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Abstract

When the discount factors that infinite lived consumers use at each date are not

predetermined but are instead chosen within some set, depending on what the consump-

tion plan is, impatience might not hold. More precisely, if the utility is the infimum

of discounted utilities over that set of discount factor sequences, then preferences may

be just upper semi-impatient. Such lack of lower semi-impatience, which we refer to as

wariness, consists in neglecting distant gains but not distant losses. Examples are the

precautionary case (a concern with the worst lifetime outcome) and the habit persis-

tence case (a concern with a fall in living standards). The implementation of efficient

allocations by trading assets sequentially requires taxes that avoid excessive savings

by raising the opportunity of cost of saving up to the point of matching the marginal
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benefit of dishoarding at distant dates. Taxes on equilibrium plans are zero in many

contexts.

JEL classification: D53, E40, E41, G10 .

Keywords: general equilibrium; monetary equilibrium; efficient taxation; endogenous

discounting; transversality condition; pure charges
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1 Introduction

1.1 Endogenous discounting and wariness

This paper reexamines some core questions on the efficient consumption and assets ac-

cumulation in the light of a reformulation of the way infinite lived agents discount the

future. We depart from the classical discounted utility assumption. Consumers are unsure

which discount factor to use and end up choosing it within some set, depending on what

the consumption plan might be. More precisely, consumers discount each consumption

plan using the most adverse discount factor, the one for which the discounted utility se-

ries is the infimum of the series over that choice set. This modelling of time preferences

constitutes a form, perhaps the ultimate form, of endogenous discounting. We can trace

its roots to Geoffard (1996) minmax variational problem, where it was motivated on the

grounds that it may be difficult to define the discount factor and, therefore, may be more

intuitive to look for the utility in the worst case scenario, when the discount factor is more

adverse. Non-choice theoretic forms of endogenous discounting, where the discount factor

is endogenously determined from the optimal consumption plan but the resulting utility is

still recursive, as in Koopmans (1960) or Uzawa (1968), were shown by Geoffard (1996) to

be particular cases of his variational approach. Nice surveys of departures from traditional

exogenous discounting were provided by Backus (2004) and Hansen (2004). The latter dis-

cusses also the importance of endogenous discounting for the macroeconomics literature on

misspecification of preferences and robust control, as in Hansen and Sargent (2001, 2008).

The unawareness about the discount factor may be particularly interesting in the dynas-

tic interpretation of what an infinite lived agent is: the agent may know her own discount

factor but ignores how her descendants will discount the future. The worst case scenario

form of endogenous discounting has important consequences for the consumers’ impatience.

Impatience is usually formalized in terms of the continuity of preferences with respect to
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the Mackey topology on the space of bounded consumption sequences1. Preferences are

now only known to be upper semi-impatient, since the infimum of Mackey continuous util-

ities, over some set of discount factors, can only be shown to be upper semi-continuous.

The lack of lower semi-impatience, which we refer to as wariness, means that distant losses

may not be ignored, even though gains at distant dates will be.

1.2 Wariness and pure charges in AD prices

The existence Theorem 1 in Bewley (1972) ensures that Arrow-Debreu equilibrium exists,

in spite of the Mackey lower-discontinuity in preferences, but the prices will be in the dual

space (the space of bounded finitely additive set functions) rather than in the pre-dual (the

space of summable sequences), since a pure charge may be present in the price functional.

A recent work by Khan and Stinchcomb (2016) contemplates also patient preferences and

AD prices in the dual space but questions the whole idea of discounting and uses the notion

of overtaking optimality due to Weizsacker (1965) .

We show2 that AD prices have pure charges precisely when the the series of discounted

utilities does not converge uniformly on the set of possible discount factors. Such non-

uniformity occurs in two interesting cases. One case (where the infimum is taken over

discount processes bounded from below by the epsilon-contamination capacity induced by

a given discount factor) leads to precautionary preferences: a convex combination of a

discounted utility and the infimum of the lifetime utilities. The consumer is particularly

worried about the worst lifetime outcome3. The other case leads to habit persistence

preferences: for another set of discount priors, we get a convex combination of a discounted

utility and the infimum of average utilities up to each date. The consumer dislikes a fall

1These impatience (or myopia) notions were developed by Brown and Lewis (1981), Araujo (1985), Raut

(1986) and Sawyer (1987). See also Mas-Colell and Zame (1991).
2See our Theorem 1.
3These preferences are related to the Rawlsian utility (which would be just that infimum), mentioned

in Araujo (1985), but now the presence of the series of discounted utility makes preferences monotonic.
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in the standard of living, measured in terms of average utility up to then.

Pure charges in AD prices are linear functionals (on the space of bounded consumption

sequences) that consist of a generalized limit (a functional assigning to each sequence a

value within its liminf and its limsup, coinciding with the limit when it exists) multiplied

by a scalar (the norm of the functional) which can be interpreted as the marginal utility

at infinity. The latter is non-null in the two cases mentioned above when the infimum of

consumption (in the precautionary case) or the infimum of consumption averages (in the

habit persistence case) are attained at infinity.

1.3 Sequential implementation

The sequential implementation of AD equilibria with pure charges in prices poses a new

and interesting problem.

The implementation consists in finding an allocation of initial holdings of money for

which the AD consumption allocation can be attained for suitable cash balances plans that

are individually optimal under the sequential budget constraints. As in any infinite horizon

optimization problem, Euler and transversality conditions are necessary but might not be

sufficient for individual optimality. They are sufficient once we impose portfolio constraints

of the form of inequalities that are the converse to the transversality inequality4. When

there are pure charges in the supergradients of the utility function evaluated at the AD net

trade, such portfolio constraints are non-trivial even though money cannot be shorted. In

fact, the constraints require the marginal benefit from dishoarding at infinity not to exceed

the accumulated opportunity cost of hoarding along the lifetime.

Instead of imposing directly such portfolio constraints, we introduce taxes on money

balances that raise the cost of holding cash and eliminate the benefits-costs gap that would

be ruled out by the constraints. Such taxes can actually be defined recursively, on the basis

4For example, under impatience and if the asset could be shorted, the transversality condition says that,

for the optimal plan, the limiting deflated position has to be non-positive, while the portfolio constraints

should require that limit to be non-negative (and, thereby, prevent Ponzi schemes).
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of what are the accumulated hoarding cost and the dishoarding benefit at each moment in

time. Moreover, in many interesting contexts, the taxes on the efficient plans are zero.

Our first implementation result5 establishes that efficient allocations can always be

implemented using fiat money, by introducing non-lump-sum taxes that correct for the

long-term gap in the benefits and costs of saving plans. The tax schedule can be required

to be non-distortionary (in the sense that Euler and transversality conditions are just as

they were in an economy without taxes), or equivalently, that when applied in a context

of impatience such taxes would make money supply go to zero.

While being non-lump-sum, taxes are impersonal and can be chosen to be levied upon

the disposal of the assets, taxing the benefit from disposing of money balances net of the

cost of carrying on cash up to then, when that difference happens to be positive6. Taxes

have therefore a flavour of a capital gains tax.

We illustrate our implementation result with examples for preferences in the two cases

described in 1.2. Moreover, we give also an example (Example 3) of an economy where

there is an inefficient equilibrium with sequential budget constraints when the taxes that

we propose are absent. In the AD equilibrium, the infimum of the consumption plans is not

attained in finite time, but in the inefficient sequential outcome that infimum is attained

at infinitely many dates, different for the two consumers. At the inefficient consumption

plans, consumers’ utility functions have some supergradients without pure charges and

this allows for the consumers’ problems to have finite optima under the plain no-short-

sales constraint on money. In other words, there are no asymptotic gains from dishoarding

under such supergradients and, therefore, equilibria under sequential budget constraints

exist in the absence of our proposed taxes. However, for such supergradients, at dates

where the infimum is attained, the left and the right marginal utilities do not coincide

and no-short-sales constraints have shadow values, which implies that the marginal rates

5See our Theorem 2.
6This means that the accumulated taxes up to any moment in time (when the asset might be disposed

of) are always non-negative, but the tax at each date might be negative, that is, allow for tax rebates.
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of inter-temporal substitution will not be the same for the two consumers.

1.4 Why money?

Choosing fiat money as the implementing asset has an important advantage. If AD net

trades would seem to require negative cash balances at some dates, we can easily replace

such unduly short positions by increasing the initial money holdings adequately. In an

implementation with Lucas trees, such adjustment in initial holdings would have to be

combined with a reduction in the commodity endowments of the sequential economy so

that there would be no change in AD endowments (the sum of sequential endowments and

returns from initial holdings of the tree). However, there is a bound on such substitution,

as sequential endowments must remain non-negative.

Taking fiat money to be the implementing asset also allows for interesting comparisons

with what the literature says. The reserve role that money plays in our context of lack of

impatience is clearly novel and differs from other arguments for that role. Nevertheless, one

can not help recalling the idea put forward by Friedman (1953, 1969) that consumers should

not economize unnecessarily on money balances as these holdings are “a reserve against

future emergencies”. In our context, such future emergencies occur at distant dates but

the lack of impatience makes them relevant. It resumes also Bewley’s (1980) idea that the

“device to give money a value is infinite horizon (together with the need for insurance)”,

but we take a step forward and take into account the limiting hedging role of money for

non-impatient agents.

If, for any consumer and any date, marginal utilities are well defined at each date7 and

consumption is positive at each date, then Friedman’s zero nominal interest rate rule holds,

that is, deflation must occur, at least at infinitely many dates (as we point out in Remark

1(ii), Section 3.2). In such deflationary context, a tax on gains on money dishoarding would

7This holds for the two classes of preferences mentioned in 1.2 when the relevant infimum is not attained

in finite time.
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be the equivalent for money to what capital gains taxes are for all other assets. Actually,

foreign currency balances tend to be subject to such taxes, like any other non-monetary

asset. We are taking a step forward, suggesting that all money balances should be, in order

for efficiency to be attained in a deflationary context where agents are wary and prone to

dishoard in the long run.

