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Abstract

Efficiency is not commonly related to the crash of bubbles. How-
ever in the presence of wary agents, infinite-lived agents that are wor-
ried about distant losses, efficient bubbles may occur and, in a stochas-
tic setting, these bubbles can crash. In this paper we characterize the
Arrow-Debreu (AD) price and establish the relationship between the
agents’ concern about distant losses and the existence of pure charges
in the AD price. We show that this pure charge induces efficient
bubbles in the positive net-supply assets that complete the markets
and that, as we enter some sub-tree, that pure charge may no longer
present in the AD price for the sub-economy, implying the crash of
the bubble. Finally, we give an example in which there is an efficient
bubble with infinitely many crashes.
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1 Introduction

Rational bubbles have been extensively studied since the late 70’s pioneering
work by Blanchard (1979) (see (1)) and Blanchard and Watson (1982) (see
(2)). Santos and Woodford (1997) (see (3)) made a theoretical and system-
atic study of rational bubbles in a general equilibrium model with finite and
infinite-lived agents. However, efficient bubbles in positive net-supply assets
seemed to be ruled out by the same portfolio constraints that avoided Ponzi
schemes. Araujo, Novinski and Pascoa (2011) (see (4)) showed that this is
no longer the case when standard impatience assumptions do not hold. More
precisely, if agents are wary, that is, not willing to neglect losses at distant
dates, the efficient allocations may be implemented by trading positive net
supply assets with positive dividends and speculative prices. Araujo, Gama,
Novinski and Pascoa (2019) (see (5)) extended this result to the case of fiat
money, under appropriate taxes on money holdings that discourage inefficient
savings. The drawback of this surprising set of results is that it was estab-
lished in a deterministic setting, where the occurrence of a bubble implies
that it will be present at all dates.

In a stochastic economy, bubbles can burst some time later, as we enter
some sub-tree where the reason for the occurrence of the bubble does not pre-
vail anymore. In this paper we address whether efficient bubbles generated
by wariness may burst in a stochastic economy. Wariness is a lack of impa-
tience that consists in neglecting distant gains but not distant losses. The
lack of impatience can be interpreted in terms of ambiguous beliefs about
the weight that different dates and states of nature should have in the utility
function, in the sense of Gilboa and Schmeidler (1989) (see (6)) and Schmei-
dler (1989) (see (7)). A secondary goal of our paper is to study the price
volatility caused by the crashing of bubbles in some states of nature.

We provide an example where a pure charge in the Arrow-Debreu price
occurs but then disappears, as the infimum of consumption was a cluster
point of the consumption process but is no longer in the relevant sub-tree.
This induces the asset price bubble to appear and then burst. The bubble
may even occur and then crash at infinitely many different dates depending
on the path. In all cases, bubbles cannot reappear in the economy.

The article is organized as follows: In section 2, we introduce the notation,
specify the preferences and define the AD equilibrium. In section 3, we
characterize the superdiferential of the utility of a wary consumer. In section
4, we implement the AD allocation sequentially, and analyze the existence
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of efficient bubbles in this framework and how they affect the volatility of
the asset prices. We conclude that section with an example of a bubble
whose probability of crashing from a very distant date onwards is positive.
In section 5, we provide some concluding remarks.

2 Model

We consider an economy with countably many dates. The event tree is
defined as follows. The initial node is denoted by 1. Any node in the tree
has a finite number N of immediate successors. A node occurring at date t
is represented by st = (s1, s2, . . . , st) ∈ {1} × N t−1. We denote by st,− the
predecessor of st and by st,−2 the predecessor of st,−.

An infinite path of the tree is represented by σ := (s1, . . . , st, . . . ) and σt
stands for its truncation up to date t. The set of all infinite paths is {1}×N∞.
Let N be the σ-algebra induced by {σ : σt = st} for each st ∈ {1}×N t−1 and
each t ∈ N. Let P be a probability measure in ({1} ×N∞,N ). Therefore,
P [σt = st] > 0 is interpreted as the probability of node st occurring which is
strictly positive for every node st and every t ≥ 1.

2.1 Utility functions

The consumption space is X := {X : ∪t∈N∪{0}{1} × N t → R+ : ∃K >
0 such that X(st) ≤ K for all t}. Each element of X is a plan for consump-
tion along each possible path of the event tree and can be seen as belong-

ing to L∞
(
∪t∈N∪{0}{1} ×N t, Ñ , P

)
where Ñ is the discrete σ-algebra in

∪t∈N∪{0}{1} × N t and P is the σ-additive measure induced by P ({st}) =
P [σt = st]1.

In a stochastic infinite horizon economy, there are several ways to model a
lack of impatience for losses. We consider a natural extension to the stochas-
tic case of the one used in Araujo et al. (2011) (see (4)). It is generated by
the ε−Contamination.

Recall that, given a probability measure µ and ε ∈ [0, 1), the convex
capacity νε defined by νε(A) = (1 − ε)µ(A) for A $ N and νε(N) = 1 is

1The only purpose of the probability P is to define properly the consumption set that
we are working on.
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called the ε-contamination capacity of µ. The Choquet integral with respect
of νε can be written as U(x) = (1− ε)

∫
N u ◦ x dµ+ ε inf u ◦ x.

This concept suggests the following preferences.

U(X) :=

∫
N∞×N
u ◦Xσtd(P× ζ)(σ, t) +

∫
N∞

(
β (σ) inf

t
u ◦Xσt

)
dP(σ) (1)

where u : R+ → R is a differentiable, strictly increasing and strictly concave
function, β is a N -measurable non-negative function, and {ζ(t)}t ∈ l1++

2 is
the temporal discount factor, therefore, {(P× ζ)(σ, t)}t can be interpreted
as the discount factor of the path σ.

The first term in the utility function is a standard discounted utility func-
tion for stochastic economies. The second term is the P-average, among all
possible paths, of the worst consumption. Agents with such preferences worry
about consumption at each node if the discounted factors ζ are strictly posi-
tive and the probability of each node st, P [σt = st] is also positive. However,
they are also concerned about the worst possible outcome of each path.

