences and technology, if the model is to be regarded
as representing rational, optimizing behavior” (ibid., 208). This approach to expectations
clearly has the potential to affect theories regarding the conduct of monetary policy, and
the authors show in their simple model that long run non-neutrality and hysteresis effects
can occur when forecasting is costly.

A considerable advance in the literature on bounded rationality came in Brock and
Hommes (1997), which embeds a simple heterogeneous expectations mechanism into a cob-
web model of partial equilibrium. As in the standard cobweb model, firms have to forecast
the equilibrium price before they set their output level. To do so, they have the choice of
using a simple adaptive expectations predictor at zero cost, or perfect foresight at positive
cost. The authors argue that firms will choose predictors that result in higher net profits,
where the probability of choosing a given predictor is determined by a logit model. This
choice is justified by an appeal to the discrete choice model described in Manski and McFad-
den (1981), which is widely used in microeconomics and econometrics. A similar approach
is used in the reinforcement learning literature described in Young (2004).

The insights of Brock and Hommes (1997) were slowly incorporated into the New Keyne-
sian literature in the early 2000s, mainly in the work of William Branch and his co-authors.
Branch and McGough (2004) studied the impact of heterogeneous expectations on the ex-
istence of sunspot equilibria in rational expectations models, and Branch and Evans (2007)
examined discrete choice dynamics of the form considered in Brock and Hommes (1997) in
the context of a simple macroeconomic model. Heterogeneous expectations in a New Key-
nesian framework, albeit without discrete choice, were then examined in considerable detail
in Branch and McGough (2009). Heterogeneous expectations and discrete choice were fully
incorporated into the New Keynesian three equation model around the time that the USA
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and Europe were recovering from the effects of the 2008 financial crisis, in the papers of
Branch and McGough (2010) and De Grauwe (2011).

The basic framework set out in Branch and McGough (2010) and De Grauwe (2011) has
become known as the behavioural New Keynesian model. This terminology is largely the
result of De Grauwe’s book length treatment of the subject, Lectures on Behavioral Macroe-
conomics (De Grauwe, 2012). Via the expectational mechanism of Brock and Hommes
(1997), the behavioural New Keynesian (BNK) approach incorporates bounded rationality
and heterogeneity into the standard New Keynesian (NK) three equation model. This em-
beds an intuitive form of complexity into the standard approach, where strategy switching
generates recurring bouts of instability. Specifically, households and firms have the choice
between two (or more) predictors of output and inflation. Around the steady state of a
BNK model, both predictors are equally accurate, but one predictor becomes increasingly
accurate relative to the other as the economy moves away from the steady state. Any ex-
ogenous shock that moves the economy away from the steady state can then lead to agents
rapidly switching from one predictor to the other. This creates an endogenous amplification
effect which can explain the existence of excess kurtosis and stochastic volatility observed
in macroeconomic data.

The purpose of the present paper is to provide the reader with an accessible introduction
to the BNK approach, by,

a. Providing a detailed explanation and empirical evaluation of a simplified version of
the BNK model contained in De Grauwe (2012),

b. Providing a review of the key papers in the BNK literature, complementing existing
overviews in Branch and McGough (2018) and Hommes and LeBaron (2018),

c. Summarising key avenues for future research.

Our approach is therefore to emphasise and explain the connections between existing papers
in the BNK literature, and draw together the dispersed empirical results which currently
exist. Thus the paper serves a synthetic purpose, amalgamating and comparing existing
results, which allows us to identify future research priorities. As argued in Dilaver et al.
(2018), we are of the opinion that the BNK model successfully addresses a number of
the criticisms levelled at the standard NK model since the crisis, making it an important
contender for a new consensus. We hope that the present paper will increase its visibility,
and encourage further research in the area.

In section 2 we discuss the main empirical facts that BNK models have sought to explain.
We then present the simple BNK model in section 3, which illustrates the basic mechanism
described above in a straightforward manner and accounts for the empirical facts discussed
in section 2. We then present a bird’s eye view of the BNK literature in section 4, including
a detailed discussion of the basic model and a survey of the various extensions. Finally,
section 5 suggests a number of areas that require further research.

2 Some empirical regularities

The literature preceding the BNK models of Branch and McGough (2010) and De Grauwe
(2011) was largely motivated by the apparent falsification of rational expectations in studies
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Figure 1: Scatter
plots of the cross-
sectional dispersion
(75th percentile mi-
nus 25th percentile)
of real GDP growth
from the US Survey
of Professional Fore-
casters, against real
GDP growth. Panel
A uses forecasts of
time t growth made
at time t, and panel
B uses forecasts
of time t growth
made at time t − 1.
Quadratic lines of
best fit are included
for reference.
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of survey data. This is an extremely large literature, with a comprehensive survey of the
studies preceding the 2008 financial crisis contained in Pesaran and Weale (2006). The vast
majority of these studies, with the notable exception of Keane and Runkle (1990), reject
the rational expectations hypothesis when applied to survey data on expectations. Aside
from this, casual empiricism indicates the considerable heterogeneity of private sector fore-
casts of macroeconomic variables, providing prima facie justification for the heterogeneous
expectations approach of Brock and Hommes (1997).

Figure 1 presents simple scatter diagrams to illustrate the heterogeneity of quarterly
GDP growth forecasts in the US Survey of Professional Forecasters. The data are drawn
from forecasts of quarter-on-quarter growth made either in the relevant quarter (panel A)
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Table 1: Higher moments of US real GDP growth and inflation

Variable Standard Deviation Skewness Kurtosis

Real GDP growth 0.009 -0.022 4.519

Inflation 0.006 1.250 5.176

Notes: The growth rate of a variable x is defined as (xt − xt−1)/xt−1.
Both series are measured at quarterly frequency, and downloaded from
the FRED database on 24/04/2018. The inflation rate is calculated
using the implicit GDP deflator.

Table 2: GARCH model results, US real GDP growth and inflation

Variable ARCH(1) GARCH(1)

Real GDP growth 0.22
(0.05)

0.78
(0.04)

Inflation 0.27
(0.08)

0.70
(0.05)

Notes: The estimated models are xt = β0+
∑4

s=1 βsxt−s+εt
with εt = σtzt, where zt is Gaussian white noise and
σ2t = α0 + α1ε

2
t−1 + α2σ

2
t−1. Standard errors are given in

parentheses under the point estimates.

or one quarter ahead (panel B). The data plotted are the differences between the 75th
and 25th percentiles of the forecast distribution. The region of highest density is where
GDP growth is close to its long run average and forecast dispersion is low. When GDP
growth is away from its long run average, in either direction, forecast dispersion tends to
increase. A similar observation was made for inflation expectations by Mankiw et al. (2003),
who observed that the interquartile ranges of forecasts in the Michigan Survey, Livingston
Survey, and Survey of Professional Forecasters all increase with the distance of year-on-year
inflation growth from its mean. The interested reader might compare figure 1 in the present
paper with figure 6 in Mankiw et al. (2003). In a related paper, Dovern et al. (2012, 1091)
suggest that the effects of GDP growth on forecast dispersion should be non-linear, with
disagreement rising during recessions as well as booms, although the effects of recessions on
forecast dispersion are the main focus of their study.