1.5 Non-vanishing money supply

What can be said about the asymptotic money supply? Do taxes end up driving money

holdings to zero, for all agents? We show that this does not have to be the case.

When some agents are non-impatient, a multiplicity of equilibrium money balances

plans occurs, with different limiting supplies of money. Interestingly, there may exist one

monetary equilibrium with non-vanishing money supply.

Such persistent hedging role of money is reminiscent of what Samuelson (1958) estab-

lished for the overlapping generations model, which seemed until now incompatible with

immortal agents consuming at every date. For impatient agents, Bewley (1980, 1983)

showed that a non-vanishing money supply, together with interior consumption, had to be

inefficient. Levine (1986, 1988, 1989) confirmed this under Inada’s condition but observed

that efficiency might prevail under non-interior consumption8. Frequent corner solutions

entail frequent gaps between prices and marginal utilities that are somehow akin to gaps

that we find in this paper for the valuation of consumption at infinity.

A non-vanishing money supply occurs when for some non-impatient agent the personal

appraisal of the loss from reverting the optimal savings plan is higher than the AD price

of that plan (see our Theorem 3).

Such gap is a consequence of the non-differentiability of wary preferences at non-

converging net trades, due to the freedom in the choice of the generalized limit for the

pure charge of the supergradient. The non-differentiability implies that, for a wary con-

8See also Woodford (1990), Kehoe et al. (1992) and Pascoa et al. (2010).
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sumer, the marginal loss from reverting a savings plan is greater than the marginal gain

from intensifying that savings strategy9. The AD price will value the savings plan some-

where in between the latter and former. The limiting money supply turns out to be the

sum, over all consumers, of how much the personal marginal losses from reverting the

savings plans actually exceed the AD pricing of those plans.

We illustrate a positive asymptotic money supply (Example 2), both for the precau-

tionary and the habit persistent preferences, by allowing for frequent endowment shocks.

If for some consumer, the infimum of lifetime utilities (for the former) or the infimum of

average utilities up to each point in time (for the latter) is not attained in finite time, then

such consumer has a marginal loss from reverting savings that is above the AD price of

those savings. The mismatch of personal and AD prices requires agents to hold on to cash

forever in order to hedge frequent endowment shocks. In other words, the bubble is not

entirely sold due to such mismatch.

While our main implementation result is, in many contexts10, in line with a proposition

by Friedman (1953, 1969) that the wasteful economizing of cash should be avoided by de-

flation or by providing money with a real rate of interest, our analysis of how money supply

evolves is not so much in line with the stronger recommendation of a steady contraction

of the money supply, which has been often associated with that proposition by Friedman.

The rest of the paper is organized as follows. Endogenous discounting is described

and related to wariness in section 2 (illustrating with the precautionary and the habit

persistence examples). Section 3 presents the deterministic sequential monetary model

and Section 4 states and illustrates the results on efficient monetary equilibrium. The

concluding remarks in Section 5 compare our work with the implementation using non-

9This asymmetry is reminiscent of the asymmetrical attitude towards losses and gains proposed in

prospect theory.
10More precisely, under interior consumption and well defined marginal utilities date by date, for all

consumers.
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monetary assets, as in Araujo et al. (2011) which just dealt with the ε-contamination case

and also differs from our work by having used portfolio constraints rather than taxes.

Finally, section 5 points out also that the preferences that we contemplate allow for time-

inconsistency but are actually time-consistent in AD equilibria with price pure charges.

All proofs are presented in the Appendix.

2 Endogenous Discounting

We assume that infinite-lived consumers have a collection of possible discount factor se-

quences and, not being sure which one to pick, end up choosing for each consumption plan

the discount factor sequence that gives the lowest sum for the series of discounted utilities.

Such attitude is a form of endogenous discounting already addressed by Geoffard (1996) and

which has received significant attention in the recent literature on the (mis)specification of

macro models (see Hansen and Sargent (2001, 2008)).

To be quite general, preferences are described by

U(x) = inf
δ∈C

∞∑
t=1

δtu(xt), (1)

where the set C is some subset of `1+ ∩B1(0), where B1(0) is the unit ball of `1.

The preferences defined above have an analogy with the ambiguity aversion attitude

in a context of uncertainty, the maxmin model (see Gilboa and Schmeidler (1989)). This

model contemplates a functional which is the minimum of the expected utilities over a

collection of beliefs described by finitely additive set functions, that is, given a general set

X of possible events or states (in our context X = N),

V(x) = min
η∈C̃

∫
X
u ◦ x dη, (2)

where C̃ is a convex and weak∗ closed subset of ba (the referred papers discussed axiomat-

ically this representation) 11. The minimal integral over beliefs represents a precautionary

11See Dunford and Schwartz (1958), ch. III.2, for the definition of integral with respect to a charge η.
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or pessimistic behavior. The minimization solution η∗ puts more weight on sets where u

attains its lowest values. To see that Equation (1) can be reformulated in terms of Equa-

tion (2), for an appropriate (not any) choice for the set C̃, we take C̃ to be the closure in

the weak∗ topology of the convex hull of C and we get U(x) = V (x)12.

2.1 Endogenous discounting and wariness

As in Araujo et al. (2011), we say that infinite-lived consumers are wary when they neglect

distant gains but not the losses at far away dates. This consists in being upper but not lower

semi-impatient. Let us formalize these concepts, presuming monotonicity of preferences �i

over sequences of consumption of the single good. For any sequence v ∈ `∞ we denote by

v(n) the sequence such that v(n)t = vt for t ≥ n and v(n)t = 0 otherwise.

Consumer i is said to be upper semi-impatient at a bundle x if x �i y implies, for any

z ∈ `∞+ , that x �i y+ z(n) for n large enough. Consumer i fails to be lower semi-impatient

at a bundle x if there exists y for which y �i x but x �i y− y(n), ∀ n. Losses beyond date

n reverse the preference ordering, no matter how large n is.

These concepts can be formulated in terms of the Mackey topology on `∞, the finest

topology on `∞ for which the dual is `1. For norm-continuous preferences �i, upper (lower)

semi-impatience at x consists in the Mackey upper (lower) semi-continuity of �i at x. A

consumer whose preferences are norm continuous and Mackey upper semi-continuous, is

wary at x ∈ `∞+ if the preferences are not Mackey lower semi-continuous at x. If this

property holds on the norm interior of `∞+ , the consumer is said to be wary. Even though

the economy is deterministic, we can interpret the consumer’s cautious attitude towards

distant losses as reflecting some wariness that is actually related, as we saw, to not being

sure how such losses should be discounted.

We present next the most that one can say without imposing more structure on the set

12This follows from the compacity of the set C̃ in the weak∗ topology and the continuity of the functional

x 7→
∫
X
u ◦ xdη in the weak∗ topology.
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C of possible discount factors.

Lemma 1 (Aversion to ambiguity and wariness). Under aversion to the ambiguity in

the discount factors, that is, when preferences are given by Equation (1), preferences are

Mackey upper semi-continuous but may fail to be Mackey lower semi-continuous.

This is a consequence of the fact that the lower envelope of a family of upper semi-

continuous functions (on any topological space) is still upper semi-continuous. Other results

can be obtained by specifying the set C13.

Assumption H: preferences are described by an utility function given by Equation

(1) where (i) the utility index u : R+ → R is concave and strictly increasing and (ii)

C ⊂
{
δ ∈ `1+ ∩B1(0) : δt ≥ εt

}
for some sequence ε such that εt > 0 for each t.

Since {δt}δ∈C is bounded away from zero at each t, if u is strictly increasing, so will U

(that is, U(x) > U(x′) whenever x > x′)14.

The following property holds under H:

Condition C1: for each agent, preferences are representable by a utility function U i that

is concave, norm continuous, Mackey upper semi-continuous and such that U i(x) > U i(x′)

whenever x > x′.

Note that there are several preferences that satisfy Condition C1 but not assumption

H (do not have a representation satisfying Equation (1)).

We start by examining the case of a set C generated by a capacity, that is, a function

ν : 2N → IR such that ν(∅) = 0 and ν(A) ≤ ν(B) whenever A ⊆ B. A capacity ν is

convex when ν(A ∪ B) + ν(A ∩ B) ≥ ν(A) + ν(B) ∀A,B ⊂ N. We normalize ν(N) = 1.

The set core(ν) is defined as {η ∈ ba : η ≥ ν, η(N) = 1}. When C = core(ν) for a convex

capacity ν, the utility function is a Choquet integral (see Schmeidler (1989)) and more

13Note that Equation (1) allows for but does not imply Mackey lower semi-discontinuity. The choice

of deflators that the set C allows for may even pertain to just a finite subset of dates, in which case

time-separability would fail just in that subset and Mackey lower semi-continuity would hold.
14In `∞, x > y means that xt ≥ yt for all t and x 6= y, x � y means that xt > yt for all t, and x ≫ y

means that there is ε > 0 such that xt + ε ≥ yt for all t.
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can be said about the absence of Mackey lsc. A capacity ν is said to be continuous at

certainty if, for any sequence (An) ⊂ 2N such that each An ⊂ An+1 ⊂ N and ∪nAn = N,

we have lim ν(An) = ν(N). Now, U is Mackey lsc if and only if the capacity is continuous

at certainty (by Theorem 2.1 in Araujo (1985)). The discontinuity at certainty can be

interpreted as if there were a missing state. In Araujo et al. (2011), the focus was on a

well-known example of a convex capacity, which we recall next.

