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Abstract

Non-recourse borrowing leaves no room for Ponzi schemes, as shown

by Araujo, Páscoa and Torres-Mart́ınez (2002). This is not the case with

recourse loans, for which, in the event of default and on top of the foreclosure

of the collateral, the debtor’s estate can be seized or (in a way common in

the GE literature) the debtor can suffer utility penalties. We focus on the

latter and show that infinite horizon equilibrium with recourse exists in some

interesting cases: (i) if utility penalties are low enough and the collateral

does not yield utility (for example, when it is a productive asset or a security)

or (ii) for a nominal promise backed by real collateral (such as mortgages,

whose payments are not tied to a commodity price index).
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1 Introduction

The modern general equilibrium literature on default evolved mainly from two

seminal contributions, the Dubey, Geanakoplos and Shubik (2005) paper on utility

penalties and the Geanakoplos and Zame (1997) work on non-recourse borrowing.

In an infinite horizon set-up, non-recourse loans have the appealing feature of being

incompatible with Ponzi schemes, at least for time and state separable preferences,

as shown by Araujo, Páscoa and Torres-Mart́ınez (2002). Non-recourse is the rule

for mortgages in thirteen states in the U.S., but in all the other states and in

many countries mortgages are treated as recourse loans. Other types of secured

loans tend to be recourse: collateralized borrowing for the purchase of equipment

usually requires a default insurance, while in the case of credit for the purchase of

securities default triggers personal bankruptcy.

Recourse means that the defaulter’s personal estate can be seized by the credi-

tors, either entirely or in proportion to the outstanding debts that were not covered

by the value of the collateral at the time the default occurred. There may be other

types of default penalties, such as reputational effects, difficulties in applying for

credit in the future or even criminal consequences, that we can also see as a form

of recourse that ends up affecting the defaulter’s welfare. Utility penalties, in-

troduced by Shubik and Wilson (1977) and more recently modelled by Dubey,

Geanakoplos and Shubik (2005) in a GE framework, attempt to capture in utility

terms the impact of all forms of recourse.

In the presence of utility penalties, collateral may not avoid a Ponzi game. In

fact, the penalties may induce agents to repay above the minimum of the promised

payment and the collateral value. Then, non-arbitrage cannot rule out that, at

the borrowing date, the secured loan would have a negative haircut (the collateral

cost would be lower than the loan). The resulting cash flow in an open end setting

would give rise to a Ponzi scheme. This is actually what happens when the promise

is traded in the examples by Páscoa and Seghir (2009) for utility penalties that

make the maximal default prohibitive. However, the argument that also ruled

out no-trade outcomes in Páscoa and Seghir (2009) was not correct and, as was

pointed out by Martins-da-Rocha and Vailakis (2012a), a no-trade equilibrium

could be found by setting the delivery rate at the minimal level, even though such

expectation about the delivery rate is not consistent with the harsh penalty. Once
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the equilibrium is refined, along the lines of the refinement in Dubey, Geanakoplos

and Shubik (2005), non-existence of equilibrium prevails.

Our first contribution is to observe that absence of pecuniary Ponzi schemes

is not enough for existence of equilibrium. The net gain that the borrower can

have at the borrowing moment consists of the loan net of collateral costs plus the

utility from consumption of the collateral. Such direct utility effect may allow for

an infinite horizon improvement strategy even when collateral costs outweigh the

loan (as our Example 1 illustrates). Under non-recourse the whole current benefit

had to be non-positive, by non-arbitrage, as at the immediate next nodes new

collateral values net of effective repayment were always non-negative.

In our second contribution, we find an upper bound on utility penalty coeffi-

cients that make the collateral cost never fall below the promise price and existence

of equilibrium is, therefore, guaranteed, under these moderate penalties, provided

that the collateral does not give any utility (say it is a durable commodity with

no utility yields, as in Fostel and Geanakoplos (2008), a productive asset or a

share in it, as in Kubler and Schmedders (2003) or any real security in positive net

supply that cannot be short-sold, as in Fostel and Geanakoplos (2015)). Actually,

the recourse feature that a utility penalty tries to capture is often observed in

collateralized borrowing for the purchase of equipment or securities.

Our third contribution allows for harsher penalties and for utility yields from

the consumption of the collateral. Moderate penalties is a strong condition as it

makes agents give maximal default (as in the model where utility penalties were

absent). However, equilibrium is compatible with partial default or no default, as

illustrated in Example 2, where the sum, across next nodes, of the marginal penalty

effects is dominated by the sum of the marginal income effects. The problem is

that this dominance depends on relative prices and there might be no room to

choose relative spot prices if these are already pinned down by market clearing.

There is, nevertheless, an important case where there are degrees of freedom in

market clearing prices. It is the case where the promise is nominal but the collateral

is a real asset. This case is relevant for mortgages, which should be regarded as

loans whose promised repayments are not adjusted by commodity price indices,

and also for credit for the purchase of shares. In finite horizon economies, there

is indeterminacy in equilibrium with respect to the inflation rates. Now, high

inflation rates across all the next nodes, devalue the promised payments but not
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the collateral and, therefore, reduce the real value of default on which the penalty

is applied. Our Example 3 illustrates such equilibria with nominal promises.

Example 2 and our two existence results do not collide with the result by

Ferreira and Torres-Martinez (2010) on impossibility of recourse. Their result

depends on collateral costs being lower than the deflated value of recourse (the

repayment in excess of the minimal one) at the next nodes. It is interesting to

note that such a condition had to be introduced to make recourse impossible. In

Example 2, collateral coefficients do not satisfy such inequality and the haircut is

zero (rather than negative as in Ferreira and Torres-Martinez (2010)), which does

not allow for a Ponzi scheme (or generalized version of it, since the collateral does

not yield utility in this example). In Theorem 2 borrowers’ repayment is always

the minimal one, while in Theorem 3 it might not be, but the promise is nominal

and the result by Ferreira and Torres-Martinez (2010) does not apply.

One may wonder how do our existence results stand in the face of the possi-

bility that trivial no-trade equilibria might be found. Dubey, Geanakoplos and

Shubik (2005) showed that for unsecured promises subject to utility penalties on

default, a trivial equilibrium always exists by setting promises prices, delivery rates

and financial trades equal to zero. Martins-da-Rocha and Vailakis (2012a) found

a no-trade incomplete markets equilibrium in an example with secured promises

by setting the delivery rate at the minimal level. When the horizon is finite or

markets are complete, such no-trade equilibria are trivially found but in infinite

horizon incomplete markets that is not always the case, as we illustrate in a com-

panion paper (Páscoa and Seghir (2019). There we also propose a refinement of

equilibrium, which is milder than the straightforward extension to secured loans of

the one in Dubey, Geanakoplos and Shubik (2005). Even so, the no-trade outcome

in Martins-da-Rocha and Vailakis (2012a) still fails to meet this refinement but

there exist refined versions for the equilibria we found in the main results of this

paper.

The next section presents the model. Section 3 addresses individual optimality.

Section 4 presents the existence results. Proofs are presented in the Appendix.
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2 The Model

Consumers trade collateralized promises over a countably infinite tree D with

finitely many branches at each node. Let N0 = {0, 1, . . . } be the set of dates and

ξ0 be the root of the tree D. Given a node ξ ∈ D, let t(ξ) ∈ N0 be the date

of node ξ. We denote by D(ξ) the sub-tree that starts at ξ. We write ξ′ > ξ

if ξ′ ∈ D(ξ) and ξ′ 6= ξ. The immediate successors of node ξ constitute the set

ξ+ ≡ {η > ξ : t(η) = t(ξ) + 1} while its immediate predecessor is denoted by ξ−.

We will also use the notation DT ≡ {ξ ∈ D : t(ξ) = T} and DT ≡
T⋃
t=0

Dt. For

any real sequence (an), the notation a≫ 0 (or a≪ 0) stands for (an) being a

positive (negative, respectively) sequence uniformly bounded away from zero.

At each node ξ a finite number G of commodities is traded together with a

finite set J of one-period promises. Let us start by assuming that promises have

real returns. This assumption will be modified later, in section 5.3.

Sales of promises are secured by collateral, which is not necessarily a durable

good, but may also be a productive asset or a security in positive net supply that

pays real returns and cannot be short sold. This can be accommodated by treating

securities formally as durable goods that do not yield utility. In this context, we

may have a non-diagonal transformation matrix Yξ, of type G.G, indicating how

commodities of the previous node convert into commodities of the node ξ. If g is

a durable good, the only non-null element in column (Yξ)
g is (Yξ)gg, equal to the

depreciation factor. If g is a security, (Yξ)gg = 1 and, its non-negative dividends are

given, for g′ 6= g, by (Yξ)g′g. We allow also for productive assets (as in Kubler and

Schmedders (2003)) which can be treated formally as commodities whose non-null

columns in Yξ matrices represent their productive returns on other commodities.

