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Abstract

We develop a general mandate framework for delegating monetary policy to an
instrument-independent, but goal-dependent central bank. The goal of the mandate
consists of: (i) a simple quadratic loss function that penalizes deviations from target
macroeconomic variables; (ii) a form of a Taylor-type nominal interest-rate rule that
responds to the same target variables; (iii) a zero-lower-bound (ZLB) constraint on
the the nominal interest rate in the form of an unconditional probability of ZLB
episodes and (iv) a long-run (steady-state) inflation target. The central bank remains
free to choose the strength of its response to the targets specified by the mandate.
An estimated standard New Keynesian model is used to compute household-welfare-
optimal mandates with these features. We find two main results that are robust
across a number of different mandates: first, the optimized rule takes the form of a
Taylor simple rule close to a price-level rule. Second, the optimal level of inflation
target, conditional on a quarterly frequency of the nominal interest hitting the ZLB
of 0.025, is close to the typical target annual inflation of 2% and to achieve a lower
probability of 0.01 requires an inflation target of 3.5%.
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1 Introduction
It is now generally accepted that monetary policy should be conducted within a framework of
instrument independence based on the principles of commitment, accountability and transparency.
By a credible commitment to future policies, central banks are then able to influence expectations
that achieve the best trade-offs.1

In accordance with these principles, the inflation-targeting framework has in particular proven
to be very popular. In what has been an influential paper with central banks, Rudebusch and
Svensson (1999) model inflation targeting as allowing for concerns about the variability of real
output. They examine two broad classes of rules: instrument and targeting rules. For the former
the monetary instrument, the nominal interest rate, can be optimal in relation to a welfare
criterion, or restricted to respond to particular target variables as in Levine and Currie (1987),
Taylor (1993b) and Taylor (1999). It is now accepted in the literature that the optimal form
of the latter, ‘optimized simple rules’, can closely mimic the former. A targeting rule is an
assignment of a welfare loss function over deviations of goal variables from their targets (in effect
bliss points). Then policy can again be conducted in the form of unrestricted optimal policy or
restricted simple optimized rules.

In this paper we propose a general mandate framework that combines instrument and
targeting rules in a consistent fashion. The mandate consists of four components: (i) a welfare
objective delegated to the central bank in the form of a simple quadratic a loss function that
penalizes deviations from target macroeconomic variables (as a benchmark we also consider the
household utility as the objective); (ii) a form of a Taylor-type nominal interest-rate rule that
responds to the same target variables specified in the loss function; (iii) a zero-lower-bound
(ZLB) constraint on the nominal interest rate in the form of a specified unconditional probability
of ZLB episodes and (iv) a long-run (steady-state) inflation target. The weights on the deviations
from target variables in the mandate are then chosen to maximize the inter-temporal utility of
the household. With these four features the mandate makes the central bank goal-dependent,
but instrument-independent as it remains free to the choose the strength of its response to the
targets in the rule. An estimated standard New Keynesian model of Smets and Wouters (2007)
is used to compute the household-welfare-optimal mandates with these properties.

This paper relates to a strand of optimal mandate’s literature which is reviewed below. The
closest paper to ours is Debortoli et al. (2019) who develop a mandate framework in which a
central bank is instrument-independent and goal-dependent. Our paper differs from this paper in
a number of ways. First, we formalize the ZLB constraint on nominal interest rate as described
above This small probability is interpreted as the tightness level of the ZLB. This approach

1See the central bank consensus in, for example, Yellen (2012).
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enables us to employ a second-order perturbation solution combined with a penalty function to
calculate the exact social welfare value used to design optimal mandates (see Kim et al. (2003))
thus avoiding a quadratic approximation. Second, we require the central bank to conduct its
monetary policy in the form of an optimized interest rate rule with targets corresponding to
those in the welfare goal mandate and with an imposed optimal shift in the steady state inflation
rate. Finally, we sketch a more general mandate framework that can be applied to other aspects
of macroeconomic policy. We now elaborate on these first two features leaving discussion of the
general policy framework to a later section of the paper.

1.1 The ZLB Constraint through a Penalty Function

Under the ZLB occasionally binding constraint, standard perturbation methods are unavailable
as the policy function is non-differentiable in the vicinity of the steady state. The option of a
global solution by value function iteration methods is available, but suffers from the curse of
dimensionality unless the state space is small. This problem becomes acute when the model
solution is embedded in our mandate framework that involves the computation of optimized
rules. A solution is to use an approximate perturbation-based method with a penalty function to
impose the constraint in a continuously binding form.

There are two common approaches to this method: first, to add the penalty function to
the policy-maker’s welfare criterion (see Woodford (2003), Levine et al. (2008), Levine et al.
(2012)); second, to adding the penalty function to the agents’ welfare criteria in the model (see
Den Haan and Wind (2012), Abo-Zaid (2015), Karmakar (2016). The general idea is that we
allow anything to be feasible but let the objective function have some welfare penalty if the
constraint is violated. More precisely, we allow the nominal interest rate hit the zero bound with
a small probability which can be interpreted as the tightness level of the ZLB constraint.2 In
this paper, we follow this literature by adding a penalty term on the central bank’s objective
function. We also compare different mandate formations delegated to the central bank, namely:
a so-called ZLB mandate which retains the household utility as a welfare measure, a number of
simple quadratic loss function mandates, and an asymmetric functional form mandate.

2Other papers compute the full non-linear solution - see for example Coibion et al. (2012), Dordal-i-Carreras
et al. (2016), Holden (2016b) and Holden (2016a). But combined with optimized rules and other players
in the mandate, this approach would pose a substantial computational challenge. Moreover our ZLB
penalty-function mandate is a transparent implicit requirement for the central bank to stay within a
bound on the standard deviation of the nominal interest rate as emphasized by Woodford (2003).
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1.2 The Optimal Steady-State Inflation Target

A crucial feature of an welfare-optimized monetary policy rule is the optimal level of inflation
target (the chosen inflation trend) in the optimized rule. In our sticky-price and sticky-wage
model a positive trend inflation is costly to the economy through both steady-state effect and
dynamic effects. The former is the more important so we examine this in some detail. For
simplicity, consider the zero growth case g = 0 for which wage and price inflation are equal.
Then from Appendix A.1 (which allows for the general g > 0 case) for price-setting the impact
of trend inflation Π on the steady state is given by:

P 0

P
=
(

1− ξpΠ(1−γp)(ζp−1)

1− ξp

) 1
1−ζp

∆p = 1− ξp
1− ξpΠζp(1−γp)

(
P 0

P

)−ζp

MC =
(

1− 1
ζp

)
1− ξpβΠζp(1−γp)

1− ξp(1 + g)βΠ(ζp−1)(1−γp)
P 0

P

where P 0

P is the re-optimized Calvo-price for each retail variety, re-set with probability ξp, ζp is
the price-elasticity of demand ∆p is price dispersion across varieties, MC is the real marginal
cost equal to the inverse of the price mark-up and β is the household discount factor.

For wage-setting we have analogous results:

WO
n

Wn
=
(

1− ξwΠ(1−γw)(ζw−1)

1− ξw

) 1
1−ζw

∆w = 1− ξw
1− ξwΠ(1−γw)ζw

(
WO
n

Wn

)−ζw
Wh

W
=

(
1− ξwβΠ(1−γw)ζw

) (
1− 1

ζw

)
WO
n

Wn

1− ξwβΠ(1−γw)(ζw−1) .

where WO
n

Wn
is the re-optimized Calvo-nominal wage for each labour variety, re-set with probability

ξw, ζw is the wage-elasticity of demand ∆w is nominal wage dispersion across varieties and Wh
W is

the inverse of the wage mark-up over the wage rate Wh,t at which households supply hours.
Thus for ζp > 1, both the optimized price P 0

P and price dispersion ∆p increase with the trend
inflation rate Π. However noting that the price mark-up is the inverse of the real marginal cost,
i.e., equal to = 1/MC, we can see that the price response to the re-optimized price decreases
with Π. Analogous results for ζw > 1 hold for the optimized nominal wage, wage dispersion and
the wage mark-up which is the inverse of Wh

Wn
. Taking these results together we than have two

effects of trend-inflation that increase distortions from sticky prices and wages and thus reduce
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welfare whereas the third effect results in the opposite. However numerical results based our
estimated model confirms that the former easily outweigh the latter.3

The dynamic effect of trend-inflation was first studied by Ascari and Ropele (2007). They
show it leads to richer inflation dynamics and a higher inflation volatility. High trend-inflation in
other words is varying inflation. They also show that the Taylor principle is no longer sufficient
to guarantee a unique rational expectations equilibrium in New Keynesian models for even
moderate levels of inflation. Coibion et al. (2012) argue that a greater steady state inflation
induces a higher level of forward-looking dynamic behavior when sticky-price firms are able to
reset their prices. The more forward-looking is a firm, the greater is then anticipation of other
firms raising the optimal reset price. These dynamic considers point to further welfare costs of
high trend-inflation.