These preferences embody an ambiguity aversion in the sense of Schmei-
dler (1989) (see (7)). More precisely, in the Ascombe-Aumann framework, a
preference defined over a set of acts is ambiguity averse if 1/2(f+g) % f, g for
all f, g acts. In the context of Schmeidler (1989) (see (7)), this is equivalent
to the capacity being convex. In the deterministic economy in Araujo et al.
(2019) (5) the ambiguity over discount factors translated into a weight given
to the worst lifetime consumption. Now, in a stochastic economy, ambiguity
translates into a weight given to the average, among all paths, of the worst
consumption in each path.

A non-constant β allows for an agent to have different concerns about
distant losses depending on the paths of the tree. More precisely, β : N∞ →
R+ is a nonnegative, bounded and not necessarily constant function of the
infinite paths.

2.2 Arrow-Debreu Equilibrium

Consider an economy with I consumers. Each consumer i is characterized by

an endowment allocation {W i
st}st ∈ L

∞
+

(
∪t∈N∪{0}{1} ×N t, Ñ , P

)
such that

{W i
st}st ≫ 03, and a preference represented by a utility function U i of the

2l1++ :=
{
{µt}t ∈ l1 : µt > 0 ∀t

}
3x ≥ 0 means xst ≥ 0 for all st, x > 0 means x ≥ 0 and x 6= 0, x � 0 means xst > 0

for all st, and x≫ 0 means that there exists ε > 0 such that xst ≥ ε for all st.
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form 1 for some index ui and some βi.

Definition 1. An Arrow-Debreu equilibrium is a couple
(
π, (xi)

I
i=1

)
such

that, for all i, xi maximizes U i on BAD (π,W i) := {x ≥ 0 : π(x) ≤ π (W i)},∑I
i=1 (xi −W i) = 0 and π ∈ L∞∗+

(
∪t∈N∪{0}{1} ×N t, Ñ , P

)
with π 6= 0.

Prices are elements in the dual of the consumption space, not neces-

sarily in the pre-dual. The dual space is ba+

(
∪t∈N∪{0}{1} ×N t, Ñ , P

)
the

set of the finitely additive measures in the set of nodes. Preferences given
by 1 satisfy the hypotheses imposed by Bewley (see (8)) and Mas-Colell et
al. (see (9)) to ensure existence of equilibrium, with consumption plans in

(L∞+

(
∪t∈N∪{0}{1} ×N t, Ñ , P

)
and prices in ba+

(
∪t∈N∪{0}{1} ×N t, Ñ , P

)
.

Theorem 1 (Bewley’s Existence Theorems (8)).

(T1) Consider an economy with a finite number of agents where each agent
has complete, convex, transitive, monotonous, norm continuous and
Mackey usc preferences in l∞+ , and W i ≫ 0, then there exists an AD
equilibrium with prices in ba++.

(T2) Under the additional assumption of Mackey lsc, π ∈ l1++.

In the next section, we will characterize the supergradients of the utility
function defined by 1 and relate such supergradients to the AD equilibrium
prices.

3 Characterization of the Super-differential

of the Utility Function

Recall that, for a concave function U : B → R on a Banach space B, the
super-differential of U at x is ∂U(x) := {π ∈ B∗ : U(y)− U(x) ≤ π(y − x)∀y ∈ B}.
Each π ∈ ∂U(x) is a supergradient of U at x.

To fully characterize the super-differential of the utility function defined
by (1) at any consumption plan X ∈ X , we need to distinguish the following
sets of paths in terms of what happens to the infimum of consumption. One
is the set of paths where the infimum of consumption is never attained,
A1(X) := [σ : inft u ◦Xσt < u (Xσt)∀t ∈ N].

5



Another is the set of paths where it is at attained finitely many nodes
and it is not a cluster point, A2(X) :=

⋃
K

(⋃
t1≤···≤tK A

K
2,t1,...,tk

(X)
)
, where

AK2,t1,...,tk(X) :=
{
σ : u

(
Xσt1

)
= · · · = u

(
XσtK

)
≤ u (Xσt) − ε for some ε >

0,∀t 6= t1, . . . , tK

}
.

Next, A3(X) consists of paths where it is attained finitely many times and
is a cluster point, A3(X) :=

⋃
K

(⋃
t1≤···≤tK A

K
2,t1,...,tk

(X)
)
, whereAK3,t1,...,tk(X) :={

σ : lim inft u ◦Xσt = u
(
Xσt1

)
= · · · = u

(
XσtK

)
< u (Xσt)∀t 6= t1, . . . , tK

}
.

Finally, the set of paths where it is attained at infinitely many nodes,

A4(X) :=
⋃
t1≤t2≤...A3,t1,t2...(X), where each A4,t1,t2...(X) is the set

{
σ : ∀t 6=

t1, t2, . . . , u (Xσt) > u
(
Xσt1

)
= u

(
Xσt2

)
= . . .

}
.

As we will see, for paths in A2(X) ∪ A3(X) ∪ A4(X) weights will be
assigned, endogenously in each supergradient, to the several nodes where
the infimum of consumption is attained. For each path in AK2,t1,...,tk(X) we
consider weights ασ2 (k) ≥ 0 on the K nodes where the infimum is attained,
satisfying

∑K
k=1 α

σ
2 (k) = 1. Similarly, for each path in AK3,t1,...,tk(X) or in

AK4,t1,t2...(X) we consider weights on the nodes where the infimum is attained

and also a weight at infinity satisfying
∑K

k=1 α
σ
3 (k) + ασ3 (∞) = 1 in A3(X),

and
∑∞

k=1 α
σ
4 (k) + ασ3 (∞) = 1 in A4(X).

For paths in A1(X)∪A3(X)∪A4(X) the asymptotic behavior of consump-
tion is relevant in terms of where the infimum of consumption is attained and
supergradients will have a component capturing this through a generalized
limit.

Recall that a generalized limit is a continuous linear functional LIM on l∞

such that, for any x ∈ l∞, we have LIM(x) = limt xt when the limit exists, and
LIM(x) ∈ [lim inft xt, lim supt xt] when it does not. We apply this concept in
the following way. Given X ∈ X and σ ∈ N∞, let {tk}k be the subsequence
in which Xσ attains its infimum. We denote by LIMX

σ a generalized limit such
that, for any sequence y ∈ l∞, we have LIMX

σ (y) = limk ytk if ytk converges
and LIMX

σ (y) ∈ [lim infk ytk , lim supk ytk ] otherwise.
The following result is an extension of the deterministic case analyzed in

Araujo et al. (2011) (4).