Formally, the assumption on promises returns and collateral is the following.

Assumption [R].

(i) Promised returns are real and given by Ajξ ∈ RG
+, ∀j ∈ J, ξ > ξ0 .

(ii) At each node ξ, collateral must be posted in at least one g ∈ G for

which the column Y g
η is non-null at every node η ∈ ξ+. Collateral

requirements are given by a G× J matrix Cξ .
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There are I consumers whose endowments and preferences verify the following

assumptions.

Assumption [E]. Endowments of consumer i of commodity g at node ξ,

denoted by ωigξ, satisfy

(i) ∃W ∈ R++ : ∀i ∈ I, ∀ξ ∈ D,
∑
g∈G

ωigξ ≤ W.

(ii) ωξ0 � 0 and, for ξ > ξ0 and any g, ωgξ > 0 whenever the g−th row of

Yξ is null.

Let Yξ0,ξn = Y (ξn)Y (ξn−1) . . . Y (ξ1) for ξk+1 ∈ ξk+. The aggregate physical re-

sources available at node ξ are given by Ωξ =
∑
i

W i
ξ , whereW i

ξ =
∑

η∈{ξ0,...,ξ−,ξ}
Yη,ξ ω

i
η.

We say that good g is perishable at node ξ if the g-th column of Yη is null for

any η ∈ ξ+.

Assumption [U]. ∀i ∈ I, preferences over consumption are described by a

time and state separable utility U i with instantaneous utility viξ : RG
+ −→ R+

such that

(i) viξ is monotone and concave,

(ii) viξ is differentiable on RG
++,

(iii) ∀α ∈ RG
+ we have

∑
ξ∈D

viξ(α) <∞ and

(iv)
∑
ξ∈D

viξ(Ωξ) <∞2.

Consumers take as given prices p for goods, prices q for promises and delivery

rates K on the promises. As in Dubey, Geanakoplos and Shubik (2005), these

delivery rates are impersonal expectations about the ex post repayment of the

promise. In equilibrium, 1−Kjξ is the default rate on promise j in node ξ by the

aggregate sellers of that promise (as will be required in item (v) of Definition 1).

A choice variable is a non-negative plan (x, θ, ϕ, ψ) consisting of purchases of

goods not for collateral purposes, promises purchases, promises sales and defaults,

2When Y is diagonal with elements uniformly bounded away from one, the assumptions that

endowments are uniformly bounded and that the utility of a bounded plan is finite are sufficient

to ensure
∑
ξ∈D

viξ(Ωξ) <∞. (see Páscoa and Seghir (2009)).
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respectively. We denote x̃iξ = xiξ + Cξϕ
i
ξ. Budget constraints at the initial node

or at subsequent nodes ξ ∈ D \ {ξ0}, are given, respectively, by:

pξ0(x̃
i
ξ0
− ωiξ0) + qξ0(θ

i
ξ0
− ϕiξ0

)
≤ 0, (1)

pξ
(
x̃ξ − ωiξ − Yξx̃iξ− −

∑
j∈J(ξ−)

Ajξ(Kjξθ
i
jξ− − ϕijξ−)

)
+ qξ(θ

i
ξ − ϕiξ) ≤

∑
j∈J(ξ−)

ψijξ, (2)

To shorten the notations, we define Mjξ = min{pξAjξ, pξYξCj
ξ−}, for each node ξ

and for each promise j ∈ Jξ− . The minimal repayment constraint requires con-

sumers to repay at least Mjξϕ
i
jξ− , that is,

ψijξ ≤ (pξAjξ −Mjξ)ϕ
i
jξ− (3)

The right hand side of inequality (3) is the maximal default and the one that

would be given under non-recourse. Utility penalties may discourage consumers

from defaulting that maximal value. The coefficients of the utility penalty, linear

on default, are given by λ̃ijξ =
λijξ
pξ bξ

, where bξ ∈ RG
++ is a reference bundle. The

entire payoff of consumer i is

Πi(xi, θi, ϕi, ψi; p, q,K) :=
∑
ξ∈D

viξ(x̃
i
ξ)−

∑
ξ∈D\{ξ0}

∑
j∈J(ξ−)

λ̃ijξ[ψ
i
jξ]

+

where [a]+ = max{a, 0}, for any a ∈ IR. Observe that, by the way the penalty

is written, there is no need to impose a non-negativity constraint on ψ. Consumer

i problem consists in maximizing Πi subject to (1), (2) and (3) and the following

non-negativity constraint

xi, θi, ϕi ≥ 0 (4)

Definition 1. An equilibrium is a process (p, q,K, (xi, θi, ϕi, ψi)i∈I) such that pξ >

0 3 at any node ξ ∈ D and verifying:

(i) ∀i ∈ I, (xi, θi, ϕi, ψi) ∈ argmax Πi(x, θ, ϕ, ψ; p, q,K) subject to (1), (2), (3)

and (4).

(ii)
∑
i∈I

[xi(ξ0) + C(ξ0)ϕi(ξ0)] =
∑
i∈I
ωi(ξ0),

3The reason why we require pξ > 0 to be an equilibrium condition has to do with the fact

that the default penalty coefficient λ̃ijξ ≡
λijξ
pξ bξ

is only well defined in this case.
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(iii)
∑
i∈I

[xiξ + Cξϕ
i
ξ] =

∑
i∈I

[ωiξ + Yξx
i(ξ−) + YξC(ξ−)ϕi(ξ−)], ∀ξ ∈ D \ {ξ0},

(iv)
∑
i∈I
θi =

∑
i∈I
ϕi,

(v) ∀j, ξ ∈ D \ {ξ0}, pξAjξ(1−Kj
ξ )
∑
i∈I
θij(ξ

−) =
∑
i∈I
ψijξ.

3 Infinite horizon individual optimality.

3.1 Necessary conditions: Euler and transversality condi-

tions

If agent i were optimizing over a finite horizon H, a plan (ψiHjξ , ϕ
iH
jξ , θ

iH
jξ , x

iH
gξ ) that

satisfies (1), (2) and (3) is optimal if and only if it satisfies the Kuhn-Tucker

conditions for some non-negative multipliers together with some dijη ∈ [0, 1] super-

gradient of the function max{0, ·} evaluated at ψijξ. These conditions induce the

analogous Euler conditions for the infinite horizon problem, as we report next.

Definition 2. Given prices (p, q.K) and a plan Zi := (xi, θi, φi, ψi) that verifies

at these prices the constraints (1), (2), (3) and (4), we say that Zi satisfies the

Euler conditions at (p, q,K) if there exist supergradients (dij)j∈J of the function

max{0, ·} evaluated at ψijξ and a non-negative process (γi, (ρij, )j∈J) of multipliers

such that, for any promise j ∈ J and any node ξ, the following hold

(i)

λ̃ijξd
i
jξ + ρijξ = γiξ (5)

γiξ
(
pξCjξ − qjξ

)
− viξ

′
(x̃ξ)Cjξ ≥

∑
η∈ξ+

[
γiη

(
pηYηCjξ −Mjη

)
−λ̃ijηdijη

(
pηAjη −Mjη

)]
(6)

γiξq
j
ξ ≥

∑
η∈ξ+

γiηKjηpηAjη (7)

∀g ∈ G, γiξpgξ ≥ vi′ξ (x̃ξ, g) +
∑
η∈ξ+

γiηpη(Yη)
g, (8)
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(ii) equalities in (6), (7) or (8) hold when ϕjξ > 0, θjξ > 0 or xgξ > 0, respectively.

(iii) ρijξ[ψ
i
jξ − (pξAjξ −Mjξ)ϕ

i
jξ− ] = 0

As in any infinite horizon problem, Euler conditions are not the only necessary

conditions for infinite horizon optimality, a transversality condition must also hold.

For the problem described in Section 2, we say that a plan (xi, θi, ϕi, ψi) satisfies

the transversality condition at (p, q,K) when for viξ
′

evaluated at x̃i we have

lim sup
T

∑
ξ: tξ=T

(
γiξ [pξx̃

i
ξ − qξ(θiξ − ϕiξ)]− viξ

′
x̃iξ
)
≤ 0 (9)

Proposition Under assumption [U], if the plan (xi, θi, φi, ψi) is a maximizer

of Πi(x, θ, ϕ, ψ) subject to (1), (2), (3) and (4) at prices (p, q,K), then this plan

satisfies the Euler conditions and the transversality condition (9) at (p, q,K).

Remark 1.

Actually, under (5), (7) and (8), we have that (9) implies the following transver-

sality condition specifically on borrowing,

lim sup
T

∑
ξ: tξ=T

[γiξ (pξCξ − qξ)− viξ
′
Cξ]ϕ

i
ξ ≤ 0 (10)

The converse, (10) implying (9) might not hold4. See Appendix 6.1.