The first empirical application of the Brock and Hommes (1997) framework is contained
in Branch (2004). This paper finds evidence for discrete switching between a small number
of forecasting mechanisms in the Michigan Survey of inflation expectations. A notable later
paper is Pfajfar and Santoro (2010), who find that only 10% of the forecasts in the Michigan
Survey reflect regular information updating, with forecasts to the left of the median being
particularly static. Finally, more recent papers examine expectation formation in laboratory
experiments, and generally find supportive evidence for heterogeneity. Hommes (2011) is a
good example of this approach.

It is therefore reasonable to conclude that US data displays considerable departures
from rational expectations, with forecast disagreement rising when GDP growth and infla-
tion are away from their long run averages. As well as departures from rational expectations,
De Grauwe (2012) argues that excess kurtosis in GDP growth and inflation is a basic empir-
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Figure 2: Time
series of US real
GDP growth (panel
A) and US inflation
(panel B), Q2-1947
to Q4-2017.

B

Q1-50 Q1-60 Q1-70 Q1-80 Q1-90 Q1-00 Q1-10

Time

-0.02

-0.01

0

0.01

0.02

0.03

0.04

In
fla

tio
n 

ra
te

ical fact which should be explained by BNK models. He offers some evidence that a simple
BNK model can indeed generate excess kurtosis of a similar degree to that observed in US
data. Interestingly, Ascari et al. (2015), building on preceding work by Fagiolo et al. (2008),
argue that the standard NK model is incapable of matching the excess kurtosis observed in
US time series. This is fairly obvious in the linearised NK model subject to Gaussian shocks,
as a linear transformation of Gaussian noise is still Gaussian. However, they demonstrate
that a medium scale non-linear NK model is also unable to match the higher moments of
US data, even when it is subject to heavy tailed shocks. This is because the standard ad-
justment frictions in NK models, including habit persistence in consumption, adjustment
costs to capital, and so on, all serve to smooth out the effects of shocks. As a result, the
observed series become more Gaussian than the underlying shock processes.

The higher moments of US quarterly real GDP growth and the inflation rate are presented
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Figure 3: Kernel
density estimates of
US real GDP growth
(panel A) and US
inflation (panel B),
Q2-1947 to Q4-2017.
Epanechnikov kernel
used in both panels;
normal density pro-
vide for comparison.
Jarque-Bera statis-
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B

-0.02 -0.01 0 0.01 0.02 0.03 0.04

Inflation rate

0

10

20

30

40

50

60

70

80

90

100

D
en

si
ty

in table 1, and the sample characteristics of the series are illustrated graphically in the time
series in figure 2 and the kernel density plots in figure 3. As discussed in Fagiolo et al.
(2008), De Grauwe (2012), and Ascari et al. (2015), both real GDP growth and inflation
exhibit excess kurtosis. In addition, while real GDP growth is relatively symmetrical, the
inflation rate is positively skewed over the 1947 - 2017 sample period.

Finally, Branch and Evans (2007) note that stochastic volatility is an empirical regularity
in post-war US time series. This is usually explained by changes in monetary policy or shifts
in the volatility of exogenous shocks hitting the economy, with arguments surrounding the
causes of the Great Moderation being a good example of this. Branch and Evans (2007),
however, propose that endogenous switching between heterogeneous predictors in the spirit
of Brock and Hommes (1997) is an alternative explanation of stochastic volatility. Indeed,
given the basic BNK logic described in section 1, we should not be particularly surprised
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if stochastic volatility is the result. Following Branch and Evans (2007), table 2 presents
results from AR(4) models with GARCH(1,1) errors fitted to US real GDP growth and
inflation. As the results demonstrate, the ARCH and GARCH parameters for both models
are significant at the 5% level, which is consistent with the excess kurtosis reported in table
1. We can therefore state with some confidence that stochastic volatility is present in US
real GDP growth and inflation.

Thus US survey data display departures from rational expectations, and US macroeco-
nomic data display excess kurtosis and stochastic volatility. These are the basic empirical
facts that the BNK literature has sought to explain. Section 3 presents a simple BNK model,
which illustrates the basic mechanism described in section 1 in a transparent manner, and
accounts for the empirical facts discussed above.

3 A simple BNK model

3.1 The standard NK model

Consider the standard NK model in its three-equation form,

yt = Etyt+1 − (it − Etπt+1) + u1t, (1)

πt = βEtπt+1 + κ(yt + u2t), (2)

it = θππt + θyyt + u3t, (3)

where yt denotes the log output gap, πt denotes the log inflation gap, it denotes the log
interest rate gap, and it−1 − πt is the ex post real interest rate. The parameters are β, the
representative household’s discount factor, κ, the composite Phillips curve parameter, and
θπ and θy, the elasticities of the interest rate with respect to inflation and output. The
shock processes u1t, u2t, and u3t, are shocks to the effective discount factor or risk premium,
marginal costs, and monetary policy, respectively, and are usually autoregressive processes.

By substituting (3) into (1), we arrive at the two dimensional vector system,[
1 + θy θπ

−κ 1

][
yt

πt

]
=

[
1 1

0 β

][
Etyt+1

Etπt+1

]
+

[
1 0

0 κ

][
u1t − u3t
u2t

]
, (4)

which in turn yields the reduced form,

[
yt

πt

]
=

[
1

κθπ+θy+1
1−βθπ

κθπ+θy+1

κ
κθπ+θy+1

κ+β(θy+1)

κθπ+θy+1

][
Etyt+1

Etπt+1

]
+

[
1

κθπ+θy+1
−κθπ

κθπ+θy+1

κ
κθπ+θy+1

κ(θy+1)

κθπ+θy+1

][
u1t − u3t
u2t

]
. (5)

The representation of the standard NK model in (4) is useful for illustrating its connection
with the standard AD-AS model, while the reduced form in (5) will be useful when we
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consider the BNK model in section 3.2. The Blanchard-Kahn condition for saddle-path
stability is the familiar,

θπ +

(
1− β
κ

)
θy > 1, (6)

which approximates the Taylor principle for monetary policy. As discussed in section 2, the
model is unable to generate excess kurtosis unless the shock processes u1t, u2t, and u3t are
themselves heavy-tailed, and elaborations of the standard NK model are often unable to
generate excess kurtosis even in the presence of heavy-tailed shocks.