Proposition 1. Let X ∈ X be such that X ≫ 0 and inftXσt = Xσ for
some X : N∞ → R++. For U given by (1), with u ∈ C1(0,∞), ∂U(X) is the

set of elements π in ba+

(
∪t∈N∪{0}{1} ×N t, Ñ , P

)
such that πY is given by
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∑
st

∫
[σ:σt=st]

u′ ◦XσtζtdP(σ)Yst+
∫
A1
β(σ)u′ ◦XσLIMX

σ (Yσ)dP(σ)+∑
t1≤···≤tK

∫
AK2,t1,...,tK

β(σ)u′ ◦Xσ

(∑K
k=1 α

σ
2 (k)Yσtk

)
dP(σ)+∑

t1≤···≤tK

∫
A3,t1,...,tK

β(σ) (u′ ◦Xσ)
(∑K

k=1 α
σ
3 (k)Yσtk + ασ3 (∞)LIMX

σ (Yσ)β(σ)
)
dP(σ)+∑

t1≤t2≤...
∫
A4,t1,t2,...

β(σ) (u′ ◦Xσ)
(∑∞

k=1 α
σ
4 (k)Yσtk + ασ4 (∞)LIMX

σ (Yσ)β(σ)
)
dP(σ),

for any Y ∈ L∞
(
∪t∈N∪{0}{1} ×N t, Ñ , P

)
.

The proof can be found in A.
Under β(σ)|A1(X) � 0 P-a.c.4 in A1(X) and P [A1(X)] > 0, the super-

gradient will have a positive pure charge component that is concerned about
paths in A1(X) only. The supergradient has no pure charge component in-
duced by what happens in A2(X) since for paths in this set the infimum of
consumption is not a cluster point. While for i = 3, 4, a positive pure charge
component will be induced by Ai(X) if β(σ)|Ai(X) � 0 P-a.c. in Ai(X),
P [Ai(X)] > 0 and ασi (∞) > 0 in a positive measure subset of Ai(X).

We see that a path σ which is β-positively-valued and such that the in-
fimum of consumption is a cluster point but is also attained, will contribute
towards the pure charge of the supergradient only if the weight ασi (∞) (for
i = 3 or i = 4) happens to be positive. And such contributions will then be
averaged over all such paths, according to the probability P. There is, there-
fore, a multiplicity of supergradients arising from the various ways the weights
ασi (k) and ασi (∞) get to be distributed over the cluster point and the attain-
ment nodes. Just like in the deterministic setting, the non-differentiability of
the U results from two aspects: one is that indeterminacy in the assignment
of weights, the other is the indeterminacy in the choice of the generalized
limits.

The set ∂U(x) is weak∗ compact. For any direction Y of changes in the
consumption plan, the left (right) derivative of the utility function at X
is the maximum (minimum, respectively) of the values that all elements of
∂U(X) take at Y . The above multiplicity in the assignment of weights across
all attainments of the infimum accommodates a non-differentiability that is
intrinsic to the form of the utility function: if along some path, the infimum
of consumption is attained at more than one node or only at one node but

4x|A means that x is restricted to the paths contained in A.
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is also a cluster point, the canonical left derivative est at such a node has
to greater than the right derivative. Decreasing consumption at that node
lowers the infimum of consumption but increasing consumption does not, it
just increases what consumption is at that node.

Remark 1. If X � 0 instead of X ≫ 0, there might be pure charges gener-
ated by the fact that {u′ (Xst)}st is not bounded. Moreover, if {ζtP [σt = st]u′ (Xst)}st
is not in l1, ∂U(X) * l1.

The above characterization of the super-differential has an immediate
implication in terms of how AD prices will look like. In fact, a necessary
and sufficient (together with the budget constraint) optimality condition (see
Zeidler (1984) (see (10)), p.391, Theorem 47.C) for X i � 0 to maximize U i

subject to the AD budget constraint at prices π is that, for some ρi > 0, we
have

ρiπ ∈ ∂U i(X i) (2)

4 Bubbles in sequential implementation of an

AD equilibrium

Let us now define the sequential economy where AD allocations will be imple-
mented. It has the event tree defined in section 2. Side by side with the single
consumption good (the numeraire), there will be now |N | long-lived assets

with nonnegative real payments {Rj,st}st ∈ L
∞
+

(
∪t∈N∪{0}{1} ×N t, Ñ , P

)
for each j. Each agent has initial nonnegative holdings of each asset zij,0 ≥ 0,
and sequential endowments {ωist}st,i ≥ 0. The budget constraint at the initial
node is

x1 − ω1 ≤ q1
(
zi0 − z1

)
(3)

and at any other node st is
xst − ωst ≤ qst (zst,− − zst) +Rstzst,− . (4)

Let us denote xst(z, i) := ωst + qst (zst,− − zst) + Rstzst,− for st 6= 1 and
x1(z, i) := ω1 + q1 (zi0 − z1).

The consumer’s sequential problem SEQi consists in finding a portfolio
{zist}st ∈ R∞ that maximizes U i({xst(z, i)}st) subject to the non-negativity in
consumption constraint xst(z, i) ≥ 0, at each node st, given prices q1,st . . . , qJ,st
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for the J assets, the initial holdings zij,0 and the sequential endowments
{ωist}st .

The following Euler conditions hold at a solution zi to SEQi for which
x(zi, i)� 0:

µistqst ≥
∑

st+1,−=st

µist+1 (qst+1 +Rst+1)

µ̃istqst ≤
∑

st+1,−=st

µ̃ist+1 (qst+1 +Rst+1)

where {µist}st and {µ̃ist}st are the l1 components of two supergradients of U i

at x(zi, i)5.
Euler conditions hold with equality when all supergradients of U i at

x(zi, i) have the same l1 components6. If that is the case, that common
l1 component is collinear with p, the l1 component of the AD price (due
to Equation (2). Moreover, in this case, efficient allocations can always be
implemented sequentially.

Condition U1: an allocation x is said to satisfy Condition U1 if, for any
consumer i, all supergradients of U i at xi have the same l1 component.

In other words, Condition U1 requires, for every consumer i, the existence
of the directional derivatives of U i at xi along every canonical direction est .