A positive trend inflation then increases distortions caused by sticky prices and wages and
is welfare-reducing. On the other hand a positive inflation trend reduces the frequency of
the nominal interest rate hitting the ZLB constraint. Christiano et al. (2011) argue that the
zero-bound scenario involves a deflationary spiral which contributes to and accompanies a large
fall in output, which leads to a high volatility and large output cost. Specifically, when output
falls, marginal cost falls and price declines. With staggered pricing, a drop in price causes agents
to expect a deflation in the future. With the nominal interest rate stuck at zero, the real interest
rate rises, which leads to an increase in desired saving and a decrease in output. As a result, the
cumulative fall in output required to reduce desired saving to zero is extremely significant.

Are there then welfare benefits from increasing trend-inflation given the desirability of avoiding
such adverse zero-bound episodes? Should then the optimal level of inflation target set by the
central bank be close to the typical target inflation of 2% or is the inflation target too blunt an
instrument to efficiently reduce the severe costs of zero-bound episodes. These are the research
questions we now pursue in our general mandate framework

1.3 More Related Literature

In our paper quadratic loss functions are seen as transparent simple mandates and not the
best approximation of the household utility. But as is well-known, in the simple work-horse
three-equation NK model with price stickiness Woodford (2003) shows that a quadratic function
in inflation and the output gap is an accurate approximation up to second order. But this no
longer applies to the Smets and Wouters (2007) we employ with capital, wage stickiness and less
than full capacity utilization.

A number of papers simulate large-scale models in which a central bank commits to a version
3Coibion et al. (2012) come to the same conclusion.
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of the Taylor rule to explore the optimal level of target inflation. Reifschneider and Williams
(1999) and Günter et al. (2004) find a 2% inflation target to be an adequate buffer against the
ZLB having noticeable adverse effects on the economy. However, these authors do not consider
the costs associated with a higher average inflation rate.

A more recent strand of literature studies the optimal level of inflation target under the
ZLB, e.g. Ascari and Ropele (2007), Coibion et al. (2012), Dordal-i-Carreras et al. (2016), Ngo
(2017) and Andrade et al. (2019). Coibion et al. (2012), in particular, extend the standard
linear-quadratic optimal analysis for a workhorse NK model with no capital and flexi-price with
a zero net inflation steady state to the trend-inflation case. The model is calibrated to first and
second moments of the data. They solve for the duration of the ZLB endogenously and show
that the cost of a binding ZLB is significantly smaller than the costs of positive level of inflation
target resulting in a low inflation target well below 2% per year for a given probability of 5% per
quarter for the nominal interest rate hitting the ZLB.

But other papers argue that the 2% inflation target is too low and a target inflation of 4%
would be adequate and would not harm an economy significantly (see Ball (2013)). However,
Ascari and Sbordone (2014) and Kara and Yates (2017) argue that with a higher level of inflation
target the determinacy region is significantly reduced. The latter paper in particular finds in a
model of heterogeneity in price stickiness when trend inflation is 4% that the determinacy region
in the model is almost non-existent. This result is particularly relevant for our results. In our
mandates the central bank chooses an optimized form of the monetary rule which is constrained
by the need for determinacy; by choosing an interest-rate rule with considerable persistence (in
fact close to a price-level rule) the indeterminacy problem is avoided4 and a 4% target with its
associated low probability of ZLB episodes becomes possible.

1.4 Road-Map

The rest of the paper’s structure is organized as follows: in the next section we briefly represent
the full Smets-Wouter New Keynesian model (Smets and Wouters, 2007) which is estimated by
Bayesian methods with different data series of the nominal interest rate, namely the standard
Federal interest rate and the Shadow interest rate (Wu and Zhang, 2016); we then introduce
the general monetary policy delegation game between different agents in the economy which
leads to the main numerical results of the paper. A section then sketches a generalization of
the framework for monetary-fiscal policy interactions before concluding comments complete the
paper.

4This is now a well-known result: for example in a simple three-equation NK model Hommes et al. (2019)
show analytically that persistence in the interest rate rule increases the determinate policy space of the
feedback parameters of inflation and output.
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2 A Non-Linear Smets-Wouters Model with Trend
Inflation

Most papers using the Smets and Wouters (2007) model use the linearized form about a balanced-
non-zero growth and effectively zero-net-inflation steady-state.5 The non-linear form of the
model with a trend net inflation is relatively unexplored, but is crucial for the welfare-analysis of
this paper. The properties of the model in a non-zero-net inflation rate steady state, set out in
Section (1.2), are crucial in this set-up. This section therefore sets the full non-linear form to be
solved in the vicinity of a trend net inflation deterministic steady state.

There are four sets of representative agents: households, final goods producers, trade unions
and intermediate goods producers. The later two produce differentiated labour services and
goods respectively and, in each period of time, consist of a group that is locked into an existing
contract and another group that can re-optimize.6

2.1 Households

At time t = 0, household i maximizes its expected lifetime utility

Ω0(i) = E0

∞∑
t=0

βtUt(Ct(i), Ct−1, H
s
t (i))

= E0

[ ∞∑
t=0

βt
[Ct(i)− χCt−1]1−σ

1− σ exp
[
(σ − 1)(Hs

t (i))1+ψ

1 + ψ

]]
(1)

where Et[·] denotes rational expectations based on information available at time t, Ct(i) is
real consumption , Hs

t (i) is hours supplied, β is the discount factor, χ controls external habit
formation where Ct−1 is aggregate consumption taken as given by household j, σ is the inverse
of the elasticity of inter-temporal substitution (for constant labour), and ψ is the inverse of the
Frisch labour supply elasticity. Preferences chosen by SW in (1) are compatible with balanced
growth (see King et al. (1988)).

5This is achieved by assuming that Calvo price and wage contracts are fully indexed in the steady state,
but only partially away from the steady state. A zero net inflation steady is convenient for linearization
as it removes the steady state distortion from dispersion, but abstracts from the trend inflation rate
effects that are central to this paper. Moreover the convenient indexing assumption is inconsistent with
microevidence on price setting - see, for example, Linde and Trabandt (2018).

6Our model is a slightly slimmed down version of Smets and Wouters (2007) in one respects, we employ a
Dixit-Stiglitz rather than Kimball aggregators over differentiated goods and labour types. We discuss this
simplification later.
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The household’s budget constraint in period t is given by

Ct(i) + It(i) + Bt(i)
RPStRn,tPt

+Tt = Bt−1(i)
Pt

+
(
rKt ut(i)− a(ut(i))

)
Kt−1(i) +Wh,tH

s
t (i) + Γt (2)

where It is investment into physical capital, Bt is government bonds held at the end of period t,
Rn,t−1 is the nominal interest rate paid on government bonds held at the beginning of period
t, RPSt is an exogenous premium in the return on bonds that follows an AR1 process. Tt is
lump-sum taxes, rKt is the real rental rate, ut is the utilisation rate of capital, ISt is an investment
specific technological shock (the inverse of the relative price of new capital in consumption terms),
a(ut(i)) is the physical cost of use of capital in consumption terms, Wh,t is the real wage rate at
which households supply labour that is homogeneous at this point to trade unions and Γt is the
profit of intermediate firms distributed to households. Notice that we deviate from the original
SW model and do not allow for variable capital utilization in the model. End of period capital
stock, Kt(i), accumulates according to

Kt(i) = (1− δ)Kt−1(i) + (1− S(Xt(i)))It(i)ISt (3)

where ISt is an investment specific technological shock that follows an AR1 process, Xt(i) =
It(i)/It−1(i) is the growth rate of investment, and S(·) is an adjustment cost function such that
S(X) = 0, S′(X) = 0, and S′′(·) = 0 where X is the steady state value of investment growth.
For S(Xt) in a symmetric equilibrium we choose the functional form: S(Xt) = φX(Xt − X̄t)2

where X̄t is the balanced-growth steady-state trend. For a(ut) we choose the functional form:
a(ut) = γ1(ut − 1) + γ2

2 (ut − 1)2 with ut = u = 1 in the steady state.
The solution to the household’s problem imply the Euler Consumption equation, an arbitrage

condition and a first order condition equating the marginal rate of substitution between leisure
and consumption with the real wage:

Et[Λt,t+1(i)Rt+1] = 1 (4)

Et[Λt,t+1(i)RKt+1] = 1 (5)

−UC,t(i)
UH,t(i)

= Wh,t (6)

a′(ut) = rKt (7)

where Λt,t+1(i) ≡ β
UC,t+1(i)
UC,t(i) is the stochastic discount factor, UC,t(i) ≡ ∂Ut(i)

∂Ct(i) , UH,t(i) ≡
∂Ut(i)
∂Ht(i)

are marginal utilities; Rt = Rn,t−1
Πt and RKt = [rKt ut−a(ut)+(1−δ)Qt]

Qt−1
are the real gross returns on

government bonds and physical capital respectively and Qt is the price of capital (Tobin’s Q).
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2.2 The Labour Market

Households supply their homogeneous labour to trade unions that differentiate the labour services.
A labour packer buys the differentiated labour from the trade unions and aggregate them into a
composite labour using the Dixit-Stigliz aggregator7 for aggregate labour supply