Example 1

Given a probability measure µ and ε ∈ [0, 1), let νε be the convex capacity defined by

νε(A) = (1− ε)µ(A) for A $ N and νε(N) = 1. This is called the ε-contamination capacity

with respect to µ. As shown by Dow and Werlang (1992) we can rewrite (2) as 15

U(x) = (1− ε)
∫

N
u ◦ x dµ+ ε inf u ◦ x (3)

Clearly, νε is discontinuous at certainty and, therefore, this utility represents wary prefer-

ences at some point 16 . Actually, for some (ζ, β) proportional to ((1 − ε)µ, ε), the utility

can be rewritten (up to a scalar multiple) as

U(x) =
∞∑
t=1

ζtu (xt) + β inf
t≥1

u(xt) (4)

Under (4) time-consistency may not hold, but it does if the infimum of consumption is not

attained. This will be the case when we resume Example 1.

We introduce another example of wary preferences where the concern about the infimum

is weaker than in Example 1. The non-additively separable part of the utility function will

be related to the Polya index introduced by Marinacci (1998) to describe patience. To do

so, we define a countable set of priors in `1+ which induces a smaller set of priors in ba than

the one obtained from the ε-contamination capacity.

Example 2

15In this case, the minimum over normalized dominating charges coincides with the infimum over domi-
nating probabilities: U(x) = inf{

∫
N u ◦ x dη : η ∈ ca ∩ core(νε)}.

16Actually, wariness holds at every x≫ 0 as the lower contour set of x is not Mackey closed.
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The agent set of beliefs C is now defined by C := core(νε) ∩ Ĉ where Ĉ is the closed

convex hull of {(δm)m∈N : δm(t) = ζt + βi/m for 1 ≤ t ≤ m, δm(t) = ζt elsewhere} in

the weak∗ topology of ba. Then, the utility function in (1) becomes, by multiplying by a

suitable scalar,

U(x) =
∑
t

ζtu(xt) + β inf
t

(
1

t

t∑
k=1

u(xk)

)
. (5)

Marinacci (1998) came up with a notion of complete patience using the Polya index,

limt

(
1
t

∑t
k=1 u (xk)

)
, which has a similarity with the last term in Equation (5)17, although

the replacement of limit by the infimum implies that the agent now cares about small

consumption in the first dates and, therefore, the agent has some degree of impatience. The

time separable component of U also enhances the level of impatience, but some patience

prevails, as the agent is worried about mean losses, for means computed up to any distant

date. This is a form of habit persistence.

2.2 Wariness and Arrow Debreu Equilibrium

Suppose there are I infinitely lived consumers, who are endowed with quantities ωit ≥ 0 of

a single commodity at the countably many dates.

Wariness impacts on the nature of the supporting prices of efficient allocations. An

Arrow-Debreu equilibrium (AD) is defined as a pair (x, π) such that x = (x1, ..., xI) is a

feasible allocation, π a linear functional on `∞ and, for each i, xi maximizes U i in the

budget set {a ∈ `∞+ : π(a − ωi) ≤ 0}. The natural environment where to look for prices

is the norm dual of `∞. This is the space ba, of bounded finitely additive set functions,

also called charges, on N, equipped with the total variation norm (given b ∈ ba, its norm

17Note that Marinacci’s (1998) complete patience preference cannot be obtained as described in Equation

(1), but it can be obtained from Equation (2) for a set C̃ that only contains the Polya index (a set that

cannot be generated as a convex hull of elements in `1+ ∩ B1(0)). In any case, this preference is neither

Mackey usc nor lsc.



2 ENDOGENOUS DISCOUNTING 15

is ‖b‖ = |b|(N)). Let us rephrase a well-known result by Bewley (1972).

Proposition 1. If C1 holds and
∑

i ω
i ≫ 0, there exists an AD equilibrium (x, π), with

the price π in ba. Some consumer being wary at xi is a necessary condition for AD

equilibrium prices to be outside of `1.

Notice that ba contains strictly `1, the space of absolutely summable sequences, since

each y ∈ `1 induces an element µ in the space ca of countably additive set functions on N

(by setting µ({t}) = yt).

Comment on Example 1 and the existence of AD equilibrium: Araujo (1985) showed

that the Mackey topology is the finest topology of continuity in order for AD equilibrium to

exist (with prices in ba), if no further assumptions are imposed, except for the convexity of

preferences. This result was illustrated by claiming that for U(x) = inft u(xt) equilibrium

does not exist. However, when monotonicity with respect to increments at finitely many

dates is added (which is satisfied by Equation (4)) AD equilibrium (with prices in ba) exists,

in spite of the failure of Mackey lower semi-continuity, as Bewley (1972) established. The

other case of pessimistic preferences, with U(x) = lim inft u(xt), mentioned in Araujo

(1985) has the drawback that the upper Mackey semi-continuity does not hold and, even

if a series of discounted utilities would be added, AD equilibrium might not exist.

2.3 Characterization of AD Equilibrium Prices

Let us characterize the AD equilibria whose prices fail to be in `1. We start by examining

how do supporting prices look like.

By the Yosida-Hewitt Theorem, any π ∈ ba can be decomposed uniquely in the form

π = µ+ ν where µ ∈ ca whereas ν is a pure charge. For any finite subset B of N, if ν is a

positive pure charge, then ν(B) = 0. Denote by pch the set of pure charges on (N, 2N). Let

us see characterize the pure charge components of a supporting price.

Recall that T ∈ ba is a supporting price for an allocation (xi)i if U i(z) ≥ U i(xi) implies

that T (z − xi) ≥ 0 for any i. A supporting price is, up to a positive scalar multiple, a
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supergradient18 of U i at xi. Denote by ∂U i(x) the set of supergradients of U i at x. For

any v ∈ `∞ we denote by δ+U i(x; v) and δ−U i(x; v) the right and left derivatives of U i at

x along the v-direction19. Let ll(n) be the real sequence whose first n terms are zero and

the remaining terms are equal to 1.

Lemma 2. If ν ∈ pch+, then ν(x)/ ‖ν‖ba ∈ [lim inf x, lim sup x], ∀x ∈ `∞. If for some

µ ∈ ca, µ+ ν ∈ ∂U i(x), then ‖ν‖ba ∈ [limn δ
+U i(x; ll(n)), limn δ

−U i(x; ll(n))]

We use the notation LIM to represent a linear functional taking on each x ∈ `∞ a value

in [lim inf x, lim sup x]. Notice the real indeterminacy in AD equilibrium resulting from

the choice of LIM for the pure charge ν in the support price (if we pick another LIM , the

AD budget equation will not hold for the same bundle xi, except when the supergradients

at xi have also multiple ca components). Wariness is necessary for the occurrence of pure

charges supporting interior bundles:

Lemma 3. Under C1, if U i is Mackey continuous, then ∂U i(x) ⊂ `1 for x≫ 0.

Let us go back to Examples 1 and 2 and characterize the supergradients of the utility

functions in these examples. We denote the infimum of a bundle x by x. In Example 1,

any supergradient T of U at x must be of the form20 T (a) =
∑∞

t+1 u
′(xt)(ζt + γtβ)at +

σβu′(x)LIMT (a), for any a ∈ `∞, where (i) γt ≥ 0, (ii) γt = 0, if xt > x, (iii) σ ≥ 0

is zero when x is not a cluster point of x and (iv)
∑∞

t=1 γt + σ = 1. That is, there is a

supergradient with a pure charge only if x is a cluster point of x and all supergradients

will have pure charges if x is not attained.

In Example 2, for any (xt)t such that the infimum of
(
1
t

∑t
k=1 u(xk)

)
t

is not attained,

the supporting prices have the following form π(c) =
∑∞

t=0 ζt(u)′(xt)ct+β
iLIM (φ(c)) where

φ : `∞+ → `∞+ such that φ(c)t = 1
t

∑t
k=1 ck. The presence of a pure charge is due to the fact

that the series of marginal utilities does not converge uniformly on the countably many

18T ∈ ba is a supergradient of U i at x if U i(x+ h)− U i(x) ≤ Th for any h ∈ `∞.
19δ+U(x; v) = limh↓0

U(x+hv)−U(x)
h

and δ−U(x; v)) is defined with h ↑ 0 instead.
20For a proof see Araujo et al. (2011).
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deflators δm that induce the set C of discount beliefs in this example. This leads us to

formulate a general result, presented in the next subsection.

2.4 Pure charges and the non-uniform convergence of marginal utility

series

In general what can be said about the occurrence of supporting prices outside of `1 for

wary preferences generated by endogenous discounting of the form of Equation (1)? We

examine what happens with the family {
∑

t δtu
′(xt)}δ∈C of marginal utilities, for deflators

δ in C.

Theorem 1. (Pure charges and the non-uniform convergence of marginal utili-

ties) For the utility function defined by Equation (1), suppose C ⊆ `1++ and take (xt)t∈N ≫

0. If the series of marginal utilities at (xt)t∈N converges uniformly on the set C, in the sense

that limt supδ∈C

{∑
s≥t δsu

′(xs)
}

= 0, then there is no pure charge in any supergradient of

U at x.

3 A Sequential Economy with Fiat Money

3.1 Money and Taxes

The set of trading dates is N ≡ {1, 2, ...}. Before the initial date, the government allocates

non-negative initial holdings yi0 ≥ 0 of money to each consumer and then, at each trading

date t, money holdings yit may be taxed. The taxes levied at each date, denoted by τt(y
i),

may depend on the whole individual plan yi of money holdings, but through an impersonal

tax schedule τt(.).