Remark 2. By Proposition 1, an efficient allocation (xi)i ≫ 0 satisfies
Condition U1 if, for all i,

1. inft x
i
σt is attained at most in one t and it is not a cluster point of{

xiσt
}
t
, or

2. the infimum of
{
xiσt
}
t

is never attained

for all path σ such that βi(σ) > 0 P-a.c..

An efficient allocation (xi)i satisfying Condition U1 is such that xi can
be attained as an optimal consumption in the sequential problem SEQi,
for some initial holdings zij,0 and sequential endowments {ωist}st , only if the
following Euler equations hold at every node st

5More precisely, the former is the supergradient that takes the highest value at the
direction v(st) := −qstest +

∑
st+1,−=st (qst+1 +Rst+1est+1) and the latter is the one that

takes the lowest value at v(st). See Lemma 11 in Araujo et al. (4).
6Or under the weaker condition that the l1 components of all supergradients take the

same value at v(st).
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pstqst =
∑

st+1,−=st

pst+1 (qst+1 +Rst+1) (5)

Moreover, if (xi)i ≫ 0 satisfies Condition U1, the following transversality
condition must also hold at a solution zi to SEQi such that x(zi, i) = xi (for
some zij,0 and {ωist}st),

νi (x− ω) ≥ lim sup
t

∑
st

µistqstzst (6)

where µi and νi are the l1 and the pure charge components, respectively,
of some supergradient of U i at x(zi, i)

The necessity of this transversality conditions can be established as in
the deterministic case (Proposition 4 in Araujo et al. (4)).

However, Euler and transversality conditions are not sufficient. Under
impatience, a uniform upper bound on short sales together with a uniform
impatience hypothesis7 would ensure the sufficiency. For preferences are
given by Equation (1), the problem is even harder, as consumers can find
long-run improvement strategies for which the asymptotic gain of dishoard-
ing exceeds the cost of investing on the assets along the lifetime (see Araujo
et al. (4) and Araujo et al. (5), for the deterministic case). As usual in
infinite horizon problems, the problem can be overcome by imposing addi-
tional portfolio constraints in the form of inequalities that are basically the
converse of the transversality condition that the optimal plan must verify.
Such constraints were proposed in Araujo et al. (4) (and replaced in Araujo
et al. (5) by taxes play the same role) and when extended to the stochastic
case take the following form:

Portfolio constraint (P1):
lim sup

t

∑
st

pstqstzst ≥ ν(x(z, i)− ωi), (7)

where π = p+ ν is the AD price. Assuming Condition U1, we can consider
also the following alternative portfolio constraint (P2)

lim sup
t

∑
st

pstqstzst ≥ ν̃i(x(z, i)− ωi), (8)

where ν̃i is collinear with the pure charge component (ρiν̃i) of the supergra-
dient that takes the highest value in the AD net trade (xi − ωi) (where ρi is
the multiplier given by Equation (2).

7This would hold for uniformly bounded sequential endowments and exponential dis-
counting, but would fail under hyperbolic discounting, see Pascoa et al. (11)
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We denote by SPji the optimization problem of agent i when constraints
(Pj) are added to problem SEQi, for j = 1, 2.

An equilibrium for the sequential economy with constraints (Pj), given
initial holdings zij,0 and sequential endowments {ωist}st,i, is a vector (q, z)

such that zi solves problem SPji at prices q, given zij,0 and {ωist}st,i.
We say that an AD equilibrium

(
π, (X i)

I
i=1

)
for the AD economy with

endowments W i
st is implemented sequentially using constraints (Pj) if there

exist initial holdings zij,0 for the assets (i) satisfying ωist ≡ W i
st−
∑

j Rj,stz
i
j,0 ≥

0, for each st, and (ii) so that some sequential equilibrium (q, z) under (Pj),
given zij,0 and {ωist}st,i, is such that x(zi, i) = X i.

Lemma 1. Consider an AD equilibrium ((X i)i, π) with (X i)i � 0 and Con-
dition (U1). Let (p, ν) be the decomposition of π in its l1 and pure charge
components. Then, (X i)i can be implemented sequentially under (P1) if and
only if initial holdings for the assets and asset prices satisfy the following
condition

0 =
∑
j

(
zij,0

(
p1qj,1 −

∑
st

pstRj,st − ν (Rj)

))
(9)

Moreover, the implementing portfolio zi is such that

lim
t

∑
st

pstqstz
i
st = ν(x(zi, i)− ωi) (10)

Proof. Let us see that sequential budget set is contained in the AD budget
set if and only if Equation (9) holds. In fact, let {xst}st,i and {zst}st,i satisfy

Equations (3) and (4), given {qst}st,i and zi0. By Equation (5) and (P1) we

have p.(x−ωi) ≤ p1q1z
i
0−ν(x−ωi). Then, π.(x−W i) ≤ p1q1z

i
0−π.(W i−ωi)

where p.(W i − ωi) =
∑

j z
i
j,0

∑
st pstRj,st and ν.(W i − ωi) =

∑
j ν(Rj)z

i
j,0.

That is, π.(x−W i) ≤ 0 if and only if Equation (9) holds.
Moreover, for X i = x(zi, i) satisfying Equations (3) and (4) as equalities

we have p.(X i − ωi) = p1q1z
i
0 − limt

∑
st pstqstz

i
st and, therefore, p.(X i −

W i) = p1q1z
i
0 −

∑
j z

i
j,0

∑
st pstRj,st − limt

∑
st pstqstz

i
st . Now, ν.(W i − ωi) =∑

j ν(Rj)z
i
j,0. Hence, π.(X i − W i) = 0 and Equation (9) imply Equation

(10). This concludes the proof.

When constraint (P2) is used instead we get the following implementation
result,

11



Lemma 2. Consider an AD equilibrium ((X i)i, π) with (X i)i � 0 and Con-
dition (U1). Let (p, ν) be the decomposition of π in its l1 and pure charge
components. Then, (X i)i can be implemented sequentially under (P2) if and
only if initial holdings for the assets and asset prices satisfy the following
condition

ν̃i
(
X i − ωi

)
− ν

(
X i − ωi

)
=
∑
j

(
zij,0

(
p1qj,1 −

∑
st

pstRj,st − ν (Rj)

))
.