Ht =
(∫ 1

0
Ht(j)(ζw−1)/ζwdj

)ζw/(ζw−1)
dj (8)

where ζw is the elasticity of substitution among different types of labour, and we index trade
unions by j. The labour packer minimizes the cost

∫ 1
0 Wn,t(j)Ht(j)dj of producing the composite

labour service, whereWn,t(j) denotes the nominal wage set by union j. This leads to the standard
demand function

Ht(j) =
(
Wn,t(j)
Wn,t

)−ζw
Hd
t (9)

where Wn,t is the aggregate nominal wage given by the Dixit-Stigliz aggregator

Wn,t =
[∫ 1

0
Wn,t(j)1−ζwdj

] 1
1−ζw

(10)

Sticky wages are introduced through Calvo contracts supplemented with indexation. At each
period there is a probability 1− ξw that trade union j can choose WO

n,t(j) to maximize

Et
∞∑
k=0

ξkwΛt,t+kHt+k(j)
[
WO
n,t(j)
Pt+k

(
Pt+k−1
Pt−1

)γw
−Wh,t+k

]
(11)

subject to the demand function (9), where γw ∈ [0, 1] is a wage indexation parameter.
The solution to the above problem is the first-order condition

Et
∞∑
k=0

ξkwΛt,t+kHt+k(j)
[
WO
n,t(j)
Pt+k

(
Pt+k−1
Pt−1

)γw
− MRSSt+k

(1− 1/ζw)Wh,t+k

]
= 0 (12)

where we have introduced a mark-up shock MRSSt to the marginal rate of substitution that
follows an AR1 process. This leads to

WO
n,t(j)
Wn,t

=
1

1−1/ζwEt
∑∞
k=0 ξ

k
wΛt,t+kHt+k(j)Wh,t+kMRSSt+k

Wn,tEt
∑∞
k=0 ξ

k
wΛt,t+kHt+k(j) 1

Pt+k

(
Pt+k−1
Pt−1

)γw
7See Dixit and Stiglitz (1977).Smets and Wouters (2007) generalize the aggregator to a Kimball form as
in Kimball (1995) which introduces a variable mark-up even in the absence of wage stickiness. But as
Klenow and Willis (2016) argues a significant difference between the two aggregators only emerges if one
calibrates the model using an implausibly high price super-elasticity. See also Deak et al. (2020).
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=

1
1−1/ζwEt

∑∞
k=0 ξ

k
wΛt,t+k

(
Wn,t+k
Wn,t

)ζw(
Pt+k−1
Pt−1

)γwζwWh,t+kH
d
t+kMRSSt+k

Et
∑∞
k=0 ξ

k
wΛt,t+k

(
Wn,t+k
Wn,t

)ζw(
Pt+k−1
Pt−1

)γw(ζw−1)
Wn,t

Pt+k
Pt
Pt
Hd
t+k

(13)

By the law of large numbers the evolution of the aggregate wage is given by

W 1−ζw
n,t = ξw

(
Wn,t−1Πγw

t−1
)1−ζw + (1− ξw)(WO

n,t)1−ζw (14)

which can be written as

1 = ξw

(
Πγw
t−1

Πw
t

)1−ζw
+ (1− ξw)

(
WO
n,t

Wn,t

)1−ζw
(15)

Wage dispersion is defined as ∆w,t =
∫

(Wn,t(j)/Wn,t)−ζwdj. Assuming that the number of
trade unions is large, we obtain the following dynamic relationship:

∆w,t = ξw

∫
not optimize

(
WO
n,t−1(j)Πγw

t−1
Wn,t

)−ζw
dj + (1− ξw)

∫
optimize

(
WO
n,t(j)
Wn,t

)−ζw
dj

= ξw
(Πw

t )ζw

Πζwγw
t−1

∆w,t−1 + (1− ξw)
(
WO
n,t(j)
Wn,t

)−ζw
(16)

2.3 Firms in the Wholesale Sector

Wholesale firms employ a Cobb-Douglas production function to produce a homogeneous output

Y W
t = F (At, Hd

t , utKt−1) = (AtHd
t )α(utKt−1)1−α − Ft (17)

where Ft are exogenous fixed costs growing in a balanced-growth steady in line with the other
real varaibles. Profit-maximizing demand for factors results in the first order conditions

Wt ≡
Wn,t

Pt
= α

PWt
Pt

Y W
t + Ft

Hd
t

(18)

rKt = (1− α)P
W
t

Pt

Y W
t + Ft
utKt−1

(19)
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2.4 Firms in the Retail Sector

The retail sector uses a homogeneous wholesale good to produce a basket of differentiated goods
for aggregate consumption

Ct =
(∫ 1

0
Ct(m)(ζp−1)/ζpdm

)ζp/(ζp−1)
(20)

where ζp is the elasticity of substitution. For each m, the consumer chooses Ct(m) at a price
Pt(m) to maximize (20) given total expenditure

∫ 1
0 Pt(m)Ct(m)dm. This results in a set of

consumption demand equations for each differentiated good m with price Pt(m) of the form

Ct(m) =
(
Pt(m)
Pt

)−ζp
Ct ⇒ Yt(m) =

(
Pt(m)
Pt

)−ζp
Yt (21)

where Pt =
[∫ 1

0 Pt(m)1−ζpdm
] 1

1−ζp . Pt is the aggregate price index. Ct and Pt are Dixit-
Stigliz aggregates – see Dixit and Stiglitz (1977).

Following Calvo (1983), we now assume that there is a probability of 1− ξp at each
period that the price of each retail good m is set optimally to P 0

t (m). If the price is not
re-optimized, then prices are indexed to last period’s aggregate inflation, with indexation
parameter γp. With indexation parameter γp ≥ 0, this implies that successive prices with
no re-optimization are given by P 0

t (f), P 0
t (f)

(
Pt
Pt−1

)γp , P 0
t (f)

(
Pt+1
Pt−1

)γp , . . .. For each retail
producer m, given its real marginal cost (the inverse of the price mark-up)

MCt = PW
t

Pt
, (22)

the objective is at time t to choose {PO
t (m)} to maximize discounted profits

Et
∞∑
k=0

ξkpΛt,t+kYt+k(m)
[
PO
t (m)
Pt+k

(
Pt+k−1

Pt−1

)γp
−MCt+k

]
(23)

subject to

Yt+k(m) =
[
PO
t (m)
Pt+k

(
Pt+k−1

Pt−1

)γp]−ζp
Yt (24)

The solution to this is

Et
∞∑
k=0

ξkpΛt,t+kYt+k(m)
[
PO
t (m)
Pt+k

(
Pt+k−1

Pt−1

)γp
− 1

(1− 1/ζp)
MCt+k

]
= 0 (25)
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which leads to

PO
t (m)
Pt

=

1
1−1/ζpEt

∑∞
k=0 ξ

k
pΛt,t+k

(
Pt+k
Pt

)ζp(
Pt+k−1
Pt−1

)γpζp Yt+kMCt+k

Et
∑∞
k=0 ξ

k
pΛt,t+k

(
Pt+k
Pt

)ζp−1

(
Pt+k−1
Pt−1

)γp(ζp−1)Yt+k

= PO
t

Pt
(26)

in a symmetric equilibrium.
By the law of large numbers the evolution of the price index is given by

P
1−ζp
t = ξp

(
Pt−1Πγp

t−1

)1−ζp + (1− ξp)(PO
t (m))1−ζp (27)

which can be written as

1 = ξp

(
Πγp
t−1

Πt

)1−ζp

+ (1− ξp)
(
PO
t (m)
Pt

)1−ζp

(28)

Price dispersion is defined as ∆p,t =
∫

(Pt(m)/Pt)−ζpdm. Assuming that the number of
firms is large, we obtain the following dynamic relationship:

∆p,t = ξp

∫
not optimize

(
PO
t−1(m)Πγp

t−1

Pt

)−ζp
dm+ (1− ξw)

∫
optimize

(
PO
t (m)
Pt

)−ζp
dm

= ξp
Πζp
t

Πζpγp
t−1

∆p,t−1 + (1− ξp)
(
PO
t (m)
Pt

)−ζp
(29)

2.5 Closing the Model

The model is closed with a resource constraint

Yt = Ct +Gt + It + a(ut)Kt−1 (30)

A monetary policy rule for the nominal interest rate is given by the following Taylor-type
rule

log
(
Rn,t

Rn

)
= ρr log

(
Rn,t−1

Rn

)
+ (1− ρr)

(
θπ log

(
Πt

Π

)
+ θy log

(
Yt
Y

)
+ θdy log

(
Yt
Yt−1

))
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+MPSt, (31)

whereMPSt is a monetary policy shock. Our rule is of the implementable form as proposed
by Schmitt-Grohe and Uribe (2007) in that the nominal interest rate responds to deviations
of output about its steady state rather than deviations about the flexi-price level of output
(i.e., the output gap). The latter would encompass the original rules proposed by Taylor
(1993b) and Taylor (1999) for which there is no interest-rate smoothing (ρr = 0) and
θdy = 0. In the more recent of these papers, parameter values θπ = 1.5 and θy = 1.0 are
proposed.8

Nominal and real interest rates are related by the Fischer equation

Rt =
[
Rn,t−1

Πt

]
(32)

Market clearing for the labour market implies

Ht =
∫ 1

0
Ht(j)dj =

∫ 1

0

(
Wn,t(j)
Wn,t

)−ζw
djHd

t = ∆w,tH
d
t (33)

Market clearing for the final good market implies

Y W
t = ∆p,tYt (34)

For completeness we include a government budget constraint

PtGt +Bt−1 = Tt + Bt

Rn,t

(35)

where Gt is government spending that follows an AR1 process. However in this Ricardian
set-up without distortionary taxes the constraint plays no role in the equilibrium.