Remark 2.

Notice that any sequence of equilibria (pH , qH , KH , (xiH , θiH , ϕiH , ψiH)i∈I) of

economies with increasing finite horizonH has a cluster point (p, q,K, (xi, θi, ϕi, ψi)i∈I)

such that (xi, θi, ϕi, ψi) satisfies Euler conditions and transversality condition (9)

at (p, q,K), for each agent i (see Appendix 6.1 ).

3.2 A sufficient condition

However, Euler conditions together with the transversality condition (9) usually

fail to be sufficient in infinite horizon optimization problems. This is the case for

the optimization problem described in Section 2, as we will illustrate in the next

section. A sufficient condition can be provided by adding to Euler conditions and

4It does if θi = 0 and i does not consume any durable good in excess of the collateral bundle.
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transversality condition (9) the requirement that all budget feasible plans should

satisfy the converse to condition (10). More precisely,

Theorem 1 (Sufficient condition for optimality).

Let (xi, θi, ϕi, ψi) be a plan for consumer i that satisfies at (p, q,K) constraints (1),

(2), (3) and (4), together with Euler conditions and the transversality condition

(9). Suppose that any promises sales trajectory ϕ̂ which is part of a plan (x̂, θ̂, ϕ̂, ψ̂)

satisfying constraints (1), (2), (3) and (4) at (p, q,K) is such that for viξ
′

evaluated

at xiξ + Cξϕ
i
ξ we have

lim sup
T

∑
ξ: tξ=T

[viξ
′
Cξ − γiξ (pξCξ − qξ)]ϕ̂ξ ≤ 0, (11)

then, under assumptions [U], [E] and [R], the plan (xi, θi, ϕi, ψi) is optimal for i

at (p, q,K).

To put it in another way, as the horizon truncation goes to infinity, equilibria

of finite horizon economies have a cluster point which is actually an equilibrium

for the infinite horizon economy if (11) holds for any budget feasible plan.

In the next section we give some intuition on the role of condition (11) and

provide an example where it does not hold and a plan satisfying Euler and transver-

sality fails to be individually optimal. It is also an example where a limit of finite

horizon equilibria is not an infinite horizon equilibrium.

3.3 Generalized Ponzi schemes.

In the absence of utility penalties, one period non-arbitrage implies that, at each

node ξ and for each promise jξ, collateral costs pξC
jξ
ξ cannot be lower than the

promise price qjξ ; this inequality rules out Ponzi schemes and guarantees existence

of equilibrium for the infinite horizon economy (see Araujo, Páscoa and Torres-

Mart́ınez (2002)). When utility penalties are introduced this inequality does not

follow anymore from non-arbitrage and Ponzi schemes may reappear (see Páscoa

and Seghir (2009)). Furthermore, as we show now, even if penalties were low

enough so that Ponzi schemes could be avoided (as will be the case in subsection

4.1), there might not exist optimal solutions to the consumers’ problems.

Let us be more precise. A Ponzi scheme, consists in increasing the sale position

in promise j at node ξ and then accommodate this by increasing the sale position
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in another promise at the following nodes. As shown in Páscoa and Seghir (2009),

Section 4.1, a Ponzi scheme exists when there is a node ξ̃ such that at all nodes ξ

in the sub-tree starting at ξ̃ we have pξC
jξ
ξ − q

jξ
ξ < 0, for some promise jξ.

There may exist nevertheless an extended form of Ponzi schemes, compatible

with pξC
jξ
ξ − q

jξ
ξ ≥ 0 holding for any promise j and at any node ξ. This consists

in increasing the sale position in some promise jξ at nodes ξ where the marginal

utility of collateral consumption outweighs the disutility resulting from the haircut

pξC
jξ
ξ −q

jξ
ξ . For such change to be budget feasible, that cost has to be compensated

by the reduction in another expenditure, say a decrease in consumption of a per-

ishable good. Now, the utility impact at nodes that immediately follow ξ cancels

out the utility gain that occurred at ξ, provided the consumer was already shorting

the promise jξ (so that the Euler condition on shorting holds as an equality). For

this reason, the increase in a sale position in a promise at a certain node does not

need to be related to what was the increase in a previous node, it just needs to be

affordable by how much the perishable consumption may be cut.

However, for any finite horizon truncation T of such process, we are left with

the gain that may occur at date T . In the open end setting, letting T → ∞,

there may be a persistent gain (analogous to the limiting gains occurring in Ponzi

schemes done in the case of unsecured unbounded promises or in the case of secured

recourse promises with a negative haircut).

By definition, the improvement consisting in a generalized Ponzi scheme is

done in spite of the absence of finite horizon arbitrage opportunities (ruled out by

Euler conditions) and, therefore, the set of nodes where short positions are being

increased must be an infinite set. When a generalized Ponzi scheme can be done

upon a cluster point of finite horizon equilibria, the latter is not an infinite horizon

equilibrium. Let us give an example.

Example 1. Two consumers trade one promise in a deterministic setting.

The promise pays in a perishable good, fruit, and is secured by a productive asset,

fruit tree. The former is the numeraire and also the reference good in the real

default penalty. We assume that the first consumer just cares about fruit, with

linear preferences, while the second consumer has quasi-linear preferences, linear

in fruit and strictly concave in the shade provided by the fruit tree. Formally,

U (1)(x) =
∞∑
t=1

βt1xt and U (2)(x, z) =
∞∑
t=1

βt2(xt + nt(zt)), where nt(.) is a strictly

concave function to be specified below. The utility that agent 2 gets at time t
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from the shade is vt(zt) = βt2nt(zt). We have γ
(1)
t = βt1 when x

(1)
t > 0 and, for

(x
(2)
t , z

(2)
t ) >> 0, we have also γ

(2)
t = βt2. We construct finite horizon equilibria

where both agents consume fruit at every date in spite of the linearity of preferences

in fruit.

Fruit trees just last from one date to the next. Trees take one period to yield

fruit, at a rate y < 1 that is constant over time, and then die. The transformation

matrix Y has a first row given by [0y] and a null second row. At each date, new

fruit trees are born in the orchards of each consumer, in the amounts ωit. We

assume that, for both consumers, the sequence (ωit)t converges and ωi ≫ 0. Let

pt and qt be the tree and the promise prices, at date t.

We assume β1 > β2 and that the default penalty coefficient σ of agent 2 is lower

than one (implying λ̃
(2)
t < γ

(2)
t ), so that this agent would always give maximal

default when selling the promise. We suppose each unit of a promise traded at

date t has a fruit yield At+1 = ηyCt, with η > 1, so that the minimal delivery of

the promise becomes Mt+1 = yCt. Let Kt+1 = yCt/At+1 = 1/η.

We set the promise price equal to the willingness to pay of agent 1, qt =

β1yCt, and also to the reservation price of agent 2 as a seller of the promise,

qt = ptCt − n′tCt + β2σt+1dt+1(At+1 − yCt). If the promise is actually traded,

agent 1 will buy it and agent 2 will sell it. The price of a tree must satisfy

pt ≥ β1y and pt ≥ β2y+n′t(z
(2)
t ), holding with equalities if the collateral constraint

(z
(i)
t ≥ Ctϕ

(i)
t ) has null shadow value for the respective agent. Let us look for

an equilibrium where the promise is traded and these shadow values are positive

for agent 1 and null for agent 2. This is compatible with z(1) and ϕ(1) both zero,

while agent 2 could be consuming trees in excess of the collateral requirement but

actually will not, as we will see. Then, β1y < pt = β2y + n′t(z
(2)
t ). This implies

ptCt − qt = [n′t − (β1 − β2)y]Ct > 0.

Market clearing requires θ
(1)
t = ϕ

(2)
t , Ctϕ

(2)
t = ω

(1)
t + ω

(2)
t and x

(1)
t + x

(2)
t =

(ω
(1)
t−1 +ω

(2)
t−1)y. The promise short position is then given by ϕ

(2)
t = (ω

(1)
t +ω

(2)
t )/Ct.

Our specification of Ct and nt will allow for agent 2 to construct a generalized

Ponzi scheme upon the limit (p, q,K, θ, ϕ, x) of finite horizon equilibrium plans.

Suppose agent 2 increases the sale of the promise by αt at each date and gives

maximal default on αt at the next date. The extra expenditure (ptCt − qt)αt is

accommodated by decreasing the consumption of numeraire.
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Claim 1(i): if x(2) ≫ 0, then a bounded budget feasible sequence α of sales

increases makes consumer 2 improve upon (x(2), ϕ(2)) provided that the following

condition holds

lim sup
T

[v′TCT − γ
(2)
T (pTCT − qT )]αT > 0 (12)

In fact, the net utility gain at date t of the budget feasible increase in ϕt by

αt (accommodated by decreasing x(2)t) has a first order approximation given by

[v′tCt − γ
(2)
t (ptCt − qt)]αt ≡ Bt, where v′t is evaluated at Ctϕ

(2)
t . Now, since agent

2 has the Euler condition on sales holding with equality, this gain will cancel out

with the utility impact (including penalty impact) that such date t changes will

have on date t+ 1 utility, [γ
(2)
t+1(yCt −Mt)− λ̃(2)

t dt(At+1 −Mt+1)]αt ≡ B̃t+1.