(11)
Moreover, the implementing portfolio zi is such that

lim
t

∑
st

pstqstz
i
st = ν̃(x(zi, i)− ωi). (12)

Proof. As the implementing portfolio plan zi must satisfy the transversality
condition, Equation (6), and constraint (P2), we see that Equation (10) must
hold. Now, p.(X i − ωi) = p1q1z

i
0 − limt

∑
st pstqstz

i
st and, therefore, π.(X i −

ωi) = p1q1z
i
0 − (ν̃ − ν).(X i − ωi). As π.(W i − ωi) =

∑
j z

i
j,0(
∑

st pstRj,st +

ν(Rj)), we see that π.(X i −W i) = 0 if and only if Equation (11) holds.
The optimality of zi for problem SP2i follows from Equations (5) and

(10) by a supergradient estimation, as in Proposition 2 in Araujo et al. (5)).
This concludes the proof.

4.1 Characterization of Efficient Bubbles and their Crash-
ing

As in Santos and Woodford (3), a rational bubble at a node st is defined as
the difference between the price and the fundamental value of the asset at
this node,

qst −
1

ast

∞∑
r=t+1

∑
sr,−(r−t)=st

asrRsr ≥ 0,

where {ast}st are state prices given by non-arbitrage conditions.
When implementing an efficient allocation (X i)i � 0, satisfying Con-

dition (U1), it follows from Equation (5) that the state price is the l1

component {pst}st of the AD price and, we have that

pstqst −
∞∑

r=t+1

∑
sr,−(r−t)=st

psrRsr = lim
r→∞

∑
sr,−(r−t)=st

psrqsr . (13)

12



Therefore, the existence of efficient bubbles at a node st depends on the
asymptotic behavior of the subtree that starts at this node. This implies
that if a bubble crashes at some node st, a bubble can not reappear at any
successor of st.

Proposition 2. For any efficient allocation implemented in a sequential
economy with a complete set of long-Lived assets. If there exists one node st

and one asset j in which there is no bubble for the asset price qjst then there

is no bubble for the asset price qjsr for any state sr sucessor of st.

However, the crashing at st does not mean that there is no bubble in
other subtrees that do not have st as a root.

Now, let us analyze conditions for the occurrence of bubbles. To do so,
we will establish a relationship between bubbles and the existence of pure
charges in the super-gradient of the utility function.

On one hand, pure charges are related to the agents’ concerns about worst
events and, on the other hand, the bubble captures the asymptotic behavior
of the asset price. Hence, the occurrence of bubbles seems to be strongly
related to the asymptotic behavior of the agents’ consumption plans and,
more precisely, the existence of the pure charges in the supporting prices
of these plans. To be more precise, it follows from Lemma 1 that, p1qj,1 =∑

st pstRj,st +ν(Rj) if constraints (P1) are imposed or also under constraints
(P2) when xit − ωit converges for any i.

Moreover, under SP2i, we have p1qj,1 ≥
∑

st pstRj,st + ν(Rj) for every j
and, actually, p1qj,1 >

∑
st pstRj,st +ν(Rj) for at least one asset j, if xist−ωist

doesn’t converge for some i and R ≥ 0.
These facts lead to the following results.

Proposition 3. Given an efficient allocation such that (X i)i � 0 and Con-
dition (U1) holds, if ∂U i(xi) ⊆ `1 for all agent i, there is no bubble for any
asset in positive net supply.

Therefore, to find a bubble in assets in positive net supply, we must
have that ∂U i(x) * `1. This result is consistent with what Santos and
Woodford (1997) had shown (see (3)). Moreover, Equation (11) ensures that
the converse is also true under some circumstances.

Proposition 4. Let (X i)i ≫ 0 be an efficient allocation satisfying Condition
(U1). If

13



1. xist − ωist does not converge in a set of positive measure in P for some
i, or

2. ν(R) > 0,

then there is a bubble at the initial node for some asset j in positive net
supply.

The following propositions study the condition for the occurrence or not
of a bubble in the prices of assets at a node st. This conditions deal with
what happens in paths in the sets A1, A2, A3 and A4 defined in Proposition
1.

Proposition 5. Given an efficient allocation (X i)i ≫ 0 satisfying Condi-
tion (U1) and any node st, if there is one agent i such that in all paths σ
that contain st, the infimum of X i

σ is not a cluster point P almost certainly
in the set {σ : σt = st and β(σ) > 0}, then there is no bubble for any asset
at the node st.

Note that this proposition is driven by what happens in the set A2 of
paths, considered in Proposition 1 and the comments that followed that
result.

This implies that, when a bubble occurred before a node st was reached,
for it to burst at st a sufficient condition is that, almost surely, in the paths
that follow on from node st, the infimum of consumption is attained in a
finite number of dates but it is not a cluster point.

Let us present some conditions that ensure a positive bubble at a node
st. These conditions are related to the infimum of consumption not being
attained in finite time.

However, for a node st beyond the initial node 1, we can only establish
conditions ensuring that there will be a bubble in the price of some asset.

Proposition 6. Given an efficient allocation (X i)i ≫ 0 satisfying Condi-
tion (U1) and any state st, if there exists one agent i and a subset of paths
Ai with the following properties

1. Ai has positive P-probability,

2. any σ in Ai satisfies that σt = st, and

3. for each σ in Ai, the infimum of
{
X i
σr

}
r∈N, the sequence of consumption

of agent i in the path σ, is a cluster point never attained.

14



Then there is a sequential implementation such that there is a bubble in the
price of some asset at the node st if (1) there exists at least one asset in
positive net supply such that ν

(
Rj,st+

)
> 0 or (2) the net trade X i − ωi is

not convergent in Ai.

From Proposition 5 and 6 and their proofs, the existence of efficient bub-
bles in this economy is related to the existence of positive pure charges in
the super-gradients of the agents as mentioned for deterministic economies
in Araujo et al (2011) (see (4)). In this case, Proposition 1 allows us to know
the conditions that must be satisfied to ensure the existence of pure charges
in the super-differential of each agent.

Note that, in Proposition 6, the set Ai is a subset of the A1 defined in
Proposition 1.

Similarly to the deterministic case, the desire of the wary agent of in-
creasing consumption in the worst events of the subtree that contains the
node st, produces a pure charge in the AD price that implies the occurrence
of bubbles for the set of assets traded at that node.