3.2 A BNK model in action

In this section, we present a simple BNK model that captures the basic insight discussed
in section 1. BNK models depart from the standard NK model by replacing the rational
expectations operator Et in (1) - (3) with a bounded rational predictor Êt, which can be
achieved using the Euler learning approach of Branch and McGough (2010) and De Grauwe
(2011). Other approaches, such as the anticipated utility approach of Massaro (2013) and
Calvert Jump et al. (2018), or the “cognitive discounting” approach of Gabaix (2016), yield
similar results. We return to these alternative approaches in section 4.

Using the Euler learning approach, the reduced form (5) remains the same as in the
standard NK case other than the incorporation of bounded rational prediction. This relies
on an aggregation result presented in Branch and McGough (2009), in which expectations
are both uniform in the steady state and possess certain linearity properties, and the law of
iterated expectations holds at both the individual and aggregate level. We then have,

[
yt

πt

]
=

[
1

κθπ+θy+1
1−βθπ

κθπ+θy+1

κ
κθπ+θy+1

κ+β(θy+1)

κθπ+θy+1

][
Êtyt+1

Êtπt+1

]
+

[
1

κθπ+θy+1
−κθπ

κθπ+θy+1

κ
κθπ+θy+1

κ(θy+1)

κθπ+θy+1

][
u1t − u3t
u2t

]
, (7)

where Êtyt+1 and Êtπt+1 are average expectations. The model is a version of the familiar
textbook AD-AS model considered in, for example, Romer (2006). However, unlike in the
textbook AD-AS model or the standard NK model, endogenous shifts in expectations in the
BNK model can amplify the effects of exogenous demand and supply shocks, resulting in
extreme events, non-Gaussian fluctuations, and stochastic volatility.

In the BNK model, these endogenous shifts in expectations are modelled using the dis-
crete choice approach of Manski and McFadden (1981) or the reinforcement learning ap-
proach discussed in Young (2004). To limit the departure from rationality, the reinforce-
ment learning approach proposes that, although adaptation can be slow and there can be a
random component of choice, the greater the net benefit from taking an action in the past,
the more likely it will be taken in the future. In the BNK literature, the net benefit from
using a predictor is usually defined as minus its squared forecasting error plus the cost of
obtaining that forecasting rule. Then, if we index the m possible predictors of a variable
xt by i ∈ N, i ≤ m, the proportion of agents njt using predictor j is updated using the
multinomial logit model,
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njt =
e−µ[(xt−1−Êjt−2xt−1)2+Cj ]∑m
i=1 e

−µ[(xt−1−Êit−2xt−1)2+Ci]
, (8)

where Ci is the cost of obtaining predictor i and µ is a speed of adjustment parameter. The
key features of (8) are that the best performing rule will attract the most followers, and
that the proportions n1t, n2t, ..., nmt sum to one in each period.

We are now in a position to fully specify a simple version of the BNK model. We suppose
that there are two possible predictors for output and inflation, an extrapolative predictor
and a fundamentalist predictor. Specifically, we propose that,

Êe
t yt+1 = yt−1,

Êf
t yt+1 = 0,

Êe
t πt+1 = πt−1,

Êf
t πt+1 = 0.

These predictors are the same as those used in chapter 1 of De Grauwe (2012), and the model
is therefore a simplified version of that model. The extrapolative rule predicts that output
and inflation will continue on their current trajectories, which is optimal in a mean squared
error sense when agents believe that output and inflation follow random walks. As the
model does in fact generate highly persistent output and inflation series, the extrapolative
predictors are also relatively accurate.

Households and firms using the fundamentalist predictor believe that output and inflation
will return to their long run averages in the next period, which is an extreme version of the
return to normality model discussed in Pesaran and Weale (2006). Agents that use this
predictor are essentially using a static forecasting mechanism, and incorporate very little
relevant information. The existence of this type of agent is supported by the evidence of
Pfajfar and Santoro (2010), who find that inflation forecasts to the left of the median forecast
are essentially static, entail significant forecast errors, and do not incorporate information
from any relevant macroeconomic statistics. Similarly, Carroll (2003) finds that only around
a quarter of the participants in the Michigan Survey update their forecasts in every quarter.
Clearly, the fundamentalist predictor is only accurate when the economy is close to the
steady state.

Denote the proportion of agents using the extrapolative predictor for output by nyt , and
the proportion of agents using the extrapolative predictor for inflation by nπt . Average
expectations at any point in time are then given by,

Êtyt+1 = nyt yt−1, (9)

Êtπt+1 = nπt πt−1, (10)

and the proportions are updated according to,

10



Table 3: Higher moments of simulated real GDP growth and inflation

Variable Standard Deviation Skewness Kurtosis

Real GDP growth 0.008 0.00 3.424

Inflation 0.007 0.00 5.457

Notes: The growth rate of real GDP is defined as yt − yt−1, recalling
that the model is specified in log deviations from the steady state.

Table 4: GARCH model results, simulated real GDP growth and inflation

Variable ARCH(1) GARCH(1)

Real GDP growth 0.06 0.40

Inflation 0.01 0.87

Notes: The estimated models are xt = β0+
∑4

s=1 βsxt−s+εt
with εt = σtzt, where zt is Gaussian white noise and σ2t =
α0 + α1ε

2
t−1 + α2σ

2
t−1. Standard errors are not given, as the

length of the simulation = 5∗105.

nyt =
e−µ[(yt−1−yt−3)2+C]

e−µ[(yt−1−yt−3)2+C] + e−µ[y
2
t−1]

, (11)

nπt =
e−µ[(πt−1−πt−3)2+C]

e−µ[(πt−1−πt−3)2+C] + e−µ[π
2
t−1]

. (12)

To reduce the number of parameters in (11) and (12), we have assumed that there is zero
cost associated with the fundamentalist predictors, and the cost C of using the extrapolative
output predictor is the same as the cost of using the extrapolative inflation predictor. Note
that the cost parameter in (11) and (12) is measured in mean squared error units.

The full model is described by (7) and (9) - (12). To simulate the model, we calibrate
the parameters shared with the standard NK model in a similar manner to Gali (2008), i.e.
β = 0.99, κ = 0.1, θπ = 1.5, θy = 0.125. To further reduce the number of parameters, we
switch off the monetary policy shock, and we calibrate the demand and supply shocks u1t, u2t
as AR(1) processes with autoregressive parameter equal to 0.9 and error standard deviations
of 0.009 and 0.012, respectively. We set the cost parameter C = 0, for the simple reason
that the nonlinear parameters in switching models of this form are notoriously difficult to
identify. This is discussed in Jang and Sacht (2016) in the context of a behavioural New
Keynesian model, and (for example) Terasvirta (1994) in the context of smooth transition
autoregressive models. In order to concentrate on a single nonlinear parameter, we therefore
set C equal to zero and choose the adjustment parameter µ using a simple moment matching
routine described in appendix A; this results in µ = 210.