Then, up to date T the accumulated utility gain has a first order approximation

given by [v′TCT −γ
(2)
T (pTCT −qT )]αT . The choice for α is determined by how much

the consumption of the numeraire can be reduced. If x
(2)
t ≫ 0, we can reduce it

by sx
(2)
t at each date, for any s ∈ (0, 1) and make αt = sx

(2)
t /[ptCt− qt]. Hence, as

T →∞, the first order estimate of the utility gain remains positive if (12) holds.

To be more precise, let Û (2)(ϕ) ≡ U (2)(x(ϕ), Cϕ), where xt(ϕ) = ptω
(2)
t −

(ptCt−qt)ϕt+(yCt−1−Mt)ϕt−1. The above estimate of the utility gain is actually

the right-hand-side directional derivative δ+Û (2)(ϕ(2);α) of Û (2) along the direction

α if α is a bounded sequence5. Agent 2 can improve upon if δ+Û (2)(ϕ(2);α) > 0. �

Claim 1(ii): α is a bounded sequence if Ct = 1/βt2 and nt(zt) = (β1 − β2)yzt +

βt2
√
zt (that is, the instantaneous utility from fruit trees is becoming less strictly

concave as times goes by).

In fact, α is bounded if (ptCt− qt)t≫ 0, that is, if ((n′t− (β1−β2)y)Ct)t≫ 0.

Now, ptCt − qt = βt2Ct/[2

√
ω

(1)
t + ω

(2)
t ], where ωi are bounded sequences. �

5U (2), being (l∞, l1) Mackey continuous, has at (x(2), Cϕ(2))≫ 0 a Gateaux derivative in l1

(see Lemma 1 in Araujo, Novinski and Pascoa (2011)) and, by composition with a linear map,

Û (2) has a Gateaux derivative DÛ (2)(ϕ(2)) ∈ l1 at ϕ(2). If α ∈ l∞, then δ+Û (2)(ϕ(2);α) ≡
limh→0+[Û (2)(ϕ(2) + hα)− Û (2)(ϕ(2)]/h exists and is equal to DÛ (2)(ϕ(2))α =

∞∑
t=1

(Bt + B̃t+1) =

limT [v′TCT − γ2T (pTCT − qT )]αT .
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Claim 1(iii): inequality (12) holds, for x(2) ≫ 0 and under the assumptions in

1.(ii) (where the limsup is actually the limit, due to 1(ii)).

This requires lim
t→∞

sx
(2)
t (β1−β2)yβt2
n′t−(β1−β2)y

> 0, that is, lim
t→∞

sx
(2)
t (β1−β2)y2

√
ω

(1)
t + ω

(2)
t >

0, which holds if ω(i) ≫ 0 for i = 1, 2 and x(2) ≫ 0. �

Claim 1(iv): x(2) ≫ 0, under the assumptions in 1.(ii).

In fact, x
(2)
t = ptω

(2)
t − (ptCt − qt)ϕ(2)

t where pt tends to β1y, while ϕt goes to

zero and ptCt − qt = 1/[2

√
ω

(1)
t + ω

(2)
t ], where ω

(i)
t ≫ 0. �

Actually, the example illustrates more than a failure of cluster points of finite

horizon equilibria to become infinite horizon equilibria. It illustrates that a plan

satisfying Euler and transversality conditions may fail to be individually optimal.

In fact, in Example 1, the portfolio ϕ(2) + α together with the perishable

good consumption x(2)(1− s) satisfy budget constraints at prices (p, q) and Kt =

1/η. Notice that ϕ(2) satisfies the transversality condition lim
t→∞

[v′tCt − γ
(2)
t (ptCt −

qt)]ϕ
(2)
t = 0, since v′tCt − γ

(2)
t (ptCt − qt) = (β1 − β2)y and lim

t→∞
ϕ

(2)
t = 0. Then (11)

fails for ϕ̂ = ϕ(2) + α.

Examples 1 and 2 in Páscoa and Seghir (2009) illustrated why finite horizon

equilibra may fail to induce infinite horizon equilibria for another reason. Utility

penalties were high enough to discourage maximal default (there is no default in

the former and default below the maximal one in the latter). An equality in (6) for

the short, made the haircut ptCt − qt become negative in finite horizon equilibria

with trade (as shown in steps I and A of those examples, respectively). That

allowed for a Ponzi scheme upon a cluster of finite horizon equilibria with trade.

The novelty in the example we just described is that a negative haircut is not

necessary to allow the short to improve upon such cluster point.

If utility penalties were absent, generalized Ponzi schemes could never be done.

Constituting collateral and short-selling generates in this case non-negative returns

(
∑
η∈ξ+

γiη

(
pηYηC

j
η −Mjη

)
) which, by non-arbitrage (see (6)), must induce a non-
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negative promise cost γiξ
(
pξC

jξ
ξ − q

jξ
ξ

)
− viξ

′
C
jξ
ξ (net of utility gains).

In Sections 5 we present existence results in contexts where (11) holds.

4 Existence results

4.1 Moderate penalties.

Let riξ(bξ) be the minimum of the derivative (viξ)
′(z)bξ, of viξ along the direction of

the reference bundle bξ (used in the definition of penalties), taken over all feasible

bundles z. This minimum is well defined, by Lemma 3 in Appendix 6.2.

Theorem 2 (Moderate penalties). Under assumptions [R], [E] and [U], if for

every promise j ∈ J we have (a) λijξ < riξ, then pξCξ ≥ qξ in equilibrium of finite-

horizon economies and Ponzi schemes, in stricto sensu, are avoided. Equilibrium

for the infinite-horizon economy exists if, in addition, (b) the collateral does not

yield utility (say, it is a productive asset or a security in positive net supply that

cannot be short sold).

Our moderate penalties assumption is in marginal terms (compares penalty co-

efficients and marginal utilities), whereas the moderation assumption contemplated

in Páscoa and Seghir (2009) was in total terms: for each node ξ and each agent i, it

assumed (1) λ̃ijη[pηAjη−Mjη]ϕ
i
jξ < viη(ω

i
η), ∀η ∈ ξ+, whenever (2) Cj

ξϕ
i
jξ ≤

∑
i

W i
ξ .

That total terms condition only suffices to get existence of equilibrium in infi-

nite horizon economies, if promises sales plans are required to satisfy (2) as a

borrowing constraint (alternatively, (1) alone should be imposed). In fact, condi-

tion (11) holds in this case since lim supT
∑

ξ: tξ=T

(
viξ
′
(Z

i
)Cξ − γiξ (pξCξ − qξ)

)
ϕξ <

lim supT
∑

ξ: tξ=T

vi(ωi), which is zero since U i(ωi) <∞.

4.2 Equilibrium without maximal default.

However, the above low penalties, implying maximal default when the promises

are traded, are not necessary for equilibrium existence. Partial default or even full

repayment are compatible with equilibrium and may occur under higher penalty

coefficients. In fact, generalized Ponzi schemes are obviously avoided when, for all

i and all j, we have γiξ(pξCjξ − q
j
ξ)− viξ

′ · Cjξ ≥ 0, ∀i, at all nodes far away in the
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event tree (as this implies inequality (11) in Theorem 1. By (6) it suffices to have,

for all i, all ξ and all j, the following∑
η∈ξ+

γiη(pηYηCjξ −Mjη)−
∑
η∈ξ+

λ̃ijηd
i
jη(pηAjη −Mjη) ≥ 0, ∀i, ∀ξ, (13)

where dijη satisfies (5). We can state condition (5) in a more suggestive way.

In market parlance, the consumer’s home equity is the difference between the

collateral liquidation value and the repayment due on the loan. Let EQj
η :=

pηYηCjξ − pηAjη. Home equity is linear on ϕij with an impersonal coefficient EQj
η

that determines what the sign of home equity will be. We name EQj
η the equity

per unit of promise j at node η.

Condition (13) can be equivalently written as follows∑
η∈ξ+

γiη[EQ
j
ξ]

+ ≥
∑
η∈ξ+

λ̃ijηd
i
jη[EQ

j
ξ]
− (14)

which says that, for each promise j and summing over all immediate successors of

node ξ, the marginal utility gains from positive per unit equity should outweigh

default penalties on negative per unit equity. In the non-recourse case, the former

occurred exclusively and were responsible for pξC
j
ξ never being below than qjξ,

which ruled out Ponzi schemes.