4.2 Variation of prices in presence of Efficient Bubbles
and Crashing

If, at some date, there is a bubble in some nodes, and there is no bubble in
some other nodes, it means that, before that, the bubble has crashed in at
least one node. Therefore, if we analyze the asset prices in these subtrees,
we can analyze the changes in assets prices in the short and the long run.

Under the conditions described in Proposition 5 and 6, it is possible to
know when and where, in the tree, there is a bubble and also when it will
crash. Since these bubbles increase the price above the fundamental value
of the assets, the crashing of them will, naturally, increase the dispersion of
the asset prices across all successors st of a node sr where the price of some
asset had a bubble.

After the bubble crashes at the node st, the fundamental value of the
asset and the market price are equal, this means that

max
{sr:sr,−(r−t)=st}

psrqj,sr = max
{sr:sr,−(r−t)=st}

{∑
k>r

∑
sk,−(k−r)=sr

pskR
j
sk

}
→0 when r →∞.

However if there is a path σ such that there is always a bubble for the asset
j we have that
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pσtqj,σt =
∑
r>t

∑
sr,−(r−t)=σt

psrR
j
sr + lim

r

∑
sr,−(r−t)=σt

∑
j

psrqj,sr , (14)

and, as we have already mentioned, there exists a relationship between the
existence of bubbles and the pure charges in the super-gradient of the agents.
Therefore, by proposition 1, we have:

Proposition 7. Under the conditions of Proposition 1 and for any path σ,
the component in Equation (14) that constitutes the bubble of any asset j at
the node σt tends to zero as t→∞.

This means that the bubble is being distributed among all nodes where
the pure charge is positive, reducing its weight in the price of the asset in
which the bubble is maintained.

Nevertheless it does not mean that the price will be bounded, in fact we
have:

Proposition 8. Under the conditions of Proposition 6 satisfying (1’) Rj|Ai ≫
0 instead of (1). For any path σ ∈ Ai, we have that

lim sup
t→∞

{
limr→∞

∑
sr,−(r−t)=σt

∑
j psrqj,sr

P ([σ̃ : σ̃t = σt])

}
= β <∞, (15)

and there exists a path σ ∈ Ai such that

lim inf
t→∞

{
limr→∞

∑
sr,−(r−t)=σt

∑
j psrqj,sr

P ([σ̃ : σ̃t = σt])

}
= α > 0. (16)

And since there is a relationship between P ([σ̃ : σ̃t = σt]) and µst due to
the Euler equations (see Equation (5)), we will have:

Corollary 1. Under the conditions exposed in Proposition 8, the bubble will
tend to infinity when t→∞.

This result is also consistent with what Santos and Woodford (1997) had
shown (see (3)), and it implies in our framework that, when t is large, there
are large variations of prices between states due to the existence of bubbles in
some nodes st, which make the asset prices goes to infinity in several paths,
but not in every path. Moreover, the set of paths in which the bubble crashes
can have positive value.

Therefore, when there is a crashing of a bubble at the node st, the vari-
ations of the asset prices in a subtree that contains the node st and the
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predecessor of st tend to infinity in the long-run. Therefore, the existence of
bubble is associated with high volatility of assets’ prices if there is a chance
of the bubble to crash.

4.3 Example

As can be noticed through this article, there is a variety of possibilities for
the occurrence of bubbles, as the following example illustrates. It shows that
bubbles can occur with positive probability even in the presence of an infinite
number of paths in which the bubbles crash.

Example 1. Consider an economy with two agents and two states, N =
{1, 2}. Let ui(x) := ln(x) be the utility index8 and let ξit := 1/2t, βi = β > 0
for each i = 1, 2, W : ∪t∈N{1} ×N t → R+ be given by

Wst =



8 + 1/2t−4 if st,−(t−2) = (1, 2) and (∃k ∈ N such that 2k + 1 ≤ t and

s
t,−(t−2k+1)
2k+1 = 2 or st,−kt−k = 1∀k = t− 2),

9 if st = (1, 2), (1, 2, 1, 1) or st,− = (1, 2, 2),
10 if t = 1 or st,− = (1, 2),
11 otherwise if t is even,
12 otherwise if t is odd,

W 1
st = Wst + At and W 2

st = Wst − At where At is 1 if t is even and −1/2
if t is odd. Within each date, all nodes are equally likely to occur, that is,
P [σ : σt = st] = 1/2t−1 for all st ∈ {1} × N t−1. As W i ≫ 0, we can find
an AD equilibrium. Given a : {1, 2} → R++, the consumption plan xi =
a(i) (W 1 +W 2) = 2a(i)W is optimal under the budget constraint πx ≤ πW i

when the prices are given by

πx =
∫ (∑

t
xσt

2tWσt

)
dP(σ) + β

(
x
(1)/20 + x

(1,2)/72 +
∑

s≥2
xσ̃2s+1

22s+1(8+1/22t−3)
+∫⋃

t∈N[σ:σ2t+1=(1,2,1,1,...,1,2)]
LIMσ(xσ)

8
dP(σ)

)
(17)

where σ̃2t+1 = (1, 2, 1, 1, . . . , 1) and a(i) = π(W i)/π(W ). One possible gen-
eralized limit is the Banach limit, B, which satisfies that B

(
(xt)t∈N

)
=

8In this case, each U i is defined in all x � 0 uniformly bounded, but the preference
induced by this utility function is well-defined for x ≥ 0 uniformly bounded. Therefore,
the utility function can be extended to the case in which U i(x) = −∞ for all x = 0 in at
least one node.
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limn→∞ 1/n
∑n

t=1 xt when the limit of the sequence {1/n
∑n

t=1 xt}n exists. Un-
der this condition (π, x1, x2) is an AD equilibrium.