The consumption good is the numeraire and we denote by q = (qt)t∈N the sequence of

prices of money. Every consumer i faces at each date t ∈ N, the following constraints:

yt ≥ 0 (6)
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xt − ωit ≤ qt(yt−1 − yt − τt(y)) (7)

Observe that τt(y) just has an impact at date t when qt > 0.

Let us denote by B(q, yi0, ω
i, τ) the set of couples (x, y) ∈ `∞+ ×IR∞+ of consumption and

money holdings plans satisfying constraints (6) and (7). The goal of agent i is to maximize

U i under B(q, yi0, ω
i, τ). We denote the set {1, ..., I} of agents by I.

The initial money supply M0 is given, equal to
∑I

i=1 y
i
0 and assumed to be positive.

However, at each trading date, the money supply Mt is endogenous, satisfying

Mt(y
1, ..., yI) = Mt−1(y

1, ..., yI)−
I∑
i=1

τt(y
i) =

I∑
i=1

(
yi0 −

t∑
s=1

τs(y
i)

)
,

Definition 1. (q, (xi, yi)i∈I) ∈ IR∞+ × (`∞+ × IR∞+ )I is an equilibrium for the economy with

initial money holdings (y10, ..., y
I
0) and a tax policy τ if (a) (xi, yi) ∈ argmax{U i(x) : (x, y) ∈

B(q, yi0, ω
i, τ)}; (b)

∑I
i=1(x

i − ωi) = 0; (c) Mt(y
1, ..., yI) =

∑I
i=1 y

i
t ∀ t ∈ N.

Definition 2. An equilibrium (q, (xi, yi)i∈I) is a monetary equilibrium if q 6= 0.

If qt0 > 0 for some date t0, it will be true by non-arbitrage that qt > 0 ∀ t. Note that,

under C1, (7) holds as equality, which summed over i, make (b) imply (c).

3.2 Sequential equilibrium and improvement opportunities

Observe first that in the absence of any taxes, sequential budget constraints are as follows

xt − ωit ≤ qt(zt−1 − zt) ∀ t ∈ N, (8)

A very useful sufficient condition for individual optimality is given as follows. Let x(z, i)

be defined by xt(z, i) = ωit + qt(zt−1 − zt).

Proposition 2. Let zi be a portfolio plan satisfying Equations (6) and (8) and let xi =

x(zi, i). (i) Suppose there exists T ∈ ∂U(xi) with T = µ+ ν, µ ∈ `1+ and ν ∈ pch+ such

that, for every t,

µtqt ≥ µt+1qt+1 (µtqt − µt+1qt+1)z
i
t = 0 (9)
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and
limµtqtz

i
t = ν(xi − ωi). (10)

(ii) Suppose also that every feasible portfolio z satisfies the condition

lim
t
µtqtzt ≥ ν(x(z, i)− ωi), (11)

Then zi is an optimal solution for the problem with constraints (6) and (8).

Proof. Given a feasible portfolio z, U(x(z, i)) − U(xi) ≤ T (x(z, i) − xi) = T (x(z, i) −

ωi) + T (ωi − xi). Moreover, µ(x(z, i) − ωi) =
∑∞

t=1 µtqt(zt−1 − zt). By (9) and z ≥ 0,

µ(x(z, i)−ωi) ≤ µ1q1z0− limt µtqtzt. Also, µ(xi−ωi) = µ1q1z0− limt µtqtz
i
t. Now by (10),

U(x(z, i))− U(xi) ≤ ν(x(z, i)− ω)− limt µtqtzt. Now, by (11), U(x(z, i))− U(xi) ≤ 0.

Remark 1: Comparison with necessary conditions

(i) Given q and yi0, a plan yi is optimal for agent i only if there is some supergradient

T ∈ ∂U i(xi) whose ca component µi satisfies Euler conditions (9).

(ii) Suppose that an AD equilibrium (x, p+ νAD) is such that, for all i, (iia) xi � 0 and

(iib) marginal utilities µit, at each t, are well defined21. From (iib) we get that all

supergradients of U i at xi have the same ca component µi. From (iia) we get that

µi is collinear with p for all i. It follows that condition (9) must hold with no slack

(otherwise agents holding money would have marginal rates of substitution different

from those of other agents).

Under assumptions (iia) and (iib), any monetary equilibrium implementing the effi-

cient allocation x is such that the inflation rate (1/qt+1

1/qt
−1) is equal to the consumers’

rate of rate of time preference (µit+1/µ
i
t) minus one. Now, as µi ∈ `1, this implies

21That is, the directional derivative of U i exists at xi. This is not a technical assumption, it is instead

a property that depends on the asymptotic behavior of the consumption sequence, as was illustrated is

Example 1.



3 A SEQUENTIAL ECONOMY WITH FIAT MONEY 20

deflation, at least at infinitely many dates (actually, always beyond some date when

consumption converges to some positive level). Moreover, under (iia) and (iib), Fried-

man’s weak rule, prescribing a zero nominal interest rate, holds, since there is no room

in the Euler equations to replace qt+1 by qt+1(1 + i) with a positive interest rate i.

(iii) Condition (10) is related to another necessary condition, the transversality condition.

Suppose again Condition (iib) of item (ii) and let P (xi) = ∂U i(xi) − µi be the set

of pure charges of all supergradients. Suppose consumer i moves in the direction

zi(n), that is, replaces zit by (1 + h)zit from some date n onward. The associated

direction of changes in consumption is c(zi(n))t = 0 if t < n, c(zi(n))n = −qnzin
and c(zi(n))t = qt(z

i
t−1 − zit) = xt − ωit if t > n. Now, µi(c(zi(n))) = −µinqnzin +∑

t>n µ
i
tqt(z

i
t−1 − zit) which by (9) reduces to − limµitqtz

i
t. Hence, there is no utility

gain by changing portfolios in the zi(n) direction along the right (for h > 0) only

if (iiia) δ+U i(xi, c(yi(n)) ≡ − limµitqtz
i
t + minνi∈P (xi) ν

i(xi − ωi) ≤ 0 and no utility

gain by moving along zi(n) on the left (for h < 0) only if (iiib) δ−U i(xi, c(yi(n)) ≡

− limµitqtz
i
t + maxνi∈P (xi) ν

i(xi − ωi) ≥ 0 (irrespective of the presence of constraints

of the form (11)). Hence, (10) must hold for some supergradient.

Notice also that transversality conditions do not imply that efficient individual money

balances must go to zero. The latter would hold if for the pure charges νi attaining

the maximum in (iiib) we would have
∑

i ν
i(xi − ωi) = 0, which is the case when all

net trades converge (as νi(xi − ωi) = νAD(xi − ωi)).

Remark 2: On sufficiency

When agents are not impatient, long-run improvement opportunities are not ruled out by

no-short-sales constraints. In fact, take any non-negative real sequence z and let x ≡

x(z, i). Suppose consumer i replaces zit by zit + hzt, with h > 0, from some date n onward.

Analogously, to Remark 1 (iii), as we move on the right along this direction, we hoard

more at date n and at subsequent dates for which ωit > xt, in order to consume more at

subsequent dates where ωit < xt. There would be a utility gain by doing so if the right
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derivative were positive. Now, the right derivative is the minimum of the values that all

supergradients may take at this direction and, therefore, such improvement strategy is

ruled out if there is a supergradient T = µ + ν for which T (c(z(n))) ≤ 0. Condition (11)

implies the latter (and is equivalent to it in the absence of slacks in (9)).

Instead of restricting agents’ choice sets to the portfolio plans satisfying (11), we in-

troduce taxes that will discourage such improving strategies, more precisely, taxes that,

for any portfolio plan, manage to eliminate the gap between the benefit from asymptotic

dishoarding ν(x(z, i)− ωi) and the respective cost −µ(c(z(n))) of carrying on cash. Now,

−µ(c(z(n))) = µnqnzn +
∑

t>n µtqt(zt− zt−1) ≥ limµtqtzt (with a strict equality occurring

only when there are slacks in (9)).

Consider the sequential implementation of an AD equilibrium (x, π), for some endow-

ments allocation ω. The presence of a tax τt(y) levied at date t upon a plan y of money hold-

ings implies that the funds that are actually put aside at each date are zt = yt+
∑

s≤t τs(y).

Taxes manage to close the gap between asymptotic dishoarding benefit and the cost of car-

rying on cash if (11) holds, for supergradients µi + νi, whose ca component µi is collinear

with the ca component p of the AD price π. The next section specifies taxes that have this

property.

4 Monetary Implementation of Efficient Allocations

4.1 Efficient Capital Taxation

We impose the following assumption on taxes levied upon money holdings:

Condition C2: for any portfolio plan y of any agent, taxes τ(y) are such that (A)∑∞
t=1 τs(y) ≥ lim sup qt(yt−1 − yt)− lim yt, (B) limt qtτt(y) = 0 if x(y) is bounded and (C)

at any monetary equilibrium allocation (yi)i the derivative of τt is null for any direction

involving just changes in money balances at finitely many dates.

Item (A) requires taxes to close the gap between asymptotic dishoarding and the cost
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of carrying on cash. Item (B) implies that the lim sup of the real value of cash disposals

(qt(yt−1−yt)) is equal to the lim sup of the commodity net trade (x(y)t−ωit), for any money

balances. Taxes being unaffected by changes in cash balances at finitely many dates is a

property that is only required by item (C) to hold at equilibrium cash balances plans, as

we will illustrate below.

Theorem 2. (Efficient monetary equilibrium)

Suppose preferences satisfy C1 and taxes satisfy C2. Let (x, π) be an AD equilibrium for

(ωi)i such that x � 0. Then, there exist initial money holdings (yi0)i so that x can be

implemented as the consumption allocation of a monetary equilibrium.