Moreover, by (5), we see that (13) holds if (but not only if)∑
η∈ξ+

γiηEQ
j
ξ ≥ 0, ∀i, ∀ξ (15)

is satisfied for all i and for all ξ. Moreover, when the collateral does not yield

utility gains, it is enough to have the inequality in (13) (or in (15)) satisfied, at

each node ξ, for some agent iξ, as this implies pξCjξ ≥ qjξ .

The difficulty is that condition (15) depends on relative spot prices pη and on

the marginal utilities of income γiη and, in general, it is not possible to guarantee

that the market clearing spot prices (and the induced multiplier γi) are such that

(15) is satisfied, for an arbitrary combination of returns (Aj) and collateral yields

Y Cj. Let us give, nevertheless, an example where (15) holds for arbitrary penalty

coefficients. This example will motivate our next result.
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Example 2 (partial default or full repayment) There are two infinite-

lived agents, the event-tree has two branches at each node ξ (up (uξ) and down

(dξ)). There is one consumption good and preferences are given by U i(Z) =∑
ξ∈D

βtξ νiξ Zξ, where νiuξ + νidξ = νiξ,
∑

ξ: tξ=t

νiξ = 1, ∀t. There is one promise paying

in the consumption good and using as collateral a real security (or a productive

asset) that is short-lived but is issued (or endowed) at each node. Formally, this

collateral instrument can be treated as a second commodity that transforms into

the consumption good at the next date and then disappears. Denote by aξ the

promised returns and by yξ the collateral yields. The collateral coefficient is Cξ = 1

and we take the perishable cumption good (g = 1) as the numeraire.

Let the reference bundle in the penalty function be bξ = (1, 0). Each agent i

has a penalty coefficient σiξ to be specified below. The penalty is then given by∑
ξ∈D

βtξσiξνξ[aξ ϕξ− −∆ξ]
+, where ∆ξ stands for the delivery (∆ξ = aξϕξ− − ψξ).

Given endowments ωiξ =
(
ωi1ξ, ω

i
2ξ

)
of the consumption good and the collateral

instrument, we write consumers’ constraints as usual, denoting by pξ the collateral

price and by qξ the promise price. Suppose ν
(1)
uξ = ν

(1)
dξ

= 1
2

tξ+1
, whereas ν

(2)
uξ = 2

3
ν

(2)
ξ

and ν
(2)
dξ

= 1
3
ν

(2)
ξ . We will construct equilibria where both agents consume the per-

ishable good at every node, which implies that γiξ = βt(ξ)νiξ

Claim 2(i): If auξ = 2, adξ = 1, yuξ = 1 and ydξ = 2, ∀ξ, then a cluster point

of finite horizon equilibria is an infinite horizon equilibrium.

In fact, the equity at each node is such that (15) holds with equality for agent

1 (and therefore (13) holds with equality for this agent, for any penalty coefficients

σ
(1)
ξ ). As the collateral does not yield utility, (11) holds for both agents. �

Let us look for equilibrium prices and delivery rates for some possible config-

urations of default penalties of the two agents. For agent 2, we assume σ
(2)
ξ ≥ 1

(i.e.: λ
(2)
ξ ≥ γ

(2)
ξ , ∀ξ) and, for both agents, we take ρ

(i)
ξ = 0, implying that (5)

holds for d
(i)
ξ = 1

σ
(i)
ξ

. Observe that if β ≤ 2/3 then (8) holds, for both agents.

Suppose first that σ
(1)
ξ = 1 (i.e.: λ

(1)
ξ = γ

(1)
ξ ) ∀ξ. Then Kuξ = 0.9, pξ =

qξ = 4.6
3
β and Kdξ = 1 satisfy Euler conditions (5) through (7), with agent 1



4 EXISTENCE RESULTS 18

on-the-verge of selling and agent 2 on-the-verge of buying.

If σ
(1)
ξ > 1 instead (i.e.: λ

(1)
ξ > γ

(1)
ξ ) ∀ξ, we see that Kuξ = Kdξ = 1 and

pξ = qξ = 5
3
β satisfy Euler conditions (5) through (8), with agent 1 on-the-verge

of selling and agent 2 on-the-verge of buying.

It remains to specify agents’ endowments and construct the equilibrium al-

location of consumption plans and portfolios. Taking ω
(1)
ξ = (1, 0) and ω

(2)
ξ =

(1, w), ∀ξ, let θ
(2)
ξ = w, ϕ

(1)
ξ = w, θ

(i)
ξ ϕ

(i)
ξ = 0 and x

(i)
2 ξ = 0 (no purchase of com-

modity 2 beyond what might be used as collateral).

Claim 2(ii): if w < 1, we can accommodate both σ
(1)
ξ = 1 and σ

(1)
ξ > 1 in

equilibrium.

In the first case, where σ
(1)
ξ = 1, we obtain ∆

(1)
uξ = 0.9auξ w = 1.8w, ∆

(1)
dξ

=

adξ w = w. Take x
(i)
1ξ = ω

(i)
1ξ + YξCξ−ϕ

i
ξ− − ∆

(i)
ξ + Kξaξ θ

i
ξ− . Then, x

(1)
1uξ

= 1 −
0.8w, x

(1)
1 dξ

= 1 + w, x
(2)
1uξ

= 1 + 1.8w, x
(2)
1 dξ

= 1 + w. Market clearing follows

(
∑
i

xi1ξ =
∑
i

ωi1ξ + yξ w) and we assume w < 1.25 to obtain an equilibrium.

In the second case, where σ
(1)
ξ > 1, ∀ξ (that is λ

(1)
ξ = γ

(1)
ξ ∀ξ), the equilibrium

allocation is given by the same promise allocation, ∆
(1)
uξ = 2w, ∆

(1)
dξ

= w, x
(1)
1uξ

=

1− w, x(1)
1 dξ

= 1 + w, x
(2)
1uξ

= 1 + 2w, x
(2)
1 dξ

= 1 + w. �

Remark on the result by Ferreira and Torres-Martinez (2010) on impossibility

of recourse.

Example 2 shows that recourse can actually occur in infinite horizon equilibria.

The borrower (agent 1) repays more than the minimum between the promise and

the collateral value. But recourse does not open up room for Ponzi schemes: the

haircut does not become negative, it is just zero.

This seems to collide with the claim by Ferreira and Torres-Martinez (2010)

that recourse is impossible in infinite horizon equilibria but a closer look shows

that their assumption on collateral bounds is not satisfied.

As in Ferreira and Torres-Martinez (2010), we write Kjξ = Mjξ +Qjξ(pξAjξ −
YξCjξ−)+, where Qjξ ∈ [0, 1] measures the repayment above the minimal one (that

is, the degree of recourse). Ferreira and Torres-Martinez (2010) showed that the



4 EXISTENCE RESULTS 19

haircut pξCjξ− qjξ becomes negative if
∑
g

Cjgξ <<
∑
η∈ξ+

QjξπηAjη/πη ≡ Ψξ, where

πgξ and πξ are lower and upper (over all goods) bounds, respectively, for γiξpgξ.

In Example 2, there is just one promise and two cases. In case 1 (for σ(1) = 1)

we have Quξ = 0.8 while Qdξ takes any value in [0, 1]. In case 2 (when σ(1) > 1)

we have Quξ = 1 while Qdξ takes any value in [0, 1]. We actually know what γiξpgξ

is. For the numeraire (the perishable good), it is βt(ξ)νiξ while for the commodity

that serves as collateral it is βt(ξ)νiξpξ. Let Ψi
ξ ≡

∑
η∈ξ+

Qjξγ
i
ηAη/γ

i
ξpξ ≥ Ψξ. Even

for Qdξ = 1, we see that in case 1, Ψ
(2)
ξ = 4.2/4.6 while in case 2, Ψ

(2)
ξ = 1. As

C = 1, it follows that the condition in Ferreira and Torres-Martinez (2010) is not

satisfied. The haircut is actually zero and Ponzi schemes cannot be done (neither

can generalized ones as the collateral does not yield any utility).

4.3 Nominal contracts.

The above example where both the promise and the collateral are numeraire assets,

could be redone with both being nominal assets (say, the promise is a loan, with

exogenous yields, whose purpose is the purchase of a bond). This leads us to

study what happens when this promise or the collateral are nominal assets. In

both cases, collateralized borrowing is not inflation proof.

Formally, we replace assumption [R] by

Assumption [N].

We allow for nominal promises or nominal collateral. A promise j not satis-

fying items (i) and (ii) of [R] is such that

(i) its returns are nominal given by bjη ∈ R+ at η ∈ ξ+, for j ∈ J .