We consider two long-lived assets, one that pays 1 in each state 1 and 0 in
each state 2, and the other one that pays 0 in each state 1 and 1 in each state
2. We can choose q1 ∈ R2

++ and zi0 > 0 such that (xi, zi) is implemented se-
quentially, which implies that Equations (9) and (10) must be satisfied, that
is, 0 =

∑2
j=1

(
zij,0 (p1qj,1 −

∑
st pstRj,st − ν (Rj))

)
and limt

∑
st pstqstz

i
st(z

i
0) =

ν(xi − ωi) where {zist (zi0)}st is the portfolio that implements xi with initial
holdings zi0, ν is the pure charge of the AD price and {pst}st is the l1 com-
ponent of the AD price (which is also the no-arbitrage state prices process)
defined by

pst =



∫
[σ:σt=st]

1
2t−1Wσt

dP(σ) if st,−(t−2) = (1, 2) and ∃k ∈ N such that

2k + 1 ≤ t and s
t,−(t−2k+1)
2k+1 = 2,∫

[σ:σt=st]
1

2t−1Wσt
dP(σ)+∑

s≥2
1

22s+1(8+1/22t−3)
s2k+1 = (1, 2, 1, 1, . . . , 1) = st for some k ≥ 1,

1/20 + β/20 t = 1,
1/72 + β/72 if st = (1, 2),

{qst}st,t≥2 is defined based on what q1 is9 using the Euler equation pstqst =
pst,1(qst,1 +Rst,1) + pst,2(qst,2 +Rst,2) for all st with t ≥ 1. To ensure that the
efficient allocation solves a sequential optimization problem of each agent, a
(P1) constraint is imposed, limt

∑
st pstqstzst ≥ ν(x(z, i)− ωi) where ν is the

pure charge of the AD price.
Asset prices (q1st , q

2
st)st satisfy condition (1) of Proposition 6: ν

(
Rj,st+

)
>

0 for j = 1, 2 and all nodes st such that the set of paths that contains st

in which the infimum is not attained has positive P-measure. The pattern
for W implies hedging portfolios for which the infimum of consumption is a
cluster point along many paths but will be no longer a cluster point when
we enter some subtrees. This makes the bubble crash at the root of such
subtrees, more precisely, at s2 = (1, 1), s4 = (1, 2, 1, 2), s6 = (1, 2, 1, 1, 1, 2),
. . . , s2t = (1, 2, 1, . . . , 1, 2), . . . . In spite of the infinite number of paths where
the bubbles crash, the proportion of paths with a positive bubble at any state
is positive, in fact,

P [σ : infsXσs < Xσt ∀t ∈ N] =P[σ: infsWσs<Wσt ∀t∈N]
=P[σ: the bubble in the path σ does not crash]
= 1/3.

9Note that qj,1 also satisfies that q1 = 1
p1

(
∑

st pstRj,st + ν (Rj)).
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Figure 1: Distribution of W , existence of bubbles (with red circles) and
crashing (with red ×’s)

This example points out that in stochastic economies, the existence of
bubbles in a considerably large set of paths is consistent with the crashing
of bubbles in a large set of nodes.

As in the deterministic case, the existence of rational efficient bubbles is
related to the lack of impatience of the agents. However, the stochastic case
is richer, as it allows for efficient bubbles to crash at the root of sub-trees for
which the worst outcome is not a distant outcome. At the root of such a sub-
tree, agents concern with worst outcomes shifts from the infinity to a finite
future date and this makes the bubble burst: there is no longer a hedging
reason to overvalue of the asset by attributing a value to it at infinity (the
bubble) and, therefore, the asset price becomes equal to the fundamental
value.
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5 Concluding Remarks

Bubbles cannot burst in deterministic inter-temporal economies. This unap-
pealing fact suggests looking at other settings that allow for a larger variety of
bubble patterns. We propose as a natural setting a stochastic inter-temporal
economy where infinite lived consumers have some lack of impatience. When
agents are worried about distant losses, there will be room for pure charges
in the AD prices, which will generate bubbles in the prices of assets that
implement sequentially such efficient allocations. These results (Section 4.1)
are independent on the specific form of caring for those distant losses.

We consider a general form for the utility function which is compatible
with the model proposed by Schmeidler (see (7)) and Gilboa and Schmei-
dler (1989) (see (6)) and is a generalization of the ε−contamination utility
function.

The way we model lack of impatience in a stochastic framework is com-
patible with the existence of AD equilibrium, as in the result by Bewley (see
(8)). For such preferences, the existence of a positive pure charge in the
AD price, pricing the asymptotic consumption of the agents, translates into
the existence of efficient bubbles at the first date of the sequential economy.
Moreover, such relation is still present at other nodes and, therefore, to an-
alyze the occurrence of efficient bubbles at any node, it is enough to know
how the efficient consumption plans behave in the sub-tree that rooted at
that node. For the paths starting at that node, are the worst consumption
outcomes attained only at some future successor node? or are they cluster
points? If there was already a bubble before that node was reached, the
former can make it burst, whereas the latter sustains the bubble. A bubble
bursts when the value assigned to the asset’s hedging at infinity can be dis-
pensed with, as agents’ concerns about worst outcomes shift from infinite to
finite events at the root of that sub-tree.

We also analyzed the volatility in asset prices caused by bubbles and their
crashes, showing that the crashing of bubbles will increment the variation in
the asset price in the long-run,across nodes of a same distant date. For some
paths the bubble has crashed, while for other paths it is still there, which
makes the price volatility increase.

Finally we gave an example that illustrates how stochastic economies
allow for bubble patterns that are much richer and more interesting than the
one observed in deterministic economies. Crashes can occur at an infinite
number of nodes and yet bubbles persist along infinitely many paths.
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A Other proofs

Proof of Proposition 1. The idea of the proof is to separate each set A1, A2

and A3 to analyze them separately, and then, apply the dominated con-
vergence theorem to have the result. For each set A1, A

K
2,t1,...,tK

, A3,t1,t2...

and σ belonging to any of the previous sets, we have that the analysis that
can be done in the path σ is analogous to the deterministic case with a, ε-
contamination utility function (see Araujo et al. (4)). Therefore the results
will be true for each path σ that belongs to any of the sets described before.

Since the collection of all sets that have been described before is 2 −
2 disjoint and non enumerable, there is an enumerable sub-collection with
positive measure. Therefore we can rewrite the utility function in terms of
these enumerable sub-collection only, and apply the deterministic case in
each path that belongs to any of this subsets of the collection. Finally, if
we apply the dominated convergence theorem (for a collection of generalized
limits that are measurables in ({1} ×N∞,N )), we conclude one part of the
proof.

To prove the other part, notice that what we have done is to prove that
the integral in σ of elements of the super-differential of the utility function
in each path σ, are in the super-differential of the utility function. And it
can be easily observed that to prove second part is enough to prove that the
super-differential is contained in the composition between the integral and
the super-differential for each path.