Finally the seven exogenous processes are AR1 and evolve according to:

logAt − logA = ρA(logAt−1 − logA) + εA,t (36)

logGt − logG = ρG(logGt−1 − logG) + εG,t (37)

logMSt − logMS = ρMS(logMSt−1 − logMS) + εMS,t (38)

logMRSSt − logMRSS = ρMRSS(logMRSSt−1 − logMRSS) + εMRSS,t (39)

8Note forward-looking ‘inflation-forecasting rules could also be considered but these are prone to a severe
indeterminacy constraint that results in welfare-inferior outcomes (see Batini et al. (2006)).
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log ISt − log IS = ρIS(log ISt−1 − log IS) + εIS,t (40)

logRPSt − logRPS = ρRPS(logRPSt−1 − logRPS) + εRPS,t (41)

logMPSt − logMPS = ρMPS(logMPSt−1 − logMPS) + εMPS,t (42)

3 Bayesian Estimation

This section sets out the Bayesian estimation of the model using standard techniques.9

The model is linearized computationally about the non-net inflation positive growth
deterministic state set out above. Before presenting the results, we first describe the
measurement equations, the data, the methodology (briefly) and identification. We also
highlight the information assumptions made in solving for a RE equilibrium that are
usually only implicit in Bayesian estimation exercises.

3.1 Data and Measurement Equations

Our observables used in the estimation are: GDP per capita growth (dyobs), consumption
expenditure per capita growth (dcobs), investment per capita growth (dinvobs), real wage
growth (dwobs), percentage deviation of hours worked per capita from mean (labobs),
monetary policy rate (robs), inflation rate (pinfobs). The corresponding measurement
equations are:

dyobs = log
(

(1 + g) Y
c
t

Y c
t−1

)
(43)

dcobs = log
(

(1 + g) Cc
t

Cc
t−1

)
(44)

dinvobs = log
(

(1 + g) Ict
Ict−1

)
(45)

dwobs = log
(

(1 + g) W
c
t

W c
t−1

)
(46)

labobs = Hd
t −Hd

Hd
(47)

robs = Rn,t − 1 (48)

pinfobs = log (Πt) (49)
9We used Dynare 5.7 for these results.
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The steady state values of the observables are dyobs = dinvobs = dcobs = dwobs =
log(1 + g), labobs = 0, robs = Rn − 1, and pinfobs = log(Π).

The original data are taken from the FRED Database available through the Federal
Reserve Bank of St.Louis. The data consists of 7 quarterly time series, namely log output
growth (dyobs), log consumption growth (dcobs), log investment growth (dinvobs), log
wage growth (dwobs), labour hours supply (laobs), the net inflation (pinfobs), and finally
the policy rate measurement (robs). Since our focus on the ZLB we also provide a new
estimation with the Wu-Xia Shadow interest rate replacing the FED rate, robs - see Wu
and Zhang (2016) and Wu and Zhang (2019). The sample period is 1958:1-2017:4. There
is a pre-sample period of 4 quarters so the observations actually used for the estimation
go from 1959:1-2017:4, 240 observations.

3.2 Bayesian Methodology, Identification and Information As-
sumptions

It is necessary to confront the question of parameter identifiability in DSGE models before
taking them to the data, as model or parameter identification is a prerequisite for the
informativeness of different estimators, and their effectiveness when one uses the models
to address policy questions. Hence, we follows Iskrev (2010) Iskrev and Ratto (2010) to
perform formal identification checks on the reduced form parameters and structure or
deep parameters. Overall, our identification analysis using DYNARE (Juillard, 2003)
shows that the Jacobian and Hessian matrices of the mapping from the reduced form
of the estimated parameters into the first and second order moments of the observable
variables are full rank. Thus, our estimated model is locally identifiable given the priors
and observable data sample. Details of this analysis are shown in the Appendix.

In a linear set-up about the deterministic steady state, the model’s unique RE solution
can be characterized by a standard transition equation:

st = A(θ)st−1 +B(θ)ut (50)

and the set of measurement equations in sub-section 3.1 is written in a compact form as
follows:

yt = C(θ)st +D(θ)ωt (51)

where ut = (εA,t, εG,t, εMCS,t, εMRSS,t, εIS,t, εMPS,t, εRPS,t) is a vector of struc-
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tural and noisy shocks, ωt is a vector of the observation noise, st is a vector of sta-
tionary variables, and yt is a vector of observables as presented in the subsection (3.1).
A(θ), B(θ), C(θ), D(θ) are matrices of reduced form parameters.

The standard Kalman Filter is used to calculate the likelihood for a given sample
of data of the observable vector. The details of the Kalman Filter from the state space
of the form (50) and (51) given the priors, p(θ) (consisting of initial mean, s0|0, and
initial co-variance P0|0) of the estimated parameters set θ, and the history of observations
yt, yt−1, ..., y0 are presented in Appendix C.

The posterior distribution is then updated using Bayes’s rule: p(θ|y) = p(y|θ)p(θ)
p(y) . Our

focus is on the posterior distribution of p(θ|y) that summarise what we know about θ, such
as (posterior) means, medians, modes, etc (and respective standard deviations). Knowing
this allows Bayesian inference expressed as E[g(θ)|y], where g(θ) is a function of interest:

E[g(θ)|y] =
∫
g(θ)p(θ|y)dθ

There is one more issue to address regarding the assumed information set of the agents
in the model. Most DSGE models are still solved and/or estimated on the assumption
that agents are simply provided with perfect information (henceforth PI) regarding the
states including the exogenous processes, effectively as an endowment. If we drop this
implausible assumption we must consider a signal extraction problem under imperfect
information (II) for the agents in the model analogous to that we have considered for the
econometrician. Fortunately we can retain the PI solution if we restrict ourselves to a class
of models which are ‘A-invertible’ meaning that agents can infer the structural shocks from
the information set assumed to be that of the econometrician. Levine et al. (2019) provide
an A-invertibility condition that generalizes the “Poor Man’s Invertibility Condition" of
Fernandez-Villaverde et al. (2007) and show that in the Smets and Wouters (2007) of this
paper with seven shock processes and seven observables is indeed A-invertible. It follows
that II and PI solutions coincide and the standard information assumption is valid in our
model.

3.3 Estimation results

The table 1 indicates the priors, the estimated posterior mode of the parameters obtained
directly from the maximization of the posterior distribution, and the mean of the poste-
rior distribution of the parameters obtained through the Metropolis-Hastings sampling
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Table 1: Estimated results (posterior mean with a number of draws equal to 20000)

Parameters Notations Prior Post. Mode Post. Mean
pdf Mean Std Post. Mode Sdt. Post. Mean

Technology shock εA IG 0.001 0.02 0.0076 0.0004 0.0078
Government spending shock εG IG 0.001 0.02 0.0420 0.0019 0.0419
Markup shock εMCS IG 0.001 0.02 0.0113 0.0008 0.0116
Wage Markup shock εMRSS IG 0.001 0.02 0.0218 0.0027 0.0250
Investment shock εIS IG 0.001 0.02 0.0033 0.0002 0.0033
Monetary shock εMPS IG 0.001 0.02 0.0022 0.0002 0.0023
Preference shock εRPS IG 0.001 0.02 0.0186 0.0021 0.0186
AR1 technology shock ρA B 0.50 0.20 0.9739 0.0050 0.9744
AR1 gov. spending shock ρG B 0.50 0.20 0.9547 0.0094 0.9551
AR1 mark-up shock ρMCS B 0.50 0.20 0.9897 0.0067 0.9747
AR1 Wage Markup shock ρMRSS B 0.50 0.20 0.9510 0.0097 0.9495
AR1 Investment shock ρIS B 0.50 0.20 0.3179 0.0470 0.3208
AR1 Monetary shock ρMPS B 0.50 0.20 0.9760 0.0098 0.9693
AR1 Preference shock ρRPS B 0.50 0.20 0.9766 0.0088 0.9745
Investment adj cost φX N 2 0.75 0.3267 0.0606 0.3526
Inverse intertemporal EOS σc N 1.5 0.375 1.2561 0.0991 1.2212
Internal Habit χ B 0.5 0.1 0.2395 0.0384 0.2605
Weight on Leisure in utility ψ N 2 0.75 1.1927 0.2855 1.5056
Calvo’s price ξp B 0.50 0.10 0.4748 0.0327 0.4754
Calvo’s wage ξw B 0.50 0.10 0.3924 0.0466 0.4279
Price indexation γp B 0.50 0.10 0.2799 0.0746 0.3126
Wage indexation γw B 0.50 0.10 0.6482 0.0881 0.6369
Capital utilisation γ2 B 0.50 0.15 0.7933 0.0472 0.7907
Profit F N 0.25 0.250 0.5134 0.0749 0.4680
Feedback inflation θπ N 2 0.25 2.5878 0.0284 2.6360
Lagged interest rate ρr B 0.70 0.10 0.7441 0.1516 0.7509
Feedback output gap θy N 0.125 0.05 -0.0382 0.0074 -0.0418
Feedback output growth θdy N 0.125 0.05 0.1980 0.0435 0.1967

algorithm of our estimation10.
Overall, all estimated parameters are significantly different from zero. Most of the

persistent shocks are estimated to have an autoregressive parameter that lies above 0.95,
with the exception of the estimated persistent parameter on investment shock standing at
0.31. In addition, we find that the estimated price indexation parameter is smaller than
the mean assumed in their prior distribution, γp = 0.28, but wage indexation is higher
at γw = 0.65. Moreover, the estimated Calvo’s price and wage parameters are relatively
small at ξp = 0.47 and ξw = 0.39, but taken together these estimates represent a significant