Higher moments of the simulated output series are presented in table 3. These compare
favourably with the empirical moments presented in table 1, although the model generates
lower kurtosis for output growth and higher kurtosis for inflation compared to the US data.
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Figure 4: Time
series of simulated
real GDP growth
(panel A) and in-
flation (panel B),
t = 300, 000 to
t = 300, 283, using
the simple BNK
model in section 3.2.
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In addition, the model cannot capture the positive skewness in US inflation, which is un-
surprising as there are no structural asymmetries. Notwithstanding the lack of skew, it is
reasonable to conclude that the model can account for the non-normality observed in US
output and inflation in a relatively successful manner, given its simplicity. In particular,
as illustrated in figure 4, the probabilities of deep recessions and inflationary episodes are
non-negligible.

Results from estimating AR(4) models with GARCH(1,1) errors on the simulated data
are presented in table 4. The results are qualitatively similar to those of the equivalent
models estimated on US data, although the ARCH(1) parameters are somewhat lower than
those in table 2, particularly for the simulated inflation series. This should still be consid-
ered a success, however, as the GARCH estimates were not used in the moment matching
routine used to calibrate the model. Finally, figures 5 and 6 demonstrate that the simulated
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Figure 5: Auto-
correlation functions
of simulated and
empirical (US) real
GDP growth (panel
A) and inflation
(panel B), using the
simple BNK model
in section 3.2.
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autocorrelations and cross-correlations compare favourably with the US data, with GDP
growth negatively correlated with the previous year’s inflation rate. This, however, is to be
expected, as it is known that the linear NK model is capable of adequately matching the
second moments of US output and inflation. Appendix B examines the robustness of these
results to alternative interest rate rules and an alternative parameterisation.

3.3 The BNK mechanism

To understand how the model generates excess kurtosis and stochastic volatility, consider a
trajectory near the steady state. Households and firms using the extrapolative predictors
believe that output and inflation will remain close to the steady state, and households and
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Figure 6: Cross-correlogram of simulated and empirical GDP growth and lagged inflation,
using the simple BNK model in section 3.2. Precisely, the graph is of corr[∆yt, πt+Lag].

firms using the fundamentalist predictors believe the same. The two sets of predictors
will therefore have similar forecasting errors, and given a non-negative cost to using the
extrapolative predictors, most agents will be using the fundamentalist predictors. The
variance of output and inflation will be relatively low as a result, with the covariance matrix
when all agents are using the fundamentalist predictors given by,

Var

[
yt

πt

] ∣∣∣∣
nyt=n

π
t =0

=

[
1

κθπ+θy+1
−κθπ

κθπ+θy+1

κ
κθπ+θy+1

κ(θy+1)

κθπ+θy+1

]
Var

[
u1t − u3t
u2t

][
1

κθπ+θy+1
−κθπ

κθπ+θy+1

κ
κθπ+θy+1

κ(θy+1)

κθπ+θy+1

]T
.

(13)

Now, consider a demand or supply shock that moves the economy away from the steady
state. The mean squared forecasting error of the fundamentalist predictors will quickly
become greater than the mean squared error of the extrapolative predictors, and households
will switch to using the latter following the reinforcement learning processes in (11) and
(12). Thus, following an impulse that pushes the economy away from the steady state,
households and firms switch to using the extrapolative predictors. In comparison to (13),
the covariance matrix of output and inflation when all agents are using the extrapolative
predictors is given by,

vec

(
Var

[
yt

πt

] ∣∣∣∣
nyt=n

π
t =1

)
= (I4×4 − (A⊗ A))−1 vec

(
Var

[
yt

πt

] ∣∣∣∣
nyt=n

π
t =0

)
, (14)
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A Figure 7: Panel
A: Scatter plot of
|Êet yt+1 − Êft yt+1|
against time t + 1
output. Panel B:
Scatter plot of nyt
against time t out-
put, both using the
simple BNK model
in section 3.2.

B

see Hamilton (1994, 265), with,

A =

[
1

κθπ+θy+1
1−βθπ

κθπ+θy+1

κ
κθπ+θy+1

κ+β(θy+1)

κθπ+θy+1

]
. (15)

As the eigenvalues of A are inside the unit circle, the eigenvalues λ of A⊗A are also inside
the unit circle. The eigenvalues of I4×4 − (A ⊗ A) are then 1 − λ, and the eigenvalues of
(I4×4 − (A ⊗ A))−1 are given by (1 − λ)−1. As a result, (14) generally results in greater
variances of output and inflation than (13), and volatility increases as agents start to use
the extrapolative predictors.

Now consider a trajectory away from the steady state. Households and firms using the
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Figure 8: Kernel density estimate of nyt , i.e. the proportion of agents playing the extrapola-
tive forecasting rule for GDP at time t. Epanechnikov kernel used; normal density provided
for comparison.

extrapolative predictors believe that output and inflation will remain away from the steady
state, so most agents will be using these predictors in the absence of large shocks. However,
any shock that pushes the economy towards the steady state will lead to households and firms
switching towards the fundamentalist predictors, which stabilises the model given (13) and
(14). Thus households and firms switch to the destabilising extrapolative predictors when
the economy is pushed away from the steady state, and switch to the stabilising fundamen-
talist predictors when the economy is near the steady state. Given the foregoing, the effects
of exogenous demand and supply shocks are amplified by non-linear behavioural changes,
which appears to be a sufficient condition for excess kurtosis and stochastic volatility in the
New Keynesian model1.

Figure 7 illustrates this mechanism in action. Panel A demonstrates that the difference
between the extrapolative and fundamentalist forecasts of output are low when the economy
is near the steady state, and progressively increases as the economy moves away from the
steady state. This can be compared to the scatter diagrams of empirical forecast dispersion
presented in figure 1. Panel B demonstrates that the proportion of agents playing the
extrapolative predictor for output is low when the economy is near the steady state, and
increases as the economy moves away from the steady state. This results in a highly volatile
series for nyt , and the attractor in panel B of figure 7 can be usefully compared to the chaotic
attractors in figures 1 and 5 of Brock and Hommes (1997). In fact, as illustrated in figure
8, the distribution of nyt is highly non-normal with positive skew and excess kurtosis, and a
long run average of approximately 0.54 under the baseline parameterisation.

The basic empirical facts that the BNK literature has set out to explain are departures
from rational expectations, excess kurtosis, and stochastic volatility. A simple BNK model

1Interestingly, this particular BNK model is locally stable if the corresponding rational expectations
model is stable, i.e. if (6) holds. This is discussed in appendix C in more detail, but is not a general result.
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appears to successfully account for these facts, reinforcing the evidence presented in Branch
and Evans (2007) and De Grauwe (2012). We therefore consider the BNK framework to be
a promising way to incorporate a number of the criticisms of mainstream economics into
the standard NK model. To encourage further work on BNK models, section 4 presents a
bird’s eye view of the literature, including elaborations and extensions of the basic model,
and suggests key areas for future research.