Using some results of non differential analysis in Banach spaces, we have
that, under the condition that we exposed before, the definition of super-
gradient and Clarke super-gradient are equivalents (see Clarke (12), page
36 Proposition 2.2.7). We also have that, under our hypothesis, the Clarke
super-differential of the utility function is contained in the integral in σ of
elements in the Clarke super-gradients of

∫
N u ◦Xσtdζi(t) + β(σ) inft u ◦Xσt

for each σ (see Clarke (12), page 76 Proposition 2.7.2). Which concludes the
proof of the proposition.

Proof of Proposition 5 and Proposition 6. Let us suppose that we implement
the efficient allocation by the portfolio constraint (P2). Note that, for each
node st, the optimal allocation is also efficient in the subtree generated by
st. This subtree will be denoted by st+. Therefore there is

{
W i,st

}
i

new
“endowment allocation” such that:

1.
∑

iW
i,st

sk
=
∑

iW
i
sk
∀sk, πW i,st = πW i ∀i where π is the AD price,
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2. W i,st

σr = X i
σr for all σ and r such that r ≤ t or σr is not in the subtree

generated by st10, and

3. W i,st

st+k
= W i

st+k
∀k ≥ 1 for the rest of the endowment distributions in

the subtree generated in st.

Note that for some nodes st the new “endowments allocation”might be
negative in some states of the economy for some agents. However, it does
not imply that we cannot analyze the economy that it defines11 and its rela-
tionship with the original AD economy.

To establish this relationship, let us restrict the AD economy such that
the agents maximize their consumption in the subtree generated by st only,
that is, the agent consumption set will be:

1.
{
X i
σr

}
for all path σ and r such that r ≤ t or σr is not in the subtree

generated by st, and

2. R+ for all sr in the subtree generated by st.

Since the wealth of every agent and the efficient allocation are the same as
their counterparts in the initial AD equilibrium, we have that the initial
equilibrium price is in fact an equilibrium price for this restricted economy.

Let us analyze the stochastic sequential economy defined by the initial
and the “new” endowment allocation for each st. To do so, let us define the
new endowment distribution

{
ωi,s

t}
i

as ωi,s
t

= W i,st −
∑

j Rjz
i
j,st . Since the

assets’ prices are given by the Euler equations, and the FOC are the same in
both cases, the prices are also the same in both economies. Using the same
optimality conditions that were exposed in Araujo et al. (2019) (see (5)), we
know that using the pure charge, νist , the one that takes the highest value on
the net trade

{
X i − ωi,st

}
, we can implement the efficient allocation if we

have

10This includes
{
st,−(j)

}t−1
j=1

all the predecessors of st.

11The economy defined by
{
W i,st

}
i

only differs with a standard economy on the fact

that it may have a negative endowment in at most one date or event. In the case that
you want to avoid the negative endowment in the node st, there is Kst such that for each

K ≥ Kst such that you can choose an endowment allocation W i,st such that W i,st

st+k > 0 for

k = 0, . . . ,K and all st+k such that st+k,−k = st and W i,st

st+K+r = W i
st+K+r for r ∈ N and

all st+K+r such that st+K+r,−(K+r) = st which satisfies the other conditions mentioned
above, conditions 1, 2 and, on the long run, 3.
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νist
(
X i(z)− ωi,st

)
≤ lim sup

r

(∑
j

∑
sr,−(r−t)=st

psrqj,srzj,sr

)
for every portfolio z, and with equality for X i. Then, in order to implement
sequentially this allocation, we have that

lim
r

∑
sr,−(r−t)=st

∑
j

psrqj,sr =
∑
j

zij,stν (Rj,st+)+νist
(
X i − ωi,st

)
−ν
(
X i − ωi,st

)
,

(18)
and since we have that

pstqj,st =
∑
r>t

∑
sr,−(r−t)=st

psrR
j
sr + lim

r

∑
sr,−(r−t)=st

∑
j

psrqj,sr

for each node st, the existence of a bubble in the economy at the state st is
given by the right part of Equation (18). Finally, since the subtree generated
by st satisfies that xi|[σ:σt=st] ≫ 0, Proposition 1 can be used restricted to
this set proving that, under the conditions of Proposition 5, the pure charges
in the super-gradient are null in this subtree, and that under the conditions
of Proposition 6, the pure charges in the subtree are such that the right part
of Equation (18) is nonnegative. Moreover, if we sum Equation 18) over the
agents we have that

I limr

∑
sr,−(r−t)=st

∑
j psrqj,sr =

∑
i

∑
j z

i
j,stν (Rj,st+) +

∑
i ν

i
st

(
X i − ωi,st

)
=
∑

i

∑
j z

i
j,0ν (Rj,st+) +

∑
i ν

i
st

(
X i − ωi,st

)
≥ 0,

since νist
(
X i − ωi,st

)
− ν

(
X i − ωi,st

)
≥ 0 for each i. In the case in which

X i−ωi,st are not convergent for some i, the right hand side is strictly positive.
The case in which we implement the efficient allocation with the portfolio

constraint (P1), the right hand side of Equation 18 is equal to
∑

j z
i
j,stν (Rj,st+)

from which Proposition 5 follows, and Proposition 6 under (1).

Proof of Proposition 7. Since:

• the bubble in the economy is characterized by the pure charges that
exists in the super-gradient of the agent, more precisely given by 18,

• the pure charges that exist in the super-gradient of the agents are
integral in σ of a collection of generalized limits, and
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• the probability of each path, P ({σ}), is zero;

we have that limr

∑
sr,−(r−t)=σt

∑
j psrqj,sr → 0 when t→∞.

Proof of Proposition 8. From the proof of Proposition 5 and 6, we know that
the bubbles depends completely on the behavior of the pure charges in the
super-differential of the optimal allocation in the subtree generated by the
analyzed node σt. Moreover, Proposition 1 ensures that Equation 15 is sat-
isfied.

Under condition (1’) or (2), we have that the right part of Equation 18
is bounded from below by a positive constant multiplied by the capacity
evaluated in the set [σ̃ ∈ Ai : σ̃r = σr]. Since P [Ai] > 0, for each r ≥ t, there

is sr such that P [σ ∈ Ai : σr = sr] ≥ P[Ai]
2|N |P[σ:σr=sr] where |N | is the number of

elements in N , obtaining Equation 16.
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