The proof in the Appendix contemplates all possible cases, but there is a case where the

intuition behind the result is quite straightforward and is also what prevails in Examples

1 and 2. When at xi, the marginal utilities µit are well defined and the pure charges of all

supergradients have the same norm αi, then (11) holds if (D) limµitqtzt ≥ αi lim sup(x(z)−

ωi). Now, AD prices p + αLIMAD can be normalized so that α = 1. Dividing both sides

of the inequality by the AD Lagrange multiplier ρi and making qt = 1/pt, we see that (D)

becomes condition (A) in C2.

Now, the AD budget equation holds for qt = 1/pt if zi0 = limt z
i
t − LIMAD(xi − ωi).

Suppose we make zi0 ≡ lim sup(xi − ωi)− LIMAD(xi − ωi), then, lim zit = lim sup(xi − ωi)

and, therefore, (10) holds. The implementation is done as long as the constructed zi is

non-negative. Otherwise, initial money holdings should be adequately raised and a lump-

sum tax should be added in order to retrieve these additional money holdings gradually

(see the proof in the Appendix for all the details).

An example are the following taxes that spread the fiscal burden over all dates

τt(y) = θt + p̃t[lim sup qt(yt−1 − yt)− lim yt]
+. (12)

We assume that p̃ and the lump-sum component θ are such that
∑∞

t=1 θt <∞, p̃ ∈ `1++,

||p̃||1 = 1. Moreover, we require lim qtτt(y) = 0. This is achieved if lim p̃tqt = 0 (p̃t tends to
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zero faster than pt) and lim qtθt = 0. The presence of the lump-sum tax θ may be useful to

withdraw additional initial holdings that allow for an implementation with non-negative

money balances.

Observe that both lim yt <∞ and [lim sup qt(yt−1−yt)− lim yt]
+ <∞ for a plan y that

was already accommodating a bounded consumption plan x(y) in the sequential budget

set when taxes were not levied (as yi0 − lim yt = p(x(y)− ωi) <∞, since ptqt = 1).

These non-lump-sum taxes are invariant to changes in y at a finite set of dates and,

therefore, Euler conditions (9) hold. However, it may be hard to accept that the tax author-

ities would have such a perfect foresight and we can suppose instead that the accumulated

taxes up to each date,
∑

s≤t τs(y) to depend just on (y1, ..., yt).

Recursive tax schedules are of the form τt(y) = θt+ τ̃(y) where θ is lump-sum (satisfying

again lim qtθt = 0) and the non-lump-sum component is (again for p̃ such that lim p̃tqt = 0)

such that

∑
s≤t

τ̃s(y) ≡ [Φt − yt − at]+
∑
s≤t

p̃s (13)

where Φt = [qt(yt−1 − yt)]+ is what the agent dishoards at date t.

The sequence a is chosen so that τ̃(yi) = 0 for some reference allocation (yi)i. Let

at ≡ maxi[Φt − yit]+ + 1/t. Notice that the function τ̃t depends only on money balances at

finitely many dates but at yi, it has null derivative with respect to these positions. A mon-

etary equilibrium (q, (xi, yi)i) should fulfill the additional requirement that the equilibrium

money balances allocation is the reference allocation. Then, Euler conditions (9) hold.

Taxes defined by (13) allow for tax rebates: τ̃t(y) can be negative if |τ̃t(y)| ≤
∑

s≤t−1 τ̃s(y),

but the latter is always non-negative22.

Schedule (13) tends to tax, at a non-early date t, an agent that dishoards at that date

more than the whole cost of carrying on cash up to that date (which is the cost of carrying

22The non-convexity in (13) is overcome by mapping (non-linearly )the budget set into the convex set of

an auxiliary economy without taxes and constraints (i) or (ii) (see the Appendix).



4 MONETARY IMPLEMENTATION OF EFFICIENT ALLOCATIONS 24

on cash on top of the initial holdings (−
∑

s≤t psqs(ys−1 − ys)) plus the cost of the initial

holdings (p1q1y
i
0), so the sum is ptqtyt = yt). Recursive taxes are in fact taxes on the use

of savings rather than on savings per se and, therefore, have a flavor of a capital gains

tax : the benefit from disposing of money balances is being taxed if it exceeds the cost of

carrying on cash up to then.

Once recursive taxes have been imposed, we see that the plans y accommodating budget

feasible bounded x(y) are those for which lim yt and lim[xt(y)− ωit]+ exist.

If we add lump-sum taxes θt ≥ p̃t limt at (and give each consumer an additional money

holding equal to
∑∞

t=1 θt), we see that a plan y inducing bounded x(y) has a finite∑∞
t=1 τt(y) which is greater or equal to [lim[qt(yt−1 − yt)]

+ − lim yt]
+. It is immediate

to see that (13) satisfies item (A) of Condition C223.

We may want to strengthen our assumptions on the tax schedule.

Condition C3: taxes are such that if all agents are impatient, an efficient monetary

equilibrium must have money supply going to zero.

This assumption holds for taxes given by Equations (12) or (13), but would not hold

if A > 0 were added to the expressions inside square brackets in Equations (12) or (13)

(although condition C2 would still hold). Under C3, any additional money holdings that

might be needed to avoid short sales should be retrieved through appropriate lump-sum

taxes24. We already knew that under C2 taxes are non-distortionary in terms of short-

run actions, in the sense that the Euler conditions that would hold without taxes (given

by (9)) are still necessary for optimality when taxes are introduced. When C3 holds, on

top of C2, taxes are non-distortionary in terms of long-run actions, in the sense that the

23We could have defined instead Φt = sups≤t qs(ys−1 − ys), for which x(y) is bounded when lim yt exists

(inducing a tax series greater or equal to [supt qt(yt−1 − yt)− lim yt]
+). Item (A) is satisfied when LIMAD

is the Banach limit.
24Whereas by adding A > 0 we could dispense with the lump sump taxes but would introduce a floor on

money holdings.
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transversality conditions that would hold without taxes (given in Remark 2, for efficient

allocations), together with its implications for the asymptotics of money supply (idem),

must still hold when taxes are introduced.

Proposition 3. (Non-distortionary taxes) Let ((xi, yi)i, q) be a monetary equilibrium,

for given initial holdings (yi0)i and taxes τ(.) satisfying C2. The transversality conditions,

δ−U i(xi, c(yi(n)) ≥ 0 and δ+U i(xi, c(yi(n)) ≤ 0, are the same that would hold in the

absence of taxes (and in the presence or not of constraints (i) or (ii)) if and only if taxes

satisfy assumption C3. The result in Theorem 2 still holds under C3.

Example 3 will show that in the absence of taxes satisfying C2 inefficient equilibria

exist, where consumers’ sequential problems have finite optimum since the allocations are

implemented (using Proposition 2) with supergradients for which there are no asymptotic

gains from dishoarding. The taxes proposed in C2 should not be seen as being required for

the existence of any sequential equilibria. They are instead the efficient taxes on savings,

in the sense that they implement efficient allocations.

4.2 On money supply

When agents are wary there may be multiple monetary implementations. Let us denote by

µi + νiL the pure charge of the supergradient of U i at xi which takes the highest value on

the net trade of agent i. It is shown in the proof of Theorem 2 that, if µi is collinear with

the countably additive component p of the AD price π and C3 holds, but (after rescaling

utility so that ||µi|| = ||p||) we have νAD(xi − ωi) < νiL(xi − ωi), then there is a mone-

tary equilibrium with a positive limiting money supply. Let us explore this. To simplify,

let us assume that preferences are differentiable along the canonical directions (and let us

rescale the utility functions so that these canonical marginal derivatives µit are such that

||µi|| = ||p||).
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Figure 1: The marginal loss from undoing the savings (b.(xi − ωi)) exceeds the AD price

of the savings (π.(xi − ωi) = 0)

Definition 3. We say that agent i is particularly wary at the AD allocation (xi)i if agent’s

i marginal loss from reverting the savings policy (the left derivative of U i at xi along the

direction xi−ωi) is greater than the value that the AD support price assigns to this savings

policy (π(xi − ωi)).

This non-differentiability is intrinsic to wary preferences, due to the diversity of gen-

eralized limits that can be taken for the pure charges of the supergradients. When

δ−U i(xi, xi − ωi) > π(xi − ωi), the consumer values the impact of the reversal of the

savings policy differently from the way the AD supporting price does. Figure 1 illustrates

what that gap would look like in a 2-date economy, although the non-differentiability is

somehow ad-hoc in finite horizon but has a sound reason to occur for wary infinite lived

agents. AD equilibria requires the support prices to be in the intersection of the superdiffer-

entials of all agents. The sequential monetary implementation can be achieved by having

each agent checking first order effects according to some supergradient, and there is no

reason why agents should be coordinating to have collinear supergradients.

Theorem 3. (Equilibrium with non-vanishing money supply) Under the assump-

tions of Theorem 2, suppose that marginal utilities are well defined at each date and that
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some consumer i is particularly wary at xi, then, even for taxes satisfying also condition

C3, there is a monetary implementation of the AD equilibrium for which the money supply

does not go to zero.

Under impatience and strictly positive consumption, what has been known as the strong

version of Friedman’s rule still holds for taxes satisfying C2 and C3 (just like it did for

lump-sum taxes25). On the other hand, Theorem 3 says that when agents are wary the

money supply does not have to go to zero at an efficient monetary equilibrium, which

contradicts Friedman’s strong rule. Theorem 3 does not imply, however, that any monetary

implementation, under its assumptions, must have non-vanishing money supply: given an

equilibrium (x, y, q), there is r ∈ `1+, with ||r|| = 1 and lim rtqt = 0, such that if ỹit =

yit − (
∑

s≤t rs) lim yi, then (x, ỹ, q) is also an equilibrium, due to the automatic adjustment

in the non-lump-sum taxes. The same consumption bundles are attained without carrying

on cash to infinity but by putting aside from consumption the same amount, now in the

form of taxes.