10Results on the 5th, 50th, and 95th percentile of the posterior distribution of the parameters obtained
through the Metropolis-Hastings sampling algorithm can be provided on request.
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degree of price and wage stickiness and departure from full indexation. Thus a positive
trend inflation leads to a significant welfare cost owing to both steady-state and dynamic
costs discussed in Section 1.2. Besides, other estimated parameters’ values are consistent
with the results from Smets and Wouters (2007).

4 The Delegation Game

Consider a model with stationarized variables as above, but for notational convenience we
drop the superscript c. Recall the nominal interest rate rule in ‘implementable form’:

log
(
Rn,t

Rn

)
= ρr log

(
Rn,t−1

Rn

)
+ (1− ρr)

(
θπ log

(
Πt

Π

)
+ θy log

(
Yt
Y

)
+ θdy log

(
Yt
Yt−1

))
(52)

which for optimal policy purposes we re-parameterize as

log
(
Rn,t

Rn

)
= ρr log

(
Rn,t−1

Rn

)
+ απ log

(
Πt

Π

)
+ αy log

(
Yt
Y

)
+ αdy log

(
Yt
Yt−1

)
(53)

which allows for the possibility of an integral rule with ρr = 1
Let ρ ≡ [ρr, απ, αy, αdy] be the policy choice of feedback parameters that defines the

form of the rule. The equilibrium is solved by backward induction in the following
three-stage delegation game.

1. Stage 1: The policymaker chooses a per period probability of hitting the ZLB and
designs the optimal loss function in the mandate.

2. Stage 2: The optimal steady state inflation rate consistent with stage 1 is chosen.

3. Stage 3: The CB receives the mandate in the form of a welfare criterion and rule of
the form (53). Welfare is then optimized with respect to ρ resulting in an optimized
rule.

This delegation game is solved by backwards induction as follows:
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4.1 Stage 3: The CB Choice of Rule

Given a steady state inflation rate target, Π, the Central Bank (CB) receives a mandate
to implement the rule (53) and to maximize with respect to ρ a modified welfare criterion

Ωmod
t ≡ Et

[ ∞∑
τ=0

βτ
(
Ut+τ − wr (Rn,t+τ −Rn)2

)]
=

(
Ut − wr (Rn,t −Rn)2

)
+ β(1 + g)1−σEt

[
Ωmod
t+1

]
(54)

One can think of this as a mandate with a penalty function P = wr (Rn,t −Rn)2, penalizing
the variance of the nominal interest rate with weight wr.11

Following Den Haan and Wind (2012), an alternative mandate that only penalizes the
zero interest rate in an asymmetric fashion is P = P (at) where the OBC is at ≡ Rn,t−1 ≥ 0
with

P = P (at) = exp(−wrat)
wr

(55)

and chooses a large wr. P (at) then has the property

lim
wr→∞

P (at) = ∞ for at < 0

= 0 for at > 0

Thus P (at) enforces the ZLB approximately but with more accuracy as wr becomes large.
Stages 3–1 then proceed as before, but we now confine ourselves to a large wr which will
enable Π to be close to unity.

Both the symmetric and asymmetric forms of a ZLB mandate result in a probability
of hitting the ZLB

p = p(Π, ρ∗(Π, wr)) (56)

where ρ∗(Π, wr) is the optimized form of the rule given the steady state target Π and the
weight on the interest rate volatility, wr.

11This closely follows the approximate form of the ZLB constraint of Woodford (2003) and Levine et al.
(2008).
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4.2 Stage 2: Choice of the Steady State Inflation Rate Π

Given a target low probability p̄ and given wr, Π = Π∗ is chosen so satisfy

p(Rn,t ≤ 1) ≡ p(Π∗, ρ∗(Π∗, wr)) ≤ p̄ (57)

This then achieves the ZLB constraint

Rn,t ≥ 1 with high probability 1− p̄ (58)

where Rn,t is the nominal interest rate.

4.3 Stage 1: Design of the Mandate

The policymaker first chooses a per period probability p̄ of the nominal interest rate hitting
the ZLB (which defines the tightness of the ZLB constraint). Then it maximizes the actual
household intertemporal welfare

Ωt = Et
[ ∞∑
τ=0

βτUt+τ

]
= Ut + β(1 + g)1−σEt [Ωt+1] (59)

with respect to wr.
This three-stage delegation game defines an equilibrium in choice variables w∗r , ρ∗ and

Π∗ that maximizes the true household welfare subject to the ZLB constraint (58).

5 The ZLB Delegation Mandate

Before considering transparent simple qudratic mandates. we first examine the numerical
solution of the three-stage delegation game in the estimated SW model in case where the
choice of response parameters ρ ≡ [ρr, απ, αy, αdy] is delegated to a central bank with a
‘modified’ objective of the form (54) where Ut is household utility and the rule takes the
form (53).

5.1 Stage 3 of the Delegation Game

At Stage 3 the central bank at time t is instructed to maximize Ωmod
t with respect to the

feedback coefficients ρ ≡ [ρr, απ, αy, αdy] given the long-run inflation target Π and the
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Figure 1: Plots time-varying weight on interest rate variability, wr

weight wr. The first subplot of figure 1 shows the relationship between the ZLB probability
for each value of the gross steady state inflation rate. In particular, the probability of
hitting the ZLB is a decreasing function in the level of the inflation target (see Coibion
et al. (2012), Ngo (2017)).

However, increasing the inflation target has two opposite effects on the probability of
hitting the ZLB: the first is on the first moment by shifting the density function to the
right reducing the probability of hitting ZLB; the second effect is on the second moment
making the shape of the density function more fat-tailed. Subplot 2 shows this second
effect: namely that the standard deviation of the nominal rate is an increasing function of
the inflation target thus increasing the probability of hitting ZLB.

From the fourth subplot of figure 1 we can see that actual welfare is a decreasing
function in the inflation target. There are two remarks on this: first, if the ZLB is not
taken into account, the optimal rate of net inflation is zero because there are only costs
to inflation and no required shifting of the inflation rate; second, considering the set of
all the steady state inflation levels which satisfies the ZLB (the orange arrow in figure
2), Π∗ ≥ Π∗∗ = 1.003, the CB chooses the target inflation of Π∗∗ = 1.003 with a given
value of wr = 1 and p̄ = 0.051. In other words, given a set of inflation target levels which
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satisfy the ZLB constraint, the lowest inflation target level is always chosen to maximize
the actual welfare.
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Figure 2: Figure illustrates the pick of optimal trend inflation from the set of steady state
inflation satisfying the ZLB constraint.

5.2 Stages 2 and 1: Imposing the ZLB and Choice of wr
In this section, we impose the ZLB constraint (58) where the optimal inflation target is
chosen to maximize the welfare for each value of wr as explained in the previous section.

In order to examine the model’s behaviour under the binding ZLB constraint we set
the value of p̄ = 0.01 quarterly. Other values of p̄ will be examined later. Figure 3 shows
the outcome for some variables under the binding ZLB constraint. The first plot of figure
3 shows the minimum values of steady state inflation rate, Π∗, which satisfies (57) in Stage
2 with equality. As we argued above, any value of Π which is larger than Π∗ satisfies the
ZLB constraint, but since welfare is a decreasing function of the inflation target values,
the central bank will set the lowest inflation target satisfying the ZLB. In addition, with a
higher level of weight attached on the variability of the nominal interest rate the central
bank has is less aggressive in conducting its monetary policy in term of stabilizing the
price; i.e.,we see a fall in feedback rule parameter on inflation. Finally, the equilibrium
is represented by the red dotted point and is documented in table 2. Under the ZLB
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constraint, the optimal weight imposed on the penalty term of ZLB mandate is relatively
high at w∗r = 14.
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Figure 3: ZLB mandate

Given the quarterly probability of hitting the ZLB at 1% (once every 25 years), the
optimal steady-state net inflation rate is then 3.5% annually. However if we relax the ZLB
constraint to an allowed probability of hitting the bound of 2.5%, the optimal steady state
net annual inflation is roughly 2.2%, a rate very close to the 2% inflation target of the Fed
and other central banks. For a probability 5% we find a corresponding optimal inflation
target of just over 1%. This optimal inflation rate is comparable to Coibion et al. (2012)
who find that the optimal net annual inflation rate is around 1.5% in their benchmark
model given their calibration of the unconditional probability of hitting the ZLB at 5%
based on the post World War II US experience.