(ii) its collateral may be real as in [R (ii)] or nominal. In the latter, the

collateral requirement at η ∈ ξ+ is cjη ∈ R++ and the collateral has an

exogenous nominal return ỹjη ∈ R++ at any node η ∈ ξ+.

As usual, given a promise with nominal returns bjξ , we let Ajξ =
bjξ
Sξ

I1 where Sξ

stands for ‖pξ‖1 and I1 = (1, ..., 1). Analogously, in the case of nominal collateral,

we make Cjξ =
ỹjξ
Sξ

I1. Equilibrium is still given by Definition 1.
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Recall that for unsecured nominal assets, we had a homogeneity of commodity

demand with respect to (Sη)η∈ξ+ : if we multiply Sη by α > 0, ∀η ∈ ξ+, and adjust

the portfolio (multiplying by α) and asset prices (dividing by α), we can maintain

the original bundle at the same relative spot prices. However, that homogeneity

does not hold for promises secured by exogenous collateral requirements.

The indeterminacy with respect to inflation rates6, at finite horizon equilibria

with nominal promises or nominal collateral, may allow us to pick an equilib-

rium where marginal penalty effects
(
λ̃ijηd

i
jη[EQ

j
η]
−
)

may become dominated by

marginal income effects
(
γiη[EQ

j
η]

+
)
. If that is the case, (13) holds (and, therefore,

(11) holds at the cluster point)7.

Theorem 3. Let J? be the set of promises for which assumptions (a) or (b) of

Theorem 2 fail. Under assumptions [E] and [U], equilibrium exists, if every j ∈ J∗

is a nominal promise backed by real collateral, as in [N].

For a nominal promise j backed by real collateral, (13) holds if:∑
η∈ξ+

S−1
η max{λijη, γiη} bjη ≤

∑
η∈ξ+

min{λijη, γiη} pηYηCj
η , ∀i, ∀ξ (16)

Theorem 3 allows for direct utility gains from collateral in the case of nominal

promises backed by real collateral, by showing that (16) holds for every agent.

If the inequality in (16) held for just one agent and there were no utility gains

from collateral, then the condition in Theorem 1 would still be verified and there

would exist an equilibrium for the infinite horizon economy. The next example

illustrates this case, actually in an economy where the nominal promise/real col-

lateral contract coexists with a nominal promise/nominal collateral contract with

endogenous margins.

For a nominal promise backed by a nominal collateral, (13) holds if:∑
η∈ξ+

S−1
η max{λijη, γiη} bjη ≤

∑
η∈ξ+

S−1
η min{λijη, γiη} ỹjη Cjξ, ∀i, ∀ξ (17)

6We are not interested in checking whether the degree of freedom in the choice of inflation

rates implies real indeterminacy of equilibria.
7Given a nominal promise bjξ , the condition that ruled out recourse in Ferreira and Torres-

Martinez (2010) will not hold for the real returns analog Ajξ =
bjξ
Sξ

I1, for an appropriate choice

of inflation rates Sξ = ‖pξ‖1.
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Example 3 For the economy of Example 2 take agent (1) and the pair of con-

tracts: one nominal-real with b1
uξ

= 1, b1
dξ

= 2 and Yuξ = (1, 0), Ydξ = (1, 0), C1 =

(0, 1) and another nominal-nominal with b2
uξ

= 1, b2
dξ

= 3 and ỹuξ = ỹdξ = 1, c2

to be determined. For λ
(1)
jη = βtη(1

2
)
tησ

(1) j
η , let σ

(1) j
uξ = 2 and σ

(1) j
η = 1 otherwise

(j = 1, 2).

Claim 3(i): conditions (16) and (17) hold (for j = 1 and j = 2 respectively),

with an exogenous collateral requirement for j = 1 and endogenous ones for j = 2.

These conditions are:

2S−1
uξ
b1
uξ

+ S−1
dξ
b1
dξ
≤ Yuξ + Ydξ ,

2S−1
uξ
b2
uξ

+ S−1
dξ
b2
dξ
≤ (S−1

uξ
ỹuξ + S−1

dξ
ỹdξ) c

2.

Holding as equalities for S−1
uξ

= S−1
dξ

= 0.5 and c2 = 2.5, implying that at uξ, both

promises are above collateral values (with opportunity for default, which will not

be used as λ
(1)j
uξ > γ

(1)
uξ ) while at dξ the first promise matches the collateral values

whereas the second one falls below it. �

5 Concluding remarks

Non-recourse loans have the beauty of eliminating Ponzi schemes and, therefore,

the infinite horizon economy has an equilibrium under the same costless assump-

tions that made the finite horizon economy avoid the well-known Hart’s problem.

There are however many credit contracts that are recourse and arguments that

may explain why for some particular contracts recourse is more appealing, but we

should ask ourselves why do they hold on in an open end framework. Our paper

addresses this question.

Apart from the cases of mortgages in Europe and in most (37) of the U.S. states,

there are other examples of recourse collateralized loans. The most important are

the security financing transactions (SFT), which take either the form of repo or

security lending. In the former, a security serves as collateral for a cash loan

(possibly for the purchase of the security itself), whereas in the latter a security

is being lent against a collateral that can be either cash or another security. In
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both types of SFT, failure to redeliver the lent object constitutes an event of

default and triggers bankruptcy. More precisely, the lender of cash in repo or

the lender of the security who are both holding the collateral can dispose of it

(there is no automatic stay) and then the remaining value of the loan (not covered

by the current collateral value) will be claimed from the defaulter’s liquidated

estate. There was only a brief exception to this, when the Fed allowed repo to be

non-recourse in a short period in the aftermath of Lehman Brothers bankruptcy.

Our model is quite general and abstracts from institutional details that different

recourse loans may have8 . It is however a first step towards understanding why is

recourse borrowing compatible with open end equilibrium (where either successive

term loans become chained or an open end loan is present). We focus on the case

of recourse due to the presence of a utility penalty on default. This case tries

to capture non-explicit pecuniary, reputational or credit access penalties and is

sometimes regarded as an approximate proxy for more elaborate forms of recourse.

Our results show that while open end equilibrium does not exist in the same

straightforward way as it did in non-recourse, there are nevertheless interesting

cases, relevant for observed recourse contracts, where equilibrium exists, such as

the case of moderate utility penalties combined with non-consumed collateral (as in

the above STFs or in loans for the purchase of equipment) and the case of nominal

promises backed by real collateral (as in most mortgages, where payments are not

indexed to commodity prices).

Moreover, in our work, recourse is not just an ex ante scenario. We illustrate (in

Example 2) how harsh utility penalties induce actual recourse (debts repayments

above the minimal repayment) while still allowing for non-negative haircuts, as

desired to avoid Ponzi schemes, and equilibrium is shown to exist. We illustrate

also (in Example 1) why absence of such schemes is not enough to ensure infinite

horizon equilibrium when there are direct utility gains from the consumption of

the collateral.

8For finite horizon general equilibrium models that capture these institutional details, see

Araujo and Páscoa (2002) on recourse and unsecured loans, and Poblete-Cazenave and Torres-

Martinez (2013) on limited recourse and secured loans.
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6 Appendix

6.1 On Section 3

Proof of Proposition 1:

For each node ξ we define the Lagrangian function for agent i as:

Liξ(Zξ, Zξ− , γ, p, q,K) = viξ(x̃ξ)−
∑
j

λ̃ijξ[ψ
i
jξ]

+

−γξ[pξ(x̃iξ − ωiξ − Yξx̃iξ−) + qξ(θ
i
ξ − ϕiξ)−

∑
j

ψijξ −
∑
j

pξAjξ(Kjξθ
i
jξ− − ϕijξ−)]

−
∑
j

ρjξ[ψ
i
jξ − (pξAjξ −Mjξ)ϕ

i
jξ− ].

For Liξ0 to be well defined, we set Zξ−0 = (0, 0, 0, 0).

(1) The claim in Proposition 1 on Euler conditions is as in Páscoa and Seghir

(2009) and can be proven using the Kuhn-Tucker conditions of finite horizon trun-

cated problems and making the horizon go to infinity (as in Araujo, A., M.R.

Páscoa and J.P. Torres-Mart́ınez, 2011). In fact, for each node, the sequence of

Kuhn-Tucker multipliers has a cluster point, as the next lemma establishes.

A finite horizonH truncated problem is defined by imposing on the optimization

problem described in Section 2 the additional constraints (θξ, ϕξ) = 0 for t(ξ) ≥ H

and (xξ, ψξ) = 0 for t(ξ) > H.

Let us start by recalling the saddle point property (see Rockafellar (1997),

Theorem 38.3). For any finite horizon H truncated problem, at an optimal plan

(ZiH , p, q,K) and for any non-negative plan (Zξ)ξ∈DH we have

∑
ξ∈DH

Liξ(Zξ, Zξ− , γ
iH , pH , qH , KH) ≤ Πi(ZiH ; p, q,K) (18)

By appropriately choosing the plan (Zξ)ξ∈DH we get the following result.