An interesting case where the assumptions of Theorem 3 holds is described next. The

pure charges of all supergradients of U i at xi have the same norm if limn δ
−U i(xi, 1n) =

limn δ
+U i(xi, 1n), where 1nt = 0 for t < n and 1nt = 1 otherwise. In such case, the pure

charge of the left derivative along the direction (xi−ωi) has the largest generalized limit of

(xi−ωi), which is lim sup(xi−ωi). This will be illustrated as we resume Examples 1 and 2.

Then, some consumer will be particularly wary at the AD allocation (and the assumptions

of Theorem 3 hold) if lim sup(xi−ωi) 6= LIMAD(xi−ωi) for some agent, which is the case

when not all net trades are converging.

Corollary 1. Under the assumptions of Theorem 2, if for all agents i, the marginal deriva-

tives at infinity limn δU
i(xi, 1n) and at each date δU i(xi, et) exist, then there is a monetary

implementation of the AD equilibrium for which the money supply does not tend to zero if

25In fact, lump-sum taxes do not affect the necessary conditions for individual optimality and the result

follows as in Proposition 5 in Pascoa et al. (2010).
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and only if agents’ net trades are not all converging.

This corollary is also proven in the Appendix. The necessity is actually quite general

and was known from Remark 2; sufficiency depends on the assumptions that were made.

Let us compare our results with what had been established in the literature. What is

designated as Friedman’s strong rule is a variation upon a claim made by Friedman (1969),

although his claim actually just required a zero nominal interest rate and that, for that

purpose, money supply should contract at a rate equal to the equilibrium real interest rate.

Bewley’s work (1980,1983) on impatient preferences not satisfying Inada had already shown

that when consumption is always positive, a constant money supply is inefficient, whereas

a money supply decreasing to zero at a constant rate can be made efficient when combined

with lump-sum taxes. Levine (1986) gave interesting examples of efficient non-vanishing

money supply for impatient agents with linear utilities, where corner solutions were crucial

for building up large money balances. These were complemented by results in Levine (1989)

on non-vanishing money supply under differentiable preferences not satisfying Inada. Wary

agents have an incentive to keep large money balances for a long-run hedging effect, and,

in this case, Inada’s conditions will not prevent the implementation of efficient monetary

equilibrium with constant money supply, as our theorems assert and the examples will

illustrate.

4.3 Monetary equilibrium for endogenous discounting

Resuming Example 1

We consider two-agent economies where preferences are as in Example 1 and endow-

ments suffer shocks that alternate in sign along time but are not of the same magnitude.

When one consumer gets a positive shock, the other suffers the symmetric negative shock.

Money can be used to hedge against these shocks. Consumers would like to hold money for-

ever (or at least, along some subsequence) in order to find a consumption path in between
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the upper and the lower endowment subsequences.

The utility function is as in Equation (4) with ui(.) =
√
. and β = 6. Take, for

both agents, ζt = (1/2)t−1
√

1 + 1/t. Endowments are ωit = 16 t+1
t + Git, where G1

t is

given by G1
t = 13 if t is even and G1

t = −11 if t is odd, and G2
t = −G1

t . Recall that

the indeterminacy in the generalized limit considered in the AD price leads to a real

indeterminacy in AD equilibrium allocations. Take the equilibrium allocation that results

from using a Banach limit B. Consider the allocation xit = 16 t+1
t and supergradients of

the form πic =
∑∞

t=1(
1
2)t+2ct + 3

4B(c). We normalize prices so that the coefficient of the

Banach limit is one: π = 4
3π

i (AD Lagrange multipliers are 3/4). Denote by p the summable

component of π, the deflator pt = 4
32−t−2. The pair ((xi)i, π) is an AD equilibrium, as AD

budget equations hold since π(G1) = 0 follows from B(G1) = 1 and p(G1) = −1.

For yi0 = 9, make qt = 3
42t+2, the inverse of the deflator pt. Let zt be the funds put

aside by a consumer at date t, which will be decomposed as a sum of his money balances

and the cumulated taxes on his money balances: zt = yt +
∑

s≤t τ
i
s(y).

As the infimum xi of consumption is never attained, the marginal utility at infinity

limn δU
i(xi, 1n) exists (see Appendix E) and, therefore, the assumptions of Corollary 1 are

satisfied. The implementation is achieved (as explained in detail in Appendix A) with (zi)i

if we (I) make limt z
i
t = lim sup(xi−ωi), that is, the limiting cost of carrying on cash equals

the marginal gain of hedging at infinity, given by the highest possible value that any pure

charge of a supporting price can take on the net trade and (II) require all other plans ẑ to

satisfy limt ẑ
i
t ≥ lim sup(x(ẑi) − ωi) (a limiting cost of funds not below the marginal gain

at infinity).

Taxes are designed so that Condition (II) holds. A money holdings plan y pays accu-

mulated taxes
∑∞

t=1 τ
i
t (y) = lim sup(x(ŷ − ωi)− limt yy, which ensures (II).

The AD budget equation holds if zi0 = limt z
i
t − B(xi − ωi). Then, (I) implies that

zi0 = lim sup(xi−ωi)−B(xi−ωi), that is, lim sup(−G1)−B(−G1) = z10 and lim sup(G1)−

B(G1) = z20 , where B(G1) = 1. Since lim sup(−G1) = 11 and lim sup(G1) = 13 we must
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have z10 = z20 = 12. So zit = 12+
∑t

s=1 psG
i
s and short-sales are never done in equilibrium26.

Then, lim z1t = 11 whereas lim z2t = 13.

Now, take θ = 0 and yi = zi so that equilibrium cash balances are not taxed and money

supply remains constant, which illustrates Theorem 1.

Actually, as lim z1t is different from lim z2t we could not make
∑∞

t=1 θt = lim zit for all

i, so that money supply would tend to zero. Impersonal taxes are incompatible with a

limiting zero money supply, except in the symmetric case where lim sup(xi − ωi) is the

same for all agents, as implied by Theorem 2.

This example can be modified so that aggregate resources are not decreasing but, for

any t, there exists some subsequent date where the aggregate endowment is lower than in

t. Suppose that at even dates endowments follow increasing sequences and that at odd

dates endowments are oscillating around a decreasing trend.

As a second remark, notice that the discount factors are a product of exponential and

hyperbolic discounting. Preferences fail to be time-consistent, not as a consequence of βi

being positive, but as a result of the somehow hyperbolic discounting that was assumed

for convenience reasons. The example could be redone with longer computations (along

the lines of Example 1 in (Araujo et al. (2011))) under exponential discounting and con-

sumption plans that differ from the trend endowment.

Resuming Example 2

Consider two agents with utility functions of the form in Example 2 with ui(y) =
√
y,

ni = 2, ηit =
(
1
2

)t−1√
1 + 1/t and

βi = 3

(
8

∞∑
k=0

1

24k
− 8

∞∑
k=0

1

24k+2k
− 12

∞∑
k=0

1

44k
+ 12

∞∑
k=0

1

22·4k+2k

)
. (14)

The consumptions are defined as ωi := 161+t
t +Git where G1

t = 6 if 22k+1 ≤ t ≤ 22(k+1)−
26In this example we did not need to increase initial money holdings by some amount A to avoid short-

sales.
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1 for k = 0, 1, . . . and G1
t = −4 if 22k ≤ t ≤ 22k+1 − 1 for k = 0, 1, . . . , and G2

t = −G1
t for

all t ∈ N. Take the equilibrium allocation xit = 161+t
t that results from using in the AD

price the pure charge, LIM, that in the net trade of the agent 1, takes the lowest value,

lim inft
(
x1t − ω1

t

)
. The AD price is given by π(c) =

∑∞
t=0

(
1
2

)t+2
+ β

8LIM (φ(c)) where φ :

`∞+ → `∞+ such that φ(c)t = 1
t

∑t
k=1 ck. Since φ is Frechet differentiable, using the result of

the chain rule of the Clark subdiferential, we have that all pure charges in the subdifferential

of the agent have the same norm, and also that the left derivative in the direction of the

net trade coincides with the lim sup of the net trade, since the value of φ in the net trade of

the first agent is φ(4,−6,−6, 4, 4, 4, 4,−6,−6,−6,−6,−6,−6,−6,−6, 4, 4, 4, 4, 4, 4, . . . ) =

(4,−1,−8/3,−1, 0, 2/3, 8/7, 1/4,−4/9,−1,−11/6,−28/13,−17/7,−8/3, . . . ). This implies

that we can implement with z1 = 10 and z20 = 0 (by the same argument as in Example 1)

and taxes defined as in Example 1.

4.4 On inefficient equilibria when there are no taxes

Example 3

Consider n economy economy with two agents i = 1, 2 whose preferences are given by

(4), where ui(x) := log(x), δt = 1/2t and β will be specified below.

ωit =

 8 + 2−t if t and i are even or odd simultaneously,

2 if t is even and i is odd, or conversely.