5.3 Welfare Gains from Optimization and Costs of the ZLB

In Table 2 we now assess the stabilization gains from optimized rules compared with the
empirical estimated rule. By considering rules with and without the ZLB constraint its cost
can also be quantified. We use the outcome of the optimized rule with zero net inflation
and no ZLB constraint as the benchmark against which other regimes are measured.
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Sub-table (1): Estimated Model. Given the estimated monetary policy shock of
0.33% quarterly, welfare cost of the estimated inflation trend of 0.87% (3.5% annually)
is approximately a 0.15% permanent reduction in consumption per quarter.12 However,
the higher empirical inflation trend results in a smaller probability of the nominal interest
hitting the ZLB, i.e. a zero steady-state inflation results in a per quarter probability of
the ZLB incidence at 0.18 (approx 10 years in every 60 years), while a 3.5% of inflation
trend induces a probability to 0.07 (or 4 years in every 60 years).

The business cycle cost is relatively significant in our NK framework with a utility
function that has habit and labour supply (see sub-table No business cycle (Π = 1.0087)
of Table 2).13 Comparing the welfare outcome in the absence of shocks and with zero net
inflation we see that our benchmark optimal policy without a ZLB constraint results in a
CEV cost of 0.24%. This is a much higher cost of the business cycle that found in Lucas
(1987) and Lucas (2003).14

Sub-table (2): Optimized simple rule without the ZLB constraint. Putting
wr = 0 for these reults, there is a significant welfare gain of the optimal rule compared
to the estimated rule with the same steady-state inflation; i.e. given a zero steady-state
inflation welfare increases by 0.083 CEV%. Moreover, the frequency of the nominal
interest rate hitting the ZLB under optimal rule is significantly smaller than that under
the estimated one. The reason for this is that the optimal rule induces a lower volatility
of the model compared to the estimated one, which makes the nominal interest rate also
become less volatile (hence a smaller standard deviation0. As a result, probability of the
nominal interest rate hitting the ZLB becomes smaller.

We also examine the performance of the original Taylor rule with its parameters
12The consumption equivalent variations (CEV) is calculated from the table as follows:

CEV (wr) = Ωact(regimei)− Ωact(OSRw/oZLB)
CE

(60)

where CE is the consumption equivalent at the steady state, which represents the utility gain when
consumption increases by 1 %, this value at the optimal simple rule without the ZLB constraint is equal
to 1.094. Hence, the CEV is the welfare gain(loss) with different monetary regimes the society’s welfare
compared to when the central bank pursues an optimal simple rule without ZLB consideration.

13To compute this cost, we eliminate all the estimated shocks from the model, or equivalently, we calculate
the steady state level of actual welfare.

14The higher business cycle cost for a given volatility of variables entering into utility arises from labour
supply and habit in the utility function.
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calibrated from Taylor (1993a). Overall, there is a large welfare loss associated with
the original Taylor rule of 4–5 CEV% for the same target inflation rate and a very high
probability of the nominal interest rate hitting the ZLB. This indicates that the inertia
term on nominal interest rate, which is absent in the original Taylor rule, plays a crucial
role in stabilizing the economy and lowering the possibility of the ZLB episode.

Sub-table (3): optimized simple rule with the ZLB constraint. To examine
the welfare cost of the ZLB constraint, we now consider how changes in the frequency
of nominal interest rate hitting the ZLB affect welfare by examining different values of
p̄. We consider three different levels of p̄: 0.01 (one quarter every 25 years), 0.025 (one
quarter every 10 years), and 0.05 (one quarter every 5 years). The latter corresponds to the
post-WWII experience of the US used the calibration of Coibion et al. (2012). Proceeding
from the most to the least frequent of ZLB episodes we then see the CEV cost rising from
0.007% to 0.052%.

Our framework results in this welfare loss of ZLB episodes from two sources. First,
the optimal steady-state inflation rate rises which, as discussed in Section 1.2, directly
generates a welfare loss in the New Keynesian model through a higher price and wage
dispersion. Second, the optimal mandate (the optimal determination of the penalty term
in the delegated mandate, w∗r) generates a sub-optimal result from the social welfare point
by constraining the use of the nominal interest rate for stabilization. It is worth noting that
as the constraint becomes tighter, the optimized simple rule converges to a Taylor-type
rule with a very high persistence.

Sub-table (4): Optimized simple rule with an asymmetric ZLB constraint.
We next investigate the framework under an asymmetric formation of the ZLB mandate
in the spirit of Den Haan and Wind (2012), which only penalizes the zero net interest
rate in an asymmetric fashion. This type of central bank’s objective function implies that
there is asymmetry under various economic structures which is fully taken into account by
the central bank in conducting it monetary policy. The results in the table (2) are very
similar in the symmetric and asymmetric cases suggesting that our ZLB mandate result is
robust across these different forms of the ZLB mandate.

Sub-table (5): Optimized price level rule. We next consider a special case of

24



the Taylor-type simple rule (72):

log
(
Rn,t

Rn

)
= log

(
Rn,t−1

Rn

)
+ απ log

(
Πt

Π

)
(61)

Integrating the rule above gives:

log
(
Rn,t

Rn

)
= απ log

(
Pt

P̄t

)
(62)

which is a price level rule with the trend price-level given by P̄t
P̄t−1

= Π.
Giannoni (2014) argues that such simple price-level rule, comparing to the simple

rule that responds to inflation, delivers superior results in several aspects of optimal
monetary policy in the context of a NK model. First, price-level stabilization delivers
outcomes that are closest to optimal. Second, such a policy has a robustness feature that
delivers desirable outcomes even in the face of key types of model misspecification. Finally,
price-level stabilization is more likely to result in a unique bounded equilibrium. Our
results add a further advantage: the price-level rule closely mimics the general optimized
rule with potential output feedbacks so price level targeting helps to escape the ZLB. The
intuition for the benefits of price- targeting is as follows: faced with of an unexpected
temporary rise in inflation price-level stabilization commits the policymaker to bring
inflation below the target in subsequent periods. In contrast, with inflation targeting, the
drift in the price level is accepted.

Sub-table 5 of the Table 2 represents the results of our mandate framework when the
central bank is committed to price-level targeting rule. Overall, the price-level targeting
rule replicates the mandate equilibrium. However, without a small trade-off between
inflation and output activities there is a higher welfare loss under the price-level targeting
rule compared to the optimized simple rule.

5.4 A Case of a 4% Annual Trend Inflation Target

In light of the recent consistent effective lower bound to central bank interest rates, the
literature has also suggested that it is desirable to raise the inflation target to 4% to
combat the ZLB on nominal interest rates (see for example Ball (2013)). In this section,
we examines the impact of a 4% annual inflation trend scenario on the probability of the
nominal interest rate hitting the ZLB in via our framework.
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Table 2: Welfare stabilization from optimized rules compared with the estimated and original Taylor
rules

(1) Estimated model
Steady State Est. model ρr

απ
1−ρr

αy
1−ρr

αdy
1−ρr Π Act welfare CEV (%) p_zlb wr MPS

No business cycle (Π = 1.0087) 0.7509 2.6360 -0.0418 0.1967 1.0087 -497.4721 0.1992 - - -
No business cycle (Π = 1.00) 0.7509 2.6360 -0.0418 0.1967 1.00 -497.4250 0.2424 - - -
Regimes ρr

απ
1−ρr

αy
1−ρr

αdy
1−ρr Π Act welfare CEV (%) p_zlb wr MPS

Estimated rule (Π = 1) 0.7509 2.6360 -0.0418 0.1967 1 -497.7416 -0.0479 0.1758 - 0.0
Estimated rule (Π = 1) 0.7509 2.6360 -0.0418 0.1967 1 -497.7796 -0.0826 0.1765 - 0.0033
Estimated rule (Π = 1.0087) 0.7509 2.6360 -0.0418 0.1967 1.0087 -497.8434 -0.1410 0.0693 - 0.0033

(2) Original Taylor and optimized simple rule without ZLB
Regimes ρ∗r α∗π α∗y α∗dy Π Act welfare CEV p_zlb wr MPS
Taylor (Π = 1.005) 0 1.50 0.5 0 1.005 -503.7593 -5.5485 0.41 n.a. 0.0
Taylor (Π = 1.00) 0 1.50 0.5 0 1.00 -502.4471 -4.3491 0.4311 n.a. 0.0
OSR w/o ZLB (Π = 1.0) 0.6046 5.9990 0.0306 0.9344 1.0 -497.6892 0 0.1107 0. 0.0
OSR w/o ZLB (Π = 1.0087) 0.6828 6.0338 0.0477 0.8848 1.0087 -497.7369 -0.0436 0.0693 0 0.0