Lemma 1. For each node ξ ∈ D and for any economy with finite horizon H ≥ tξ,

one has: 0 ≤ γiHξ < U i(Ω)

W i
ξ ‖pξ‖1

.
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Proof: For t ≤ H, let Z = (Zξ)ξ∈DH be such that Zξ =
(
W i

ξ, 0, 0, 0
)

if ξ ∈ Dt−1

and Zξ = 0 otherwise. By (18) we get

∑
ξ∈Dt

Lξi(Z
iH
ξ , ZiH

ξ− , γ
iH
ξ , pH , qH , KH) ≤

∑
ξ∈DH

viξ(x̃
iH
ξ ). (19)

Hence,
∑
ξ∈Dt

γiHξ pHξ W i
ξ ≤

∑
ξ∈DH

viξ(x̃
iH
ξ ), where viξ(x̃

iH
ξ ) ≤ viξ(Ωξ). �

It follows from Lemma 1 that multipliers γiHξ have upper bounds γiξ that are

independent of the terminal horizon H of the economy, since W i
ξ > 0 by Assump-

tion [E]. Moreover, it follows from equation (5) that ρiHξ also has an upper bound

independent of H. Letting H → ∞, we can find cluster points, for the product

topology of the countable event tree, of the sequences (γiHξ , ρiHξ , (ZiH
ξ )i) . Denote

these cluster points by (γiξ, ρ
i
ξ, (Z

i
ξ)i)). We still have γiξ <

U i(Ω)

W i
ξ ‖pξ‖1

.

The fulfillment of Euler conditions at an optimal plan for the infinite horizon

problem can then we established as in Araujo, A., M.R. Páscoa and J.P. Torres-

Mart́ınez (2011), proof of item (i) of Proposition 1.

(2) The fulfillment of the transversality condition (9) follows from the saddle

point property:

Claim:
∑

ξ: tξ=T

∑
η∈ξ+

Li2 η(Z
i
)Z

i

ξ ≤
∑

ξ∈D\DT−1

viξ(Z
i

ξ).

This claim can be established using (18) where for T ≤ H we let (Zξ)ξ∈DT be

such that Zξ = Z
iH

ξ χDT−1(ξ). Then
∑

ξ: tξ=T

∑
η∈ξ+

Li2 η(Z
iH

)Z
iH

ξ +
∑

ξ∈DH\DT−1

γiHξ pξω
i
ξ ≤∑

ξ∈DH\DT−1

(viξ(Z
iH

ξ )− viξ(0)). We let H →∞ and get the claimed inequality.

The claim implies that

lim sup
T

∑
ξ: tξ=T

∑
η∈ξ+

Li2 η(Z
i
)Z

i

ξ ≤ 0. (20)

Claim: (9) holds if and only if (20) holds.

In fact,
∑
η∈ξ+

Li2 η(Z
i
)Z

i

ξ = −Li1 η(Z
i
)Z

i

ξ = −[Li1x η(Z
i
)xiξ+L

i
1θ η(Z

i
)θ
i

ξ+L
i
1ϕη(Z

i
)ϕiξ+

Li1ψ η(Z
i
)ψ

i

ξ]. Now, Li1ψ η(ψ
i
)ψ

i

ξ = 0 by (5). Then, (20) is equivalent to (9).
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This concludes the proof of Proposition 1.

On Remark 1:

Condition (10) holds if and only if lim sup
T

∑
ξ: tξ=T

Li1ϕη(Z
i
)ϕiξ ≤ 0.

Now, notice that lim sup
T

∑
ξ: tξ=T

(−Li1ϕη(Z
i
)ϕiξ) ≤ lim sup

T

∑
ξ: tξ=T

(−Li1 η(Z
i
)Z

i

ξ,

since −Li1x η(Z
i
)xiξ and −Li1θ η(Z

i
)θ
i

ξ are both non-negative (as Li2x η(Z
i
)xiξ and

Li2θ η(Z
i
)θ
i

ξ are non-negative). This establishes that (9) implies (10).

Let us next see that (10) implies (9) when θi = 0 and consumer i does

not consumer more of any durable good than the collateral bundle. These two

assumptions ensure that −Li1x η(Z
i
)xiξ and −Li1θ η(Z

i
)θ
i

ξ are both zero. Hence,

lim sup
T

∑
ξ: tξ=T

(−Li1ϕη(Z
i
)ϕiξ) = lim sup

T

∑
ξ: tξ=T

Li1ϕη(Z
i
)ϕiξ.

On Remark 2 :

The existence of a cluster point follows from the fact that equilibrium alloca-

tions ZiH ≡ (xiH , θiH , ϕiH , ψiH) of finite horizon economies have upper bounds,

uniformly on the horizon H (for portfolios this follows from the collateral re-

quirements and assumption [E]). Actually, equilibrium prices and the associated

equilibrium multipliers also have uniform upper bounds: we normalize prices by

placing (pξ, qξ) in the G+Jξ−1 dimensional simplex and multipliers (γiξ, ρjξ) have

upper bounds that are independent of prices and of the terminal horizon T , as es-

tablished in Remark A.1 in the Appendix. So, node by node, equilibrium variables

(prices, delivery rates, allocations, multipliers and the above supergradients) of all

finite horizon economies have common upper bounds.

Then the sequence
(
pH , qH , KH , (ZiH , γiH , ρiH , diH)i

)
of equilibrium prices,

allocations, multipliers and supergradients of the functions max{0, ·} verifying the

Kuhn-Tucker conditions, for the truncated economies. This sequence has, node by

node, a cluster point
(
p, q,K, (Zi, γi, ρi, di)i

)
satisfying Euler conditions. Observe

that at the price cluster point p the payoff functions are well defined, as pξ > 0 at

any node ξ, by the following lemma.

Lemma 2. At each node, the sum of spot prices is bounded away from zero, uni-

formly in the finite horizon H and, therefore, also bounded away from zero in the

infinite horizon economy.
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This follows from Lemma 3 as in part (b) of Lemma A.2 in Páscoa and Seghir

(2009). We have
qjξ∑
g
pξg
≤ C

j

ξ+
1

riξ(I1)

∑
η∈ξ+

λ̃jηA
j
η

bη
≡ mj

ξ and
∑
g

pξg ≥ (1+
∑
j

mj
ξ)
−1. �

Observation 1 : if C, A and λ are uniformly bounded on the event tree, b≫ 0

and the instantaneous utility viξ is node-invariant, then the positive lower bound

refereed to in Lemma 2 is uniform across nodes, denoted by p ∈ R++.

Observation 2 : under the conditions in Observation 1, γiξ has a uniform upper

bound on the event tree, provided that W i
ξ≫ 0.

Proof of Theorem 1. To shorten the notation, we omit in this proof the de-

pendence of the Lagrangean on prices (as these are fixed in this proof) and write

Liξ(Z) ≡ Liξ(Zξ, Zξ− , γ, p, q,K). Let the vectors Li1 ξ and Li2 ξ be partial super-

gradients of Liξ(Z) with respect to the current and past decision variables, respec-

tively, verifying Euler conditions. These conditions can be written as:

Li1 ξ(Z
i
) +

∑
η∈ξ+

Li2 η(Z
i
) ≤ 0, (21)

(
Li1 ξ(Z

i
) +

∑
η∈ξ+

Li2 η(Z
i
)
)
Z
i

ξ = 0. (22)

Let ΠiT (xi, θi, ϕi, ψi) :=
∑
ξ∈DT

viξ(x̃
i
ξ)−

∑
ξ∈DT \{xi0}

∑
j∈J(ξ−)

λ̃ijξ[ψ
i
jξ]

+ .

Then, ΠiT (Z)− ΠiT (Z
i
) ≤

∑
ξ: tξ≤T

(
Liξ(Z)− Liξ(Z

i
)
)
≤

∑
ξ: tξ≤T

(
Li1 ξ(Z

i
)(Zξ − Z

i

ξ) + Li2 ξ(Z
i
)(Zξ−)− Zi

ξ−)
)

=
∑
ξ: tξ<T

(
Li1 ξ(Z

i
) +

∑
η∈ξ+

Li2 η(Z
i
)
)
Zξ +

∑
ξ: tξ=T

Li1 ξ(Z
i
)Zξ −

∑
ξ: tξ=T

Li1 ξ(Z
i
)Z

i

ξ.

Now, the transversality condition (9) implies lim sup
T

∑
ξ: tξ=T

∑
η∈ξ+

Li2 η(Z
i
)Z

i

ξ ≤ 0.