There is an AD equilibrium (π, x) where xit = 5 + 2−t−1 for each i, and π(c) :=∑∞
t=1

1
2t

ct
5+2−t−1 + ν(c), for a pure charge ν defined by ν(·) = β

5LIM(·) where LIM is a

generalized limit such that LIM
(
x1 − ω1

)
= lim sup

(
x1 − ω1

)
, provided that β is given as

follows

β :=
5

3

∑
k≥1

2

4k

(
5 + 4−k

)−1 (
3 + 4−k

)
−
∑
k≥1

1

4k

(
5 +

4−k

2

)−1(
3 +

4−k

2

) > 0
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Now, let us construct an inefficient equilibrium ((x̃i, x̃i)i, q without deflation, q1 = · · · =

qt = q, where agent 1 holds no money in all even dates (z̃12k = 0 for k ∈ N) and agent

2 holds no money in all odd dates (z̃12k−1 = 0 for k ∈ N), z̃10 = 0 and z̃20 = 6β. Let(
µit
)
∈ ∂U i(x̃i) and satisfying the FOC of each agent at x̃i. That is, for each t and i even

or odd simultaneously,

δtu
i′ (x̃it) = µit = µit+1 = δt+1u

′ (x̃it+1

)
+ γt+1βui

′ (x̃i) = (δt+1 + γt+1β)ui
′ (
x̃i
)

(15)

Therefore,
(
x̃it
)
i,t

,
(
γit
)
i,t

and q are such that satisfy:

•
∑∞

t=1 γ
i
t = 1 where γit ≥ 0 with γit = 0 for t and i both odd or both even;

• inft x̃
1
t ≡ x̃1 = x̃12k for all k ∈ N and for agent 1, and inft x̃

2
t ≡ x̃2 = x̃22k−1 for all

k ∈ N and for agent 2, by choosing q < 1/(2β);

• x̃it = ωit − 6βq and x̃it+1 = ωit+1 + 6βq for each t and i even or odd simultaneously,

then, by Equation (15), δtu
i′ (ωit − 6βq

)
= (δt+1 + γt+1)u

i′ (ωit+1 + 6βq
)

for each t

and i even or odd simultaneously.

The plan
(
x̃i, z̃i

)
is optimal for agent i. To see this, notice that this infimum attained

infinitely many times (in all t for which z̃it = 0) and the plan satisfies the sufficient con-

ditions mentioned in Lemma 2, for a supergradient whose pure charge is zero. In fact,

the transversality condition (10) is satisfied: limt µ
i
tqtz̃

i
t = q limt µ

i
tz̃
i
t = 0, as there is no

deflation and z̃i takes a positive value, 6β, only at dates where the respective subsequence

of µi is falling to zero. On the other hand, the condition (11) becomes limt µ
i
tqtzt ≥ 0,

which is trivially satisfied for any z ≥ 0.

However, it can be noticed that the equilibrium under sequential budget constraints just

constructed is inefficient since the marginal rates of substitution are not equal for the two

agents in all pairs of dates (more precisely, no supergradient of one agent is collinear with a

supergradient of the other agent). If we impose the taxes mentioned in Subsection 4.1, it is

possible to implement the AD equilibrium mentioned above which is clearly Pareto efficient.
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If such taxes, of the recursive form (13), were levied upon the inefficient equilibrium plans,

agent 1 would pay a tax x1t −ω1
t −yt = 6βq on even dates (dates when the agent dishoarded

more than the cost of carrying on cash up to that date) and zero taxes on odd dates. These

taxes would displace the inefficient plans and guide the consumers toward efficient savings

plans. However, if we just add lump-sum taxes, the outcome will not be Pareto efficient.

5 Concluding Remarks

The paper is related to the work in Araujo et al. (2011) on sequential implementation of

AD allocations using long-lived assets paying dividends, but differs from it in three crucial

aspects. First, efficient allocations are now being sequentially implemented by introducing

taxes that discourage inefficient savings, rather than by imposing portfolio constraints. We

believe this approach is quite novel.

Second, the two papers differ in what the bubble is. Before, for portfolio constraints

involving the AD pure charge, the bubble was just equal to the value that the AD price

pure charge takes at the dividends sequence (see, Theorem 2 in Araujo et al. (2011)),

but in the case of money such value would be zero. Moreover, it was also shown (see

Proposition 6, in Araujo et al. (2011)), that for more general portfolio constraints (using

possibly other generalized limits when evaluating asymptotic net trades), the bubble would

still be determined in the same way (and, therefore, equal to zero in the case of fiat

money) whenever agents’ net trades were all converging. However, we show that, in the

implementation with taxes proposed in the current paper, for non-converging AD net

trades, the initial money holdings scaled up by the bubble coincide with the difference

between the highest value that the pure charge of a supergradient can take at the net trade

and the corresponding value for the AD price pure charge. The non-differentiability of

preferences, inherent to wariness, plays now a crucial role27.

27see the proof of Lemma 4 in the Appendix.
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Third, we have now general results for wary preferences and endogenous discounting,

being no longer focused on the specific form driven by the ε-contamination capacity.

Having chosen to focus on monetary implementations, we came up with the interesting

observation that money supply does not have to go to zero. Wary agents can use persistent

positive money balances to hedge against endowments shocks at far away dates. An optimal

positive limit in the money supply is not a consequence of imposing money floors or peculiar

portfolio constraints. We just assume the usual no-short-sales constraint on money together

with a fiscal policy that taxes inefficient savings plans and corrects what would be an

insatiable demand for precautionary liquidity in a deflationary context (an instance of a

problem already noticed by Friedman and Bewley).

Finally, it should be pointed out that time consistency is compatible with wariness.

As an example, when the series of discounted utilities describes a time-consistent behavior

(say, under exponential discounting), then adding a term dealing with the infimum of the

utilities makes the consumer wary and could introduce an inconsistency but it does not in

equilibrium as long as the infimum is not attained in finite time, which is precisely the case

we are interested in, so that AD prices exhibit pure charges.

APPENDIX

A Proof of Theorem 1

Proof. (xt)t∈N ≫ 0 implies that the marginal utility in xt of the function u is uniformly

bounded from above and below, that is, 0 < m ≤ u′(xt) ≤ M < ∞ implying that the
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condition of uniform convergence can be written as limt supδ∈C

{∑
s≥t δs

}
= 0. Therefore,

0 ≥ lim
n→∞

lim
h→0−

−1

h
(U(x+ hllEn)− U(x))

= lim
n→∞

lim
h→0−

−1

h

(
inf
m∈C

{
n−1∑
t=1

δtu(xt) +
∞∑
t=n

δtu(xt + h)

}
− inf
m∈C

{ ∞∑
t=1

δtu(xt)

})

≥ lim
n→∞

lim
h→0−

−1

h

(
inf
m∈C

{ ∞∑
t=n

δt (u(xt + h)− u(xt))

})

≥ lim
n→∞

lim
h→0−

−1

h

(
inf
m∈C

{ ∞∑
t=n

δt (Mh+ o(h))

})
= −M lim

n→∞
sup
m∈C

{ ∞∑
t=n

δt

}
= 0,

which concludes proves that the left derivative is 0, for h→ 0+ is analogous.

B Proof of Theorem 2

We construct an auxiliary economy where inter-temporal transfers of wealth are done

by trading a no-dividends asset in constant positive net supply, not subject to taxes but

subject to portfolio constraints. We denote positions in this asset by z (these will be related

to money balances by zt = yt+
∑

s≤t τ
i
s(y), which implies that zit−1−zit = yit−1−yit−τt(y)).

In the auxiliary economy, budget constraints are given by (8).

Consider the supergradient whose pure charge νiL takes the highest value on the direc-

tion of the net trade28. That is, νiL is such that δ−U i(xi;xi−ωi) = (µi + νiL)(xi−ωi). If

µi is collinear with the countably additive part p of the AD price π, then we use the super-

gradient µi + νiL in the procedure proposed by Proposition 2. Otherwise, we can always

use the supergradient collinear with π ≡ p + νAD. This suggests the following portfolio

constraint:

limµitqtzt ≥ νiL(x(z)− ωi) (16)

Let BA(q, yi0, ω
i) be the set of plans (x, z) satisfying (8) and (16).

28This allows us to illustrate the multiplicity of equilibria and prepare for the proof of Theorem 3.
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Definition 4. A vector (q, (xi, zi)i∈I) ∈ IR∞+ × (`∞+ × IR∞+ )I is an equilibrium for the

auxiliary economy with initial holdings (z10 , ..., z
I
0) if (xi, zi) ∈ argmax{U i(x) : (x, z) ∈

BA(q, yi0, ω
i)};

∑I
i=1 x

i =
∑I

i=1 ω
i and

∑I
i=1 z

i
t =

∑I
i=1 z

i
0 ∀ t ∈ N.

Lemma 4. If ((xi)i, π) be an AD equilibrium such that xi ≫ 0, there exist zi0 that imple-

ment (xi)i as an equilibrium for the auxiliary economy, possibly with short-sales.

Proof. Notice that the AD budget equation holds as an equality for a plan zi when

limt ptqtz
i
t−νAD(x(zi)−ωi) = zi0p1q1. We choose zi0 so that 1

ρi
νiL(x(zi)−ωi)−νAD(x(zi)−

ωi) = zi0p1q1, where ρi is the AD Lagrange multiplier of agent i. We can actually take

ptqt = 1. By Proposition 2, the portfolios zi that satisfy (16) given zi0 and xi, will imple-

memt the AD equilibrium allocation (xi)i for (ωi)i.

Let us map back into the original sequential economy. Suppose sequential im-

plementation without taxes was achieved with short sales under the constraint (16), with

ptqt = 1. If z takes negative values at some dates, we can find money holdings Zi0 = zi0 + Ã

such that the equilibrium positions zit can be replaced by non-negative money balances.

We have the freedom of either shifting up the portfolio plans by Ã or introducing lump-sum

taxes θ that retrieve the additional initial holdings gradually (lightly at the finitely many

dates where zit was negative), or a combination of both29.

Let us proceed by introducing taxes that replace the portfolio constraints.