(3) Optimized simple rule with ZLB Mandate
Regimes ρ∗r α∗π α∗y α∗dy Π∗ Act welfare CEV p_zlb w∗r MPS
OSR with ZLB (p̄zlb = 0.01) 1.0 0.923 0.0067 0.0931 1.0087 -497.7457 -0.0516 0.01 14 0.0
OSR with ZLB (p̄zlb = 0.025) 0.9999 1.3055 0.0085 0.1501 1.0054 -497.7134 -0.0221 0.025 8 0.0
OSR with ZLB (p̄zlb = 0.05) 0.9999 1.9043 0.0104 0.2482 1.0025 -497.6967 -0.0069 0.05 4 0.0

(4) Optimized simple rule with asymmetric ZLB Mandate
Regimes ρ∗r α∗π α∗y α∗dy Π∗ Act welfare CEV p_zlb w∗r MPS
OSR with ZLB (p̄zlb = 0.01) 1.0 0.9757 0.0071 0.0999 1.0088 -497.7457 -0.0516 0.01 13 0.0
OSR with ZLB (p̄zlb = 0.025) 0.9999 1.4243 0.0092 0.1679 1.0055 -497.7134 -0.0221 0.025 7 0.0
OSR with ZLB (p̄zlb = 0.05) 0.9999 2.2582 0.0 0.3643 1.0027 -497.6969 -0.0070 0.05 5 0.0

(5) Optimized simple rule with ZLB Mandate and price-level rule
Regimes ρ∗r α∗π α∗y α∗dy Π∗ Act welfare CEV p_zlb w∗r MPS
OSR with ZLB (p̄zlb = 0.01) 1.0 0.8345 0 0 1.0087 -497.7494 -0.0550 0.01 14 0.0
OSR with ZLB (p̄zlb = 0.025) 1.0 1.0712 0 0 1.0053 -497.7174 -0.0258 0.025 8 0.0
OSR with ZLB (p̄zlb = 0.05) 1.0 1.3624 0 0 1.0023 -497.7011 -0.0109 0.05 4 0.0

Result from the Figure 4 suggests that if the inflation target is set at 4% annually (or
1.01 gross inflation quarterly), the ZLB episode would happen at a very low frequency of 7
quarters every 250 years (0.7 %). In addition, the optimized simple rule at the 4% inflation
trend also converges to a price level target rule15, which ensures the determinacy property
of the simple rule. Kara and Yates (2017) Ascari and Ropele (2007) suggest that a case
of 4% inflation trend would indeed give a leeway for the central bank under the effective
lower bound on nominal rates episode, but will also significantly narrows the determinary

15The optimized Taylor rule’s parameters are as follows: [ρ∗
r α∗

π α∗
y α∗

dy] =
[1.0 0.8509 0.0064 0.0828] which is close to a price-level rule.
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Figure 4: Plot the probability of ZLB on optimal net inflation trend

region for monetary policy rules. Our results suggest that a 4% inflation trend can combat
the ZLB while minimizing the impacts on the determinary region of the rules if the central
bank operates under an optimized simple rule in form of a price-level target rule.

6 Quadratic Loss Function Mandates

We now turn to simple quadratic loss function mandates designed to increase transparency
in the conduct of monetary policy. In the five mandates below the particular loss function
is matched with a simple rule with the same targets. Thus the transparency of the loss
function is reinforced with that of the interest rate rule. We first set out the details of the
mandates followed by numerical results. A final sub-section compares and discusses these
results across mandates.

6.1 Mandates I - V

Our first transparent delegated mandate I is expressed in terms of the level of output Yt
and gross inflation Πt relative to their steady state levels (Y,Π). The delegated mandate
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consists of the objective:

Ωmod
t ≡ −Et

[ ∞∑
τ=0

βτ
(
(Πt − Π)2 + wy (Yt − Y )2 + wr (Rn,t −Rn)2

)]
(63)

which includes, as before, a term penalizing nominal interest rate volatility that along with
the choice of target gross inflation Π that enforces the ZLB constraint. The corresponding
simple rule also targets (Yt, Πt and is given by

log
(
Rn,t

Rn

)
= ρr log

(
Rn,t−1

Rn

)
+ απ log

(
Πt

Π

)
+ αy log

(
Yt
Y

)
(64)

Our second transparent delegated mandate is expressed in terms of the growth of
output Yt

Yt−1
and gross inflation Πt relative to their steady states. The delegated mandate

II now consists of:

Ωmod
t ≡ −Et

 ∞∑
τ=0

βτ

(Πt − Π)2 + wdy

(
Yt
Yt−1

− (1 + g)
)2

+ wr (Rn,t −Rn)2

 (65)

with a corresponding simple rule:

log
(
Rn,t

Rn

)
= ρr log

(
Rn,t−1

Rn

)
+ απ log

(
Πt

Π

)
+ αdy log

(
Yt
Yt−1

)
(66)

Our next mandate III is a special form of the price-level rule corresponding to strict
inflation targeting mandate:

Ωmod
t ≡ −Et

[ ∞∑
τ=0

βτ
(
(Πt − Π)2 + wr (Rn,t −Rn)2

)]
(67)

with a corresponding simple rule

log
(
Rn,t

Rn

)
= log

(
Rn,t−1
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)
+ απ log
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Πt

Π

)
(68)

Mandate IV is expressed in terms of real wage growth Wt

Wt−1
and gross inflation Πt

relative to their steady states. The delegated mandate now consists of:

Ωmod
t ≡ −Et

 ∞∑
τ=0

βτ

(Πt − Π)2 + wdw

(
Wt

Wt−1
− (1 + g)

)2

+ wr (Rn,t −Rn)2

 (69)
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with a corresponding simple rule

log
(
Rn,t
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+ απ log

(
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Π

)
+ αdw log
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)
(70)

Our final transparent delegated mandate V is expressed in terms of employment
growth Hd

t

Hd
t−1

and gross inflation Πt relative to their steady states. The delegated mandate
now consists of:

Ωmod
t ≡ −Et

 ∞∑
τ=0

βτ

(Πt − Π)2 + wdh

(
Hd
t

Hd
t−1
− 1

)2

+ wr (Rn,t −Rn)2

 (71)

Corresponding simple rule:

log
(
Rn,t

Rn

)
= ρr log
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Rn,t−1

Rn

)
+ απ log

(
Πt

Π

)
+ αdh log

(
Hd
t

Hd
t−1

)
(72)

6.2 Numerical Results

Table 3: Results for Mandate I

Optimized simple rule with Quadratic ZLB Mandate (wy = 0)
Regimes ρ∗r α∗π α∗y α∗dy Π∗ Act welfare CEV p_zlb w∗r MPS
OSR with ZLB (p̄zlb = 0.01) 1.0 0.6309 0.0016 0.0 1.0082 -497.7502 -0.0558 0.01 1 0.0
OSR with ZLB (p̄zlb = 0.025) 0.9846 0.9791 0.0132 0.0 1.0055 -497.7188 -0.0271 0.025 3 0.0
OSR with ZLB (p̄zlb = 0.05) 0.9847 0.9612 0.0130 0.0 1.0023 -497.7026 -0.0122 0.05 3 0.0

Optimized simple rule with Quadratic ZLB Mandate (wy = 0.1)
Regimes ρ∗r α∗π α∗y α∗dy Π∗ Act welfare CEV p_zlb w∗r MPS
OSR with ZLB (p̄zlb = 0.01) 0.9999 0.6752 0.0029 0.0 1.0083 -497.7492 -0.0548 0.01 1 0.0
OSR with ZLB (p̄zlb = 0.025) 0.9999 0.6375 0.0067 0.0 1.0047 -497.7203 -0.0284 0.025 1 0.0
OSR with ZLB (p̄zlb = 0.05) 0.8587 1.5699 0.0113 0.0 1.0042 -497.7075 -0.0167 0.05 0 0.0

Optimized simple rule with Quadratic ZLB Mandate (w∗y = 0.2)
Regimes ρ∗r α∗π α∗y α∗dy Π∗ Act welfare CEV p_zlb w∗r MPS
OSR with ZLB (p̄zlb = 0.01) 0.9997 0.6827 0.0042 0.0 1.0084 -497.7491 -0.0548 0.01 1 0.0
OSR with ZLB (p̄zlb = 0.025) 0.9997 0.5823 0.0114 0.0 1.0047 -497.7229 -0.0308 0.025 1 0.0
OSR with ZLB (p̄zlb = 0.05) 1.0000 0.5143 0.0154 0.0 1.0017 -497.7149 -0.0235 0.05 0 0.0

Optimized simple rule with Quadratic ZLB Mandate (wy = 0.5)
Regimes ρ∗r α∗π α∗y α∗dy Π∗ Act welfare CEV p_zlb w∗r MPS
OSR with ZLB (p̄zlb = 0.01) 0.9996 0.6308 0.0084 0.0 1.0083 -497.7498 -0.0554 0.01 1 0.0
OSR with ZLB (p̄zlb = 0.025) 1.000 0.2621 0.0125 0.0 1.0044 -497.7747 -0.0782 0.025 3 0.0
OSR with ZLB (p̄zlb = 0.05) 1.0000 0.1966 0.0131 0.0 1.0018 -497.8113 -0.1116 0.05 3 0.0
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Table 4: Results for Mandate II