Thus, by (21) and (22), lim sup
T

(
ΠiT (Z)− ΠiT (Z

i
)
)
≤ lim sup

T

∑
ξ: tξ=T

Li1 ξ(Z
i
)Zξ.
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Now, Li1 ξ(Z)Zξ =
(
viξ
′
(Z)− γiξpξ

)
xξ − γiξqξθξ +

(
viξ
′
(Z)Cξ − γiξ(pξCξ − qξ

)
ϕξ −(

λ̃ijξd
i
jξ + ρjξ − γiξ

)
ψijξ. Here, viξ

′
(Z)− γiξpξ ≤ −

∑
η∈ξ+

γiηpηYη ≤ 0 and λ̃ijξd
i
jξ + ρjξ −

γiξ = 0. �

6.2 On section 4

Lemma 3. Let Wξ =
∑
i

W i
ξ. Given any bundle κξ ∈ RG

++, the directional deriva-

tive (viξ)
′(.)κξ has a positive lower bound ri(κξ) on the set of bundles {z ∈ RG

++ :

z ≤ Wξ}.

We can take κξ = I1 or κξ = bξ or even κξ being the ĝ-th canonical vector.

Proof: Denote by S(0, α) the sphere with center 0 and radius α and let B(0, α)

be the open ball bounded by S(0, α). For any ε > 0 let S̃ be the translation of

S(0,Wξ) ∩RG
+ by the vector εκξ ∈ RG

++, that is, S̃ := S(0,Wξ) ∩RG
+ + εκξ, which

is a compact set.

For y ∈ S(0,Wξ) ∩ RG
+, let Ty be the affine set that runs through y in the

direction of κξ, that is, Ty = {z ∈ RG : z = aκξ + y, for some a}. Let zy be the

point where the line Ty hits the spherical sector S̃. Actually, S̃ is the set of such

points zy.

Now, the concavity of vi implies the monotonicity of the directional derivative

(viξ)
′(.)κξ on Ty. Hence, for any z ∈ Ty ∩ B(0,Wξ) ∩ RG

++, we have (viξ)
′(z)κξ ≥

(viξ)
′(zy)κξ. We know that (viξ)

′(zy)κξ > 0 by monotonicity of vi. Concavity im-

plies the continuity of directional derivatives and, therefore, we can say that the

set Ŝ := {(viξ)′(zy)κξ, for some y} is a continuous image of the compact set S̃.

Then, Ŝ is a compact set of positive real numbers, hence it has a positive lower

bound, which we denote by riξ(κξ). �

Observation 3 : If Wgξ has a uniform upper bound Wg for each good g and

the instantaneous utility viξ is node-invariant, then, given a bundle κ ∈ RG
++, the

positive lower bound referred to in Lemma A.1 is uniform across nodes, denoted

by ri(κ). This follows by adapting the proof of the lemma usingW instead ofWξ.
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Proof of Theorem 2. Both along the sequence of finite economies equilibrium and

at the limit point of the relevant subsequence, we have, by (8), that λijξ < riξ(bξ)

implies λ̃ijξ < γiξ. It follows, by (5), that ρijξ > 0 and, therefore, the delivery

is Mjξϕ
i
jξ− . Suppose that for any agent (6) cannot hold with djη = 0, ∀η ∈ ξ+

(otherwise we get immediately pξCjξ ≥ qjξ , by (6)).

If promise j is traded at ξ, we get Kjη =
Mjη

pηAjη
for η ∈ ξ+ (along that subse-

quence and at its limit point) and (7) holds as equality for some agent. Combining

with (8), we get pξCjξ ≥ qjξ , as for this agent we have:

γiξ

(
pξCjξ − qjξ

)
≥ v′ξ(x

i
ξ)Cjξ +

∑
η∈ξ+

γiη

(
pηYηCjξ −Mjη

)
≥ 0, (23)

If promise j is not traded, but was traded along a subsequence (of the above

subsequence), the above argument still applies. Otherwise, we can re-set Kjη =
Mjη

pξAjξ
(in fact, (7) remains true as we just lower the right hand side). Now, if (7)

holds with strict inequality for every agent, with Kjη =
Mjη

pξAjξ
, we lower qjξ , until

qjξ = max
i

∑
η∈ξ+

γiη
γiξ
Mjη (notice that (6) still holds, as we just raise the left-hand

side). The agent(s) for whom this maximum occurs will have (23) satisfied and,

therefore, pξCjξ ≥ qjξ .

Actually the above resetting of qjξ , Kjη and djη (for η ∈ ξ+) when asset j is

not traded at node ξ, along any subsequence of truncated economies equilibria,

could be done already along the relevant converging subsequence (rather than

by modifying the limit point), so we are back in the exact setting addressed by

Theorem 1, knowing that pξCjξ ≥ qjξ .

When the collateral does not yield any utility gains, condition (11) holds. �

It can be seen from the proof of Theorem 2 that agents who have (7) holding

with equality, for every promise, beyond some node ξ, will have (23) satisfied at

these nodes for all promises and, therefore, have no opportunities for doing gener-

alized Ponzi schemes. So, only agents that do not purchase some promise at each

node would have an opportunity to do a generalized Ponzi scheme.

Proof of Theorem 3.
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For the finite horizon economy, we adapt the proof of Theorem 1 in Dubey,

Geanakoplos and Shubik (2005). As in their proof the relative prices set is Pξ ={
(pξ, qξ) :

∑
g

p(ξ, g) = 1, p(ξ, g) ≥ s, qjξ ∈ [0, 1/s]
}
. The correspondence that

picks at each node the relative prices is defined by

τ 0
s ≡ arg max∏

ξ∈D
Pξ

{∑
ξ∈D

(
pξ ·

∑
i

(xiξ +
∑
j∈J

Cjξϕ
i
jξ −W i

ξ) + qξ ·
∑
i

(θiξ − ϕiξ)
)}

(24)

Step 1. Now, we select the outcome that makes marginal penalty effects be dom-

inated by marginal income effects (actually we make (16) hold as an equality).

We do this by creating a correspondence that defines what the inverse ιη of the

absolute spot commodity prices sum Sη should be,

τ ιsξ = arg min
(ιη)∈E

[ ∑
η∈ξ+

ιη max
i,j

max{λijη, γiη}bjη−
∑
η∈ξ+

min
i,j

min{λijη, γiη}pηYηCj
η

]2

(25)

where E = {(ιη)η∈ξ+ : ιη ∈ [0, χξ]} and χξ =
max
j

∑
η∈ξ+

min
i

min{λijη ,γiη}pηYηCjξ

min
j

∑
η∈ξ+

max
i

max{λijη ,γiη}b
j
η

.

Step 2. We accommodate nominal promises in the real promises framework

using the function (ιξ, b
j
ξ) 7−→ Ajξ g = ιξb

j
ξ.

The correspondence that picks the repayment rates is defined as

Ks ≡ argmin
{∑
η∈ξ+

(
(
∑
i

θiξ)(1−Kj
sη)pηAjη −

∑
i

ψijη

)2

: Kj
sη ∈ [0, 1], ∀η ∈ ξ+

}
(26)

Step 3. Consumers have the standard constrained demand correspondence

τhs = argmaxZξ

{
Πi(Z) : (1), (2) and (3) hold at (p, q,K), given A, for

Z = (x, θ, ϕ, ψ) such that xξ ≤ Wξ(1+e), ϕijξ ≤
W(1+e)

max
g

Cjgξ
≡ Ljξ, θ

i
jξ ≤ (#I)Ljξ, ψ

i
jξ ≤

(max
g
Ajgξ)L

j
ξ, for some e relatively small

}
.

Step 4. Lagrange multipliers are constructed through correspondence IL =∏
(i,ξ)

ILiξ where ILiξ = argmin(γiξ,ρjξ)

{
Liξ
(
Zi
ξ, Z

i
ξ− , pξ, qξ, Kξ, γ

i
ξ, ρξ) : γiξ, ρjξ ≤ γiξ

}
.

Final step. For each s > 0 , a fixed point of τ 0
s×Ks×τ ιs×A×IL×(

∏
h

τh) exists, as

τ ιsξ is nonempty valued (take ιη = ι, ∀η ∈ ξ+, with ι ≤
min
j∈J∗

∑
η∈ξ+

min
i

min{λijη ,γiη}pηYηCjξ

max
j∈J∗

∑
η∈ξ+

max
i

max{λijη ,γiη}b
j
η

)

and upper hemicontinuous.
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As in the proof of Theorem 1 in Dubey, Geanakoplos and Shubik (2005), when

s −→ 0, aggregate excess demand goes to zero, p(η, g) does not go to zero and

qξ stays bounded. Moreover, ιη stays both bounded from above and bounded

away from zero. Passing to subsequences, we obtain a limit point which is an

equilibrium for the finite horizon economy and satisfying condition (13), for any

(η, j) ∈ D × J∗, since at Sη = lim ι−1
η we have (16) satisfied.
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