Lemma 5. The non-negative plans Zi given by Zit = zit + Ã −
∑

s≤t θs for t ≥ 1, will

implement the same efficient allocation if portfolio constraints are replaced by personal

taxes τ i satisfying, for any portfolio plan Z,
∑∞

t=1 τ
i
t (Z) =

∑∞
t=1 θt + [νi(qt(Zt−1 − Zt))−

limZ +A]+, where θt = p̃t(Ã−A).

29Notice that if we choose to shift zi up by Ã, then Zi does not satisfy the second transversality condition

of Remark 2 (the direction Zi(n) is not left admissible for the constraint limt µtqtzt ≥ ν(x(z) − ω) + Ã,

which should replace (11), together with limt µtqtz
i
t ≥ ν(xi − ω) + Ã replacing (10))
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Proof. In fact, for xit(Z) ≡ qt(Zt−1 − Zt − τ it (Z)) we have
∑∞

t=1 τ
i
t (Z) ≥ νi(xi(Z) − ωi) −

limZt+Ã. Let zt = Zt−Ã+
∑

s≤t τ
i
s(Z), then limt zt ≥ νi(x(z)−ωi). That is, the definition

of taxes ensures that any plan Z has an image z satisfying constraint (11). As we already

knew that (10) holds, it follows that Zi is optimal, for the initial holding Zi0 = zi0 + Ã, and

taxes are levied in equilibrium only if we choose to have lump-sum taxes removing (all or

part of) Ã .

Now, in order to define impersonal taxes we will increase taxes and also the initial

holdings of money. Let γi := lim sup(xi − ωi) − νi(xi − ωi) ≥ 0. We make yi0 = Zi0 + γi.

Denoting by q(y− − y) the sequence with general term qt(yt−1 − yt), for any portfolio plan

y we define the following tax

γit(y)=


(
lim sup q(y−−y)−νi(q(y−−y))

)
p̃t if lim y≤νi (q(y−−y))+A,

[lim sup q(y−−y))−lim y+A]+p̃t otherwise.

Then, the impersonal taxes satisfy

∞∑
t=1

τt(y) =

∞∑
t=1

(τ it (y) + γit(y)) =

∞∑
t=1

θt + [lim sup q(y−−y))− lim y +A]+.

Lemma 6. Given the equilibrium plans (Zi)i for the economy with just personal taxes τ i,

the plans yit = Zit + γi −
∑

s≤t p̃s(lim sup(xi − ωi)− νi(xi − ωi)) constitute an equilibrium

for the economy with impersonal taxes.

Proof. Let us see first that the proposed plans yi are in the budget set with impersonal

taxes. For the proposed plans, lim yi = limZi = νi(q(y−− y)) + Ã−
∑∞

t=1 θt and therefore

τ i(yi) =
∑∞

t=1 θt. Moreover, as limt qtτt(y) = 0 we have lim sup q(yi−−yi) = lim sup(xi−ωi)

and νiq(yi− − yi) = νi(xi − ωi). So, γit(y
i) = p̃(lim sup(xi − ωi) − νi(xi − ωi)). Then,

yit−1 − yit − τt(yi) = Zit−1 − Zit − θt, which implies that yi still accommodates xi in the

sequential budget equations.

Now, (Zi)i = (zi + A −
∑

s≤t θs)i is also an equilibrium for the auxiliary economy, with

constraints (11). To show that yi is optimal for the economy with impersonal taxes, it
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suffices to show that any plan y for consumer i in the economy with impersonal taxes

induces a plan z for i in the auxiliary economy with constraints (11). We look for z such

that yt−1 − yt − τt(y) = zt−1 − zt, then we have

zt = yt −

γi −∑
s≤t

γis(y)

+
∑
s≤t

τ is(y) (17)

Then, lim zt = lim yt +
∑∞

t=1 τ
i
t (y) ≥ νi(q(y− − y)) + Ã (since

∑∞
t=1 θt + A = Ã). Now,

νi(q(y− − y)) = νi(q(z− − z)) since lim qtτt(y) = 0. Hence, constraint (16) holds.

This concludes the Proof of Theorem 2.

The proof of Proposition 3 follows from the proof of Theorem 2 since, under C2,

taxes satisfy C3 if and only if A = 0, which is also the necessary and sufficient condition

for lim yit to be equal to the limit of the equilibrium portfolio zi of the auxiliary economy

(for which the assumptions in Remark 2 hold).

C Proof of Theorem 3

Notice that for taxes to satisfy condition C3 we make A = 0 and we get lim yi = νi(xi −

ωi). If there is at least one agent j such that νj(xj − ωj) for some supergradient µj +

νj , with µj collinear with p and νj(xj − ωj)/ρj > νAD(xj − ωj), then the monetary

equilibrium generated (according to Proposition 2) by using this supergradient for j and

supergradients collinear with p+νAD for all other agents, will have money supply converging

to
∑

i 6=j ν
AD(xi − ωi) + νj(xj − ωj)/ρj > 0.

Finally, for each i let Y i
t = yit −

∑
s≤t rs lim yi, where r ∈ `1+, ||r||1 = 1 and rtqt → 0.

Now, [νiq(Y i
−−Y i)− limY i+A]+ = [νiq(yi−−yi)+ lim qtrt lim yi+A]+ = νiq(yi−−yi)+A

and therefore
∑∞

t=1 τt(Y
i) =

∑∞
t=1 τt(y

i) + lim yi. Actually, for taxes given by (12) it is

immediate to see that τt(Y
i) = τt(y

i)+ p̃t lim yi. For other tax schedules (say given by (13)

or its variants (a) and (b) considered in a footnote) we pick rt = τt(Y i)−τt(yi)
lim yi

.
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Then, qt(Y
i
t−1−Y i

t − τt(Y i)) = qt(y
i
t−1− yit + rt lim yi− rt lim yi− τt(yi)) = qt(y

i
t−1−yit

−

τt(y
i)) and, therefore, Y i is optimal for agent i.

D Proof of Corollary 1

We just need to rule out that LIMAD(xi−ωi) = lim sup(xi−ωi), for any i. Adding across

agents, 0 =
∑

i lim sup(xi−ωi). Say it is agent 1 whose net trade x1−ω1 does not converge.

Now, lim sup(x1−ω1) = −
∑

i 6=1 lim sup(xi−ωi) =
∑

i 6=1 lim inf(ωi−xi) ≤ lim inf(x1−ω1),

a contradiction.

E On Example 1 and Directional Derivatives of the Utility

We show here that for a utility function U of the form given by (4), if z∗ is an optimal

portfolio plan in BA(q, yi0, ω
i) (defined in Subsection 8.2.1) such that, at x∗ := x(z∗) ≫ 0,

we have inf x∗ not attained and lims x
∗
s = infs x

∗
s, then

δ−U(x∗)(x∗;x∗ − ωi) = µ(x∗ − ωi) + α lim sup(x∗ − ωi)

for α > 0 equal to the norm of the pure charge component of a supergradient of U at x∗,

where µ is given by µt = ζtu
′(x∗t ).

We will estimate limr→0
1
r [U ◦ x(z∗ + rz∗) − U ◦ x(z∗)]. Consider the direction ∆ ∈

`∞ given by ∆t = qtz
∗
t−1 − qtz

∗
t . Notice that limr→0

1
r

∑
t≥1 ζt[u(x∗t + r∆t) − u(x∗t )] =∑

t≥1 ζt limr→0
1
r [u(x∗t +r∆t)−u(x∗t )] =

∑
t≥1 ζtu

′(x∗t )∆t. So, what we still need to do is to

estimate limr↑0
1
rβ[inft u(x∗t +r∆t)−infs u(x∗s)], which is δ− inft u(x∗,∆), the left-derivative

of the function inft u(.) along the direction ∆ evaluated at x∗.

Observe that there exists χ > 0 such that ∀r ∈ (−χ, 0) the following holds: (1+r)z∗ > 0

is a non-negative plan, x(z∗ + rz∗) satisfies (16) and x(z∗ + rz∗) = x∗ + r(x∗ − ω) ≫ 0.

Claim: limr↑0
1
r [inft u(x∗t + r∆t)− inft u(x∗t )] = u′(x∗) lim supt ∆t
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Proof. Let us suppose that x∗t converges to x∗ = inf x∗, then limr↑0
1
r [inft u(x∗t + r∆t) −

u(x∗)] since inf(.) : `∞ → IR is a concave function.

Fixed r ∈ (−χ, 0) and given ε > 0, it is valid for all τ large enough that (1/r)[inft u(x∗t +

r∆t)−u(x∗)] + ε = (−1/r)[u(x∗)− εr− inft u(x∗t + r∆t)] ≥ (−1/r)[u(x∗τ )−u(x∗τ + r∆τ )] ≥

u′(x∗τ )∆τ . Making τ →∞ we get (1/r)[inft u(x∗t + r∆t)−u(x∗)] + ε ≥ lim supt u
′(x∗t )∆t =

u′(x∗) lim supt ∆t, for an arbitrary ε > 0.

To prove the reverse inequality, notice that, under the hypothesis, δU(x∗; ll(n)) =∑
t>n ζ

tu′(x∗t ) + βu′(x∗) and, therefore, any supergradient has a pure charge component

with norm βu′(x∗) by Lemma 1. Hence, for any supergradient T of U at x∗ we have T (∆) =∑
t≥1 ζtu

′(x∗t )∆t + βu′(x∗)LIM(∆), for some generalized limit LIM. So, δ− inft u(x∗,∆) ≤

u′(x∗) lim supt ∆t.

Now, if there is a subsequence S such that ∆t ≥ 0, infS x
i
t = x∗ and lim supS ∆t =

lim sup ∆t, the left derivative on the direction {∆t}t is u′(x∗) lim supt ∆t, which concludes

the proof.
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