4 An overview of the literature

Having discussed the intuition behind BNK models, and established that a simple BNK
model accounts for the excess kurtosis, stochastic volatility, and departures from rational
expectations observed in US data, we now provide an overview of the BNK literature. In
section 4.1 we discuss the basic model in its various forms, then in section 4.2 we discuss
various extensions and elaborations.

4.1 The basic model

The first model to add endogenous switching between heterogeneous predictors to the stan-
dard NK model is contained in Branch and McGough (2010). This builds on previous work
contained in Branch and McGough (2009), which incorporated heterogeneous predictors into
the standard NK model, but with fixed proportions of agents using each predictor. In the
latter paper, the authors note that Mankiw et al. (2003) document disagreements in survey
data on expectations, and Branch (2004) finds that survey data on expectations are consis-
tent with a dynamic discrete choice model of a form similar to (8). As discussed in section 1,
the models in Branch and McGough (2009, 2010) evolved from a number of previous studies
conducted by William Branch and his co-authors on heterogeneous expectations.

The authors draw attention to the difference between their approach and other forms of
simple heterogeneity in NK models, including the rational-myopic distinction of Gali et al.
(2004) and the learning literature following Evans and Honkapohja (2001)2. In the latter
approach, agents have access to a predictor which is consistent with the minimum state
variable form of the rational expectations equilibrium, but have to estimate the parameters
in real time. In the approach of Branch and McGough (2010), agents have access to an
incorrectly specified predictor and a rational expectations predictor, but the latter has a
fixed cost of access. The standard NK part of the model is almost identical to the model
considered in section 3.1, but instead of (3) the central bank sets the nominal interest rate
according to,

it = θπÊtπt+1 + θyÊtyt+1 + u3t. (16)

The interest rule in (16) is an expectations-based rule, and combined with (1) - (2) yields
the reduced form,

2It is also somewhat different to the later approaches of of Kurz et al. (2013), Gabaix (2016), and
Woodford (2018).
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[
yt

πt

]
=

[
1− θy 1− θπ

κ(1− θy) β + κ(1− θπ)

][
Êtyt+1

Êtπt+1

]
+

[
1 0

κ κ

][
u1t − u3t
u2t

]
. (17)

However, unlike in the simple BNK model considered in section 3.2, Êtyt+1 and Êtπt+1 are
not entirely backwards looking in Branch and McGough (2010). Instead, we have,

Êtyt+1 = nytEtyt+1 + (1− nyt )φ2yt−1, (18)

Êtπt+1 = nπt Etπt+1 + (1− nπt )φ2πt−1, (19)

i.e. nyt agents forecast output using the rational expectations predictor, and 1− nyt forecast
output using a simple backwards looking predictor, with a similar process in place for in-
flation. As pointed out in Branch and McGough (2010), bounded rational agents dampen
past data in forming expectations when φ < 1, and believe future output and inflation will
diverge when φ > 1. The case we use in section 3.2, φ = 1, is the baseline case used in Brock
and Hommes (1997). Ceteris paribus, the BNK model is more unstable over a greater part
of the parameter space when φ > 1, and a smaller part of the parameter space when φ < 1.

As in (8), households and firms in Branch and McGough (2010) choose their predictor
each period according to a reinforcement learning rule, with the rational expectations pre-
dictor having a fixed cost associated with it. Under certain parameterisations the steady
state conditional on nyt = 1 is a sink, and the steady state conditional on nyt = 0 is a source.
Around the steady state, however, it is optimal for households and firms to use the back-
wards looking predictor to save on the cost of accessing the rational expectations predictor,
hence nyt falls. Away from the steady state, the backwards looking predictor becomes so
inaccurate that it pays to use the rational expectations predictor despite its cost, hence nyt
rises. Thus the steady state can become locally unstable but globally stable via a Hopf
bifurcation, which can rapidly lead to chaotic dynamics as a bifurcation parameter is varied.

The dynamics of the model in Branch and McGough (2010) follow the basic logic de-
scribed in section 1, although in the deterministic model this logic gives rise to limit cycles
and chaotic dynamics rather than stochastic volatility. A similar model, apparently de-
veloped independently, is presented in De Grauwe (2011). This uses the standard NK
framework in (1) - (3), although structural lags in output and inflation are allowed for. The
major difference between De Grauwe (2011) and Branch and McGough (2010) is the absence
of rational expectations in the former. Instead, Êtyt+1 and Êtπt+1 are given by,

Êtyt+1 = nyt gt + (1− nyt )(−gt), (20)

Êtπt+1 = nπt π
T + (1− nπt )πt−1, (21)

where the difference between gt and −gt is an increasing function of the standard deviation
of output, and πT is the central bank’s inflation target. Households and firms switch between
optimistic and pessimistic output forecasts in this model, and inflation forecasts that imply
varying degrees of belief in the official target of the central bank. Again, the dynamics of
the model follow the basic logic described in the introduction, although the paper is mainly
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concerned with the implications of endogenous waves of animal spirits for the conduct of
monetary policy.

The structural simplicity of the models discussed in Branch and McGough (2010),
De Grauwe (2011), and section 3.2 of the present paper, is made possible by the use of
Euler equation learning. An important alternative approach is the use of anticipated utility,
or infinite horizon learning. This was introduced in Kreps (1998), used in a standard New
Keynesian framework in Preston (2005), and used in a heterogeneous expectations frame-
work in Massaro (2013). In this model, households solve their utility maximisation problem
conditional on point expectations by taking into account their intertemporal budget con-
straint and associated transversality condition, as well as the consumption Euler equation.
Specifically, households in Massaro (2013) maximise their intertemporal utility function,

Êit

∞∑
s=t

βs−t
(
C1−σ
is

1− σ
− χH

1+γ
is

1 + γ

)
, (22)

where households are indexed by i and H denotes labour supply, subject to the flow budget
constraint,

Cit +Bit ≤ WtHit + It−1Π
−1
t Bit−1 +Dt, (23)

where Bt denotes bond holdings, It denotes the gross nominal interest rate, and Dt de-
notes dividends received by firms. Using lower case variables to denote log deviations from
the steady state, Massaro (2013) demonstrates that (22) and (23) in conjunction with the
associated transversality condition lead to a consumption rule of the form,

cit = Êit

∞∑
s=t

βs−t (ζwws + ζdds)− βÊit
∞∑
s=t

βs−t (is − πs+1) , (24)

where ζw and ζd are composite parameters, and we have imposed bit = 0 and σ = 1 for
simplicity. Consumption is thus increasing in expected future income flows, and decreasing
in expected future real interest rates.

By aggregating across households, and imposing various equilibrium conditions, one can
show that (24) implies an aggregate consumption function of the form,

ct = (1− β)Êt

∞∑
s=t

βs−tys − βÊt
∞∑
s=t

βs−t (is − πs+1) . (25)

Massaro (2013) considers a general expectations structure, but if we make the restrictive
assumptions that Êtys = yt for all s > t, Êtπs = πt−1 for all s > t, and that Êtis = it for all
s > t, then (25) reduces to,

ct = yt −
(

β

1− β

)
(it − πt−1) . (26)

This is an example of an anticipated utility consumption function, where agents maximise
utility conditional on their current beliefs. This approach is similar to, but distinct from,
the internal rationality approach in which agents, “maximize utility under uncertainty, given
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their constraints and given a consistent set of probability beliefs about payoff-relevant vari-
ables that are beyond their control or external” (Adam and Marcet, 2011). The approach of
Adam and Marcet (2011) requires a fully Bayesian plan for beliefs, as opposed to the antici-
pated utility approach, in which households do not consider the possibility that their beliefs
might change in the future. The latter is obviously more straightforward than the former,
although Cogley and Sargent (2008) demonstrate that the anticipated utility approach can
be seen as a good approximation to the fully Bayesian approach.

Calvert Jump et al. (2018) introduce anticipated utility into the basic BNK model by
allowing agents to switch between anticipated utility and rational expectations in essentially
the same manner as Branch and McGough (2010). They demonstrate that the NK Phillips
curve with nt rational firms and 1− nt anticipated utility firms is given by,

πt = nt(βEtπt+1 + κyt) + (1− nt)(δβπt−1 + κψyt), (27)

when Êtπt+1 = πt−1, where δ and ψ are composite parameters, but otherwise the notation is
identical to that in section 3. Indeed, when nt = 1 the Phillips curve in (27) is identical to
the standard NK Phillips curve in (2). Either by making use of the consumption function
in (26), or assuming that profit income is split across households according to their relative
importance in the economy, Calvert Jump et al. (2018) then derive the equilibrium condition
it = πt−1 as a special case. This substantially simplifies the model, and the reduced form
becomes,

Etπt+1 =
[
ζ1 + ζ2

(
1 + e−µ((πt−πt−2)2−C)

)]
πt −

[
ζ3 + ζ4

(
1 + e−µ((πt−πt−2)2−C)

)]
πt−1,

where ζ1 - ζ4 are composite parameters, but otherwise the notation is as before. While
the basic mechanism in the anticipated utility BNK model is essentially identical to that of
Branch and McGough (2010), the simplicity of the reduced form allows analytical stability
results to be derived.

The basic BNK model adds heterogeneous predictors and discrete choice dynamics to the
standard NK model. This has been done using Euler learning alongside rational expecta-
tions, as in Branch and McGough (2010), anticipated utility alongside rational expectations,
as in Calvert Jump et al. (2018), and Euler learning alongside a set of misspecificed pre-
dictors, as in De Grauwe (2011). Section 4.2 surveys some of the ways in which this basic
model has been extended.

4.2 Extensions to the basic model

The main use of the BNK model, and the various extensions to it, has been the examination
of monetary policy conduct. De Grauwe (2012), for example, points out that strict inflation
targeting in the presence of demand shocks, while being optimal in a standard NK model, is
not necessarily desirable in a BNK model. This is because output stabilisation in the latter
can, to some extent, eliminate extreme swings between optimists and pessimists, which
in turn can reduce excess kurtosis in the output gap. Di Bartolomeo et al. (2016) use the
linear-quadratic approach to compute optimal monetary policy in the Branch and McGough
(2009) model, and find that central banks aiming to reduce consumption variability should
set monetary policy to reduce the cross-sectional variability of expectations.
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In general, the Taylor principle is neither necessary nor sufficient for determinacy and
stability in BNK models. As originally discussed in Branch and McGough (2010), small
amounts of heterogeneity can ensure determinacy in models which would otherwise be in-
determinate under homogeneous rational expectations, and cause indeterminacy in models
which would otherwise be determinate under homogeneous rational expectations. This is
discussed in more detail in Branch and McGough (2018). In addition, even when the Taylor
principle is desirable, the rationale for aggressive inflation targeting is quite different in BNK
models compared to the standard NK model. This is discussed in Anufriev et al. (2013),
who argue that central banks can force households and firms to converge on stabilising
expectations by responding aggressively to inflation.

Although the Taylor principle is neither necessary nor sufficient in the general case, there
are notable examples of NK models with heterogeneous expectations in which it remains
an important guide to monetary policy. Pecora and Spelta (2017), for example, present a
model in which the Taylor condition is sufficient for stability, although convergence to the
steady state can be very slow. The Taylor condition is also sufficient for stability in the
Calvert Jump et al. (2018) model when the proportion of rational agents is fixed, and is
sufficient for local stability in the case of strategy switching. As the main difference between
the Branch and McGough (2010) and Calvert Jump et al. (2018) models - aside from the
use of anticipated utility in the latter - is the use of an expectations-based monetary policy
rule in the former, this suggests that policy rules that react to expectations are undesirable
in BNK models. This is consistent with the conclusions of Eusepi and Preston (2018) in
their review of monetary policy under imperfect knowledge, i.e.,

[I]mperfect knowledge and learning can limit the set of policies available to cen-
tral banks, rendering aggregate demand management and inflation control in
general more difficult than under rational expectations . . . Importantly, the de-
pendence of monetary policy on expectations must be of a very specific kind. For
example, simple rules that respond to a measure of inflation expectations, while
often desirable in a rational expectations analysis, can lead to macroeconomic
instability. (Eusepi and Preston, 2018, 4-5).

While the results in Branch and McGough (2010) are robust to the use of a monetary
policy rule that reacts to optimal forecasts, to the best of our knowledge robustness to the
standard policy rule in (3) has not been investigated. This would be a useful exercise, given
the conclusions of Eusepi and Preston (2018). The intuition behind the undesirability of
expectations-based policy rules in BNK models is relatively straightforward given that, at
the most basic level, the nominal interest rate has to vary such that the real interest rate
is pro-cyclical in New Keynesian models. In BNK models, inflation expectations may not
correspond particularly closely to actual inflation, so any policy rule that reacts strongly to
expectations will not necessarily induce stabilising real interest rate dynamics.

An interesting extension to BNK investigations of monetary policy is contained in De-
mary (2017), who demonstrates that an extended version of the De Grauwe (2012) model
replicates empirical term structure data. Among other things, he demonstrates that long
term inflation expectations determine the level of the yield curve, while monetary policy de-
termines its slope. As discussed by Anufriev et al. (2013), the central bank can force private
expectations away from extrapolative inflation expectations by reacting aggressively to the
inflation rate, but this action can result in a volatile yield curve in the model discussed in
Demary (2017). This has obvious implications for fiscal policy, and there may be interesting
implications for the interaction of monetary policy and public debt dynamics. Although
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the policy interaction problem is yet to be examined in a BNK framework, Gasteiger (2017)
discusses the issue in a Neoclassical model with heterogeneous expectations.

Aside from the various analyses of aggregate demand management, the basic BNK model
has also been extended to analyse credit cycles and house price cycles. The former have been
examined in De Grauwe and Macchiarelli (2015) and De Grauwe and Gerba (2018). These
papers follow the basic model set out in De Grauwe (2011), but add a banking sector which
charges a mark-up over the central bank interest rate. Following the financial accelerator
approach of Bernanke et al. (1999), this mark-up is a decreasing function of firm sector
equity, which in turn is pro-cyclical. Then, for example, a negative monetary policy shock
reduces output and inflation in the normal manner, which reduces firm sector equity, which
in turn increases the spread charged by private banks over the central bank rate. This
basic financial accelerator mechanism is amplified if private agents converge on a pessimistic
predictor as a consequence of the initial shock.

A similar mechanism is presented in Bofinger et al. (2013), which incorporates the BNK
mechanism into a fairly standard house price model. They specify patient and impatient
households, where impatient households face a collateral constraint that ties their borrowing
to the expected present value of their future housing stock. As in the standard financial ac-
celerator mechanism, an expansionary shock increases activity, which increases house prices,
which loosens the collateral constraint on impatient households’ borrowing. Thus the ef-
fects of the initial shock are amplified as impatient households borrow more, increasing
house prices further. Following the same logic as in De Grauwe and Macchiarelli (2015)
and De Grauwe and Gerba (2018), the boom can then become self sustaining if the initial
increase in house prices causes households to converge on an optimistic predictor. As non-
house price inflation does not immediately increase following an increase in house prices
in this model, the authors demonstrate that there is a meaningful role for a house price
augmented Taylor rule in economies prone to house price booms. As in De Grauwe (2012),
this extended monetary policy rule can dampen extreme swings between optimism and pes-
simism, thus stabilising output and inflation dynamics as a by-product of stabilising house
prices.

Adding bounded rationality via the BNK logic to standard financial accelerator models
captures the “new era story” emphasised by Akerlof and Shiller (2009) in their theories
of animal spirits and irrational exuberance, or the “speculative mania” and “euphoria” of
Kindleberger (1978) and Minsky (1982). The policy implications are intuitive, and if one’s
aim is to account for the mechanisms driving events like the 2008 financial crisis, some
departure from the strict rational expectations hypothesis is arguably necessary. Consider
Alan Greenspan’s discussion of the reasons that economists failed to predict the 2008 crisis:

What went wrong? Why was virtually every economist and policy-maker of note
so blind to the coming calamity? How did so many experts, including me, fail to
see it approaching? I have come to see that an important part of the answers to
those questions is a very old idea: “animal spirits,” the term Keynes famously
coined in 1936 to refer to “a spontaneous urge to action rather than inaction.”
(Greenspan, 2013, 89).

However, as Greenspan also points out, departures from strict rationality are more pre-
dictable than economists have traditionally understood, and such behaviour, “can be mea-
sured and should be made an integral part of economic forecasting and economic policy-
making” (ibid.). This is a useful summary of the BNK research programme.
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5 Where next?

The BNK research programme, along with similar approaches in the broader macroeco-
nomic research community, continues to expand. Recent papers have examined optimal
linear-quadratic policy in the framework of Massaro (2013), and the impact of heteroge-
neous expectations on fiscal consolidations in a New Keynesian setting (Beqiraj et al., 2017;
Hommes et al., 2018). Aside from further work on fiscal policy, which is relatively neglected
compared to monetary policy in the BNK literature, an important area for further work is
the role of bounded rationality and heterogeneity in the open economy setting. This would
appear to be a particularly important application of the logic described in the present paper,
given the well recorded evidence of non-linearities and stochastic volatility in exchange rate
dynamics (Moosa, 2000). However, at the time of writing, there are only two working pa-
pers examining open economy issues from a BNK perspective (Jang, 2015; Bertasiute et al.,
2018), and a single published article (De Grauwe and Ji, 2017).

Alongside the foregoing, future work should focus on estimation. Without a considerably
improved empirical basis for BNK models - aside from the descriptive statistics discussed in
this paper and elsewhere - it is unclear why central banks, or any other policy institutions,
should replace the standard NK framework in their forecasting and policy analyses. In
particular, it would be useful to know whether or not the incorporation of reinforcement
learning and heterogeneous expectations into the type of large NK model used in central
banks would have the same effects as in the small NK model considered in the present paper.
As heavy-tailed shocks are filtered out by the transmission mechanisms of large scale NK
models (Ascari et al., 2015), it is not impossible that a similar effect could operate on the
BNK mechanism.

Estimation of BNK models could be pursued using likelihood based methods, Bayesian
or otherwise, which employ filtering methods to approximate the evolution of unobserved
state variables, or moment based methods, which match simulated artificial moments with
corresponding empirical moments3. Deak et al. (2015) provides an application of the first
method to a log-linearised BNK model with exogenous proportions of agents with and
without rational expectations, and Jang and Sacht (2016) provide an application of the
second method to a complete BNK model. Franke et al. (2015) compares the two approaches
through the lens of the workhorse New Keynesian model with habit in consumption and
price indexing. Cornea-Madeira et al. (2017) estimate a New Keynesian Phillips curve with
heterogeneous expectations and reinforcement learning, but aside from these papers there
are very few attempts to estimate BNK models.

Since BNK models are highly non-linear, the advantages and disadvantages of maxi-
mum likelihood versus moment matching should be considered in relation to their ability to
estimate non-linear models, rather than their log-linearised counterparts. For the method
of moments, non-linearities do not pose a particular problem, but this is not the case for
likelihood methods. In addition, moment matching is considered to perform relatively well
when models are misspecified. However, this estimation method is subject to some im-
plementation problems, including the relatively arbitrary choice of relevant moments, the
high computational cost if moments have to be simulated, and the often unknown sampling
distributions of empirical moments in short samples. The use of the sample coefficient of
kurtosis as a population kurtosis estimator, for example, is known to perform very poorly

3See Fernandez-Villaverde et al. (2016) for a comprehensive survey of many of the issues we raise here.
We thank Rodolfo Arioli for considerable help with this sub-section.
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in short samples (Bai and Ng, 2005).
In comparison to moment matching, maximum likelihood estimation requires filtering

techniques to approximate the likelihood function when unobserved state variables are
present. There are two approaches to this when the shape of the density is unknown -
the local (Gaussian) approach, or the global approach. An important example of the latter
is the particle filter, as in Fernandez-Villaverde et al. (2015), where it is used to estimate
a DSGE model with stochastic volatility. While global methods can produce unbiased es-
timates of the likelihood function, they are computationally expensive and suffer from the
curse of dimensionality as model size increases. Local methods, on the other hand, enable
linear filtering techniques to be applied to medium and large scale models, and can often
result in acceptable precision compared to particle filters (Arasaratnam and Haykin, 2009;
Meyer-Gohde, 2014; Kollmann, 2017).

The various advantages and difficulties of the moment-based and likelihood-based ap-
proaches, combined with the small number of papers that estimate BNK models, make
it very difficult to suggest a specific avenue for future empirical work. However, work
by Del Negro and Schorfheide (2008) and Christiano et al. (2011) on Bayesian maximum
likelihood with “endogenous” priors combines the benefits of likelihood and moment-based
estimation, which may be a promising agenda to pursue. Alternatively, the approach of pe-
nalised indirect inference recently proposed by Blasques and Duplinskiy (2018) allows some
of the benefits of Bayesian inference to be incorporated into a frequentist moment matching
estimator, and might also be a profitable avenue for future empirical work. Applying either
of these estimation strategies, and others that we have not considered, is an important next
step in the evolution of the BNK research programme.
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Appendices

A Moment matching routine

The standard NK part of simple BNK model in section 3.2 is calibrated in a similar manner
to Gali (2008), i.e. β = 0.99, κ = 0.1, θπ = 1.5, θy = 0.125. We further calibrate the shock
processes u1t and u2t as AR(1) processes with autoregressive parameter equal to 0.9 and error
standard deviations of 0.009 and 0.012, respectively, and set C = 0 to reduce the number
of non-linear parameters. We are then left with the choice for µ. This is calibrated using
a simulated minimum distance routine. Denote the 4D vector of the simulated standard
deviations of output growth and inflation and the simulated coefficients of kurtosis of output
growth and inflation by zmod, i.e.,

zmod = [std(∆yt), std(πt), kurt(∆yt), kurt(πt)]
T. (A.1)

Denote the 4D vector of the empirical standard deviations of output growth and inflation
and the empirical coefficients of kurtosis of output growth and inflation by zemp, i.e.,

zemp = [std(∆ỹt), std(π̃t), kurt(∆ỹt), kurt(π̃t)]
T, (A.2)

where ∆ỹt is the growth rate of real output, and π̃t is the growth rate of the GDP deflator,
using US data downloaded from the FRED database on 24/04/2018. Note that the linear
NK model is derived with πt as the log inflation gap, but as the US inflation rate can be
negative we conduct the empirical exercises under the assumption that πt is the inflation
rate. Given (A.1) and (A.2), we choose µ to minimise the Euclidean norm of zmod − zemp,
i.e.,

µ = argmin ||zmod(µ)− zemp||, (A.3)

where the Euclidean norm of some vector z with n elements is given by ||z|| = (
∑n

i=1 |zi|2)0.5.
We evaluate (A.3) using the fminbnd routine in Matlab, which is a minimisation algorithm
based on golden section search and parabolic interpolation. We limit the parameter space
to µ ∈ (0, 1000), which results in a minimum at µ ≈ 210.
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B Alternative parameterisations

In this appendix we present descriptive statistics based on two alternative monetary policy
rules and one alternative parameterisation. The alternative monetary policy rules are,

it = θππt−1 + θyyt−1, (B.4)

it = θπÊtπt+1 + θyÊtyt+1, (B.5)

where (B.4) is the “lagged data” Taylor rule in Bullard and Mitra (2002), and (B.5) is the
“forward expectations” Taylor rule in the same paper, also used in Branch and McGough
(2010). The simulations with these alternative Taylor rules use the baseline parameterisa-
tion. In addition we simulate an alternative parameterisation of the baseline model in which
κ = 0.3, as in Clarida et al. (2000) and Bullard and Mitra (2002). The results are presented
in tables B.1 and B.2 below. They are qualitatively similar to the results reported in the
main body of the paper, i.e. they display excess kurtosis and conditional heteroskedasticity.

Table B.1: Higher moments of simulated real GDP growth and inflation

Model Variable Standard Deviation Skewness Kurtosis

“lagged data” rule
Real GDP growth 0.010 0.00 3.875

Inflation 0.007 0.00 7.767

“forward exp.” rule
Real GDP growth 0.012 0.00 5.789

Inflation 0.015 0.00 20.811

alternative κ
Real GDP growth 0.007 0.00 3.050

Inflation 0.013 0.00 3.570

Table B.2: GARCH model results, simulated real GDP growth and inflation

Model Variable ARCH(1) GARCH(1)

“lagged data” rule
Real GDP growth 0.09 0.21

Inflation 0.03 0.87

“forward exp.” rule
Real GDP growth 0.13 0.38

Inflation 0.06 0.87

alternative κ
Real GDP growth 0.01 0.15

Inflation 0.05 0.9
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C Stability properties of the simple BNK model

As is well known, a purely forward looking linear model of the form,

Etzt+1 = Bzt + Cut, (C.6)

where zt is some vector of endogenous variables and ut is some vector of stationary exogenous
variables, requires all eigenvalues of B outside the unit circle for determinacy. It is therefore
the case that the equivalent statement of the model,

zt = AEtzt+1 + Dut, (C.7)

requires all eigenvalues of A inside the unit circle for determinacy, as A = B−1. Now, we note
that the simple behavioural New Keynesian model with Euler learning outlined in section
3.2 simply replaces Et with Êt in (C.7), i.e.,

zt = AÊtzt+1 + Dut, (C.8)

where Êt is some bounded rational predictor. For stability analysis we can ignore the
stochastic part of the model, so (C.7) and (C.8) become,

zt = Azt+1, (C.9)

zt = AÊtzt+1. (C.10)

Consider the specification of bounded rational expectations in section 3.2 conditional on
some value of n ∈ [0, 1], i.e. Êtzt+1 = nzt−1, where n is the proportion of extrapolative
agents. (C.10) therefore becomes,

zt = Anzt−1, (C.11)

or,

zt = Azt−1, (C.12)

where A = An. If λ are the eigenvalues of A and ϕ are the eigenvalues of A, then λ = nϕ.
Thus if ϕ are all inside the unit circle then λ are all inside the unit circle, as n ∈ [0, 1].

From the foregoing, it follows that determinacy of the forward looking rational expecta-
tions model in (C.7) is sufficient for stability of the behavioural New Keynesian model in
(C.8) for an arbitrary value of n. In addition, it follows that determinacy of the model in
(C.7) is sufficient for local stability of the behavioural New Keynesian model when n is some
function of z, as long as the gradient of that function is zero at the steady state as in (11)
and (12). The result will generally cease to hold when different predictor functions are used
by bounded rational agents, different policy rules are used, or backwards looking variables
are added to the model, as in the literature on more complex models reviewed in section 4.
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