Optimized simple rule with Quadratic ZLB Mandate (wdy = 0)
Regimes ρ∗r α∗π α∗y α

∗
dy Π∗ Act welfare CEV p_zlb w∗r MPS

OSR with ZLB (p̄zlb = 0.01) 1.0 0.6331 0.0 0.0 1.0083 -497.7508 -0.0563 0.01 1 0.0
OSR with ZLB (p̄zlb = 0.025) 1.0 0.6328 0.0 0.0001 1.0046 -497.7215 -0.0295 0.025 1 0.0
OSR with ZLB (p̄zlb = 0.05) 0.8397 6.1637 0.0 1.3771 1.0041 -497.7028 -0.0124 0.05 2 0.0

Optimized simple rule with Quadratic ZLB Mandate (w∗dy = 0.2)
Regimes ρ∗r α∗π α∗y α

∗
dy Π∗ Act welfare CEV p_zlb w∗r MPS

OSR with ZLB (p̄zlb = 0.01) 1.00 0.6831 0.0 0.0649 1.0083 -497.7479 -0.0537 0.01 1 0.0
OSR with ZLB (p̄zlb = 0.025) 1.0 0.6821 0.0 0.0647 1.0047 -497.7183 -0.0266 0.025 1 0.0
OSR with ZLB (p̄zlb = 0.05) 1.0 0.6812 0.0 0.0645 1.0016 -497.7046 -0.0141 0.05 1 0.0

Optimized simple rule with Quadratic ZLB Mandate (wdy = 0.5)
Regimes ρ∗r α∗π α∗y α

∗
dy Π∗ Act welfare CEV p_zlb w∗r MPS

OSR with ZLB (p̄zlb = 0.01) 1.0 0.7757 0.0 0.1792 1.0086 -497.7506 -0.0561 0.01 1 0.0
OSR with ZLB (p̄zlb = 0.025) 1.0 0.7744 0.0 0.1795 1.0049 -497.7198 -0.0280 0.025 1 0.0
OSR with ZLB (p̄zlb = 0.05) 1.000 0.7732 0.0 0.1798 1.0018 -497.7054 -0.0148 0.05 1 0.0

Table 5: Results for Mandate III

Optimized simple rule with Quadratic ZLB Mandate
Regimes ρ∗r α∗π α∗y α

∗
dy Π∗ Act welfare CEV p_zlb w∗r MPS

OSR with ZLB (p̄zlb = 0.01) 1.0 0.9323 0.0 0.0 1.0088 -497.7495 -0.0551 0.01 0.6 0.0
OSR with ZLB (p̄zlb = 0.025) 1.0 1.2392 0.0 0.0 1.0055 -497.7174 -0.0258 0.025 0.4 0.0
OSR with ZLB (p̄zlb = 0.05) 1.0 1.2392 0.0 0.0 1.0022 -497.7012 -0.0110 0.05 0.40 0.0

Tables 3-7 set out the numerical results for our 5 quadratic mandates. The optimal
mandate is described by the choice of weights (w∗r , w∗y) for mandate I, (w∗r , w∗dy) for mandate
II, w∗r for mandate III, (w∗r , w∗dw) for mandate IV and (w∗r , w∗dh) for mandate V. This choice
depends on the tightness of the ZLB constraint, p̄zlb. In the tables we report the welfare-
optimal mandate for the case p̄zlb = 0.01.

For these optimal mandates we find that the weights attached to real economic activities
(i.e. output or labour demand) are relatively small compared with the weight attached to
price inflation. The exception is for mandate IV, targeting directly both nominal price and
real wage growth where we find the relative optimal weights attached on nominal price
and wage inflation volatility are close to equality. This result is in contrast with Debortoli
et al. (2019) who find that simple loss functions should feature a high weight on measures
of economic activity, sometimes even larger than the weight on inflation. The source
of this difference lies in the presence of the ZLB constraint coupled with the optimized
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Table 6: Results for Mandate IV

Optimized simple rule with Quadratic ZLB Mandate (wdw = 0.2)
Regimes ρ∗r α∗π − α∗dw Π∗ Act welfare CEV p_zlb w∗r MPS
OSR with ZLB (p̄zlb = 0.01) 1.0 1.0659 0.0 0.0941 1.0089 -497.7429 -0.0491 0.01 0.5 0.0
OSR with ZLB (p̄zlb = 0.025) 1.0 1.0621 0.0 0.0919 1.0052 -497.7110 -0.0199 0.025 0.5 0.0
OSR with ZLB (p̄zlb = 0.05) 1.0 1.0597 0.0 0.0902 1.0020 -497.6960 -0.0062 0.05 0.0 0.0

Optimized simple rule with Quadratic ZLB Mandate (w∗dw = 0.8)
Regimes ρ∗r α∗π − α∗dw Π∗ Act welfare CEV p_zlb w∗r MPS
OSR with ZLB (p̄zlb = 0.01) 1.00 1.1641 0.0 0.3764 1.0089 -497.7369 -0.0436 0.01 0.5 0.0
OSR with ZLB (p̄zlb = 0.025) 1.00 1.1559 0.0 0.3711 1.0052 -497.7047 -0.0142 0.025 0.5 0.0
OSR with ZLB (p̄zlb = 0.05) 1.0 1.1493 0.0 0.3667 1.0026 -497.6895 -0.0003 0.05 0.0 0.0

Optimized simple rule with Quadratic ZLB Mandate (wdw = 1.5)
Regimes ρ∗r α∗π − α∗dw Π∗ Act welfare CEV p_zlb w∗r MPS
OSR with ZLB (p̄zlb = 0.01) 1.00 1.2842 0.0 0.6682 1.0091 -497.7428 -0.0490 0.01 0.5 0.0
OSR with ZLB (p̄zlb = 0.025) 1.00 1.9546 0.0 1.000 1.0057 -497.7082 -0.0174 0.025 0.0 0.0
OSR with ZLB (p̄zlb = 0.05) 0.9999 1.9579 0.0 0.9999 1.0024 -497.6906 -0.0013 0.05 0.0 0.0

Table 7: Results for Mandate V

Optimized simple rule with Quadratic ZLB Mandate (wdh = 0.05)
Regimes ρ∗r α∗π − α∗dh Π∗ Act welfare CEV p_zlb w∗r MPS
OSR with ZLB (p̄zlb = 0.01) 1.0 1.0753 0.0 0.0002 1.0090 -497.7500 -0.0556 0.01 0.5 0.0
OSR with ZLB (p̄zlb = 0.025) 1.0 1.0729 0.0 0.0002 1.0053 -497.7174 -0.0258 0.025 0.5 0.0
OSR with ZLB (p̄zlb = 0.05) 1.0 1.0711 0.0 0.0002 1.0021 -497.7018 -0.0115 0.05 0.0 0.0

Optimized simple rule with Quadratic ZLB Mandate (wdh = 0.1)
Regimes ρ∗r α∗π − α∗dh Π∗ Act welfare CEV p_zlb w∗r MPS
OSR with ZLB (p̄zlb = 0.01) 1.00 1.0977 0.0 0.0156 1.0090 -497.7499 -0.0555 0.01 0.5 0.0
OSR with ZLB (p̄zlb = 0.025) 1.00 1.0931 0.0 0.0143 1.0053 -497.7170 -0.0254 0.025 0.5 0.0
OSR with ZLB (p̄zlb = 0.05) 1.0 1.0898 0.0 0.0135 1.0021 -497.7014 -0.0112 0.05 0.5 0.0

Optimized simple rule with Quadratic ZLB Mandate (w∗dh = 0.2)
Regimes ρ∗r α∗π − α∗dh Π∗ Act welfare CEV p_zlb w∗r MPS
OSR with ZLB (p̄zlb = 0.01) 1.00 0.7022 0.0 0.0252 1.0084 -497.7496 -0.0552 0.01 1 0.0
OSR with ZLB (p̄zlb = 0.025) 1.00 1.1708 0.0 0.0888 1.0054 -497.7163 -0.0248 0.025 0.5 0.0
OSR with ZLB (p̄zlb = 0.05) 1.00 1.1639 0.0 0.0866 1.0022 -497.7002 -0.0101 0.05 0.5 0.0

appropriate interest rate rule in our framework. While the latter paper studies a Ramsey
problem of the simple loss function as parsimonious approximations to social welfare, our
paper investigates the simple rule regime where the central bank has delegated a loss
function under a presence of the ZLB constraint. For example, under a strict inflation
targeting mandate I, w∗y = w∗dy = 0.2 which gives a regime close to a strict inflation
targeting. The central bank then reacts more aggressively to the inflation component of its

31



optimized simple rule; by concentrating aggressively on the inflation volatility the central
bank mitigates the welfare cost of price dispersion due to the high level of trend inflation
and at the same time reduces the frequency of hitting the ZLB constraint. For the best
mandate IV, which involve real wage growth targeting, the optimized interest rate rule
responds strongly to this component. In doing so it also reduces nominal wage dispersion
resulting in a further welfare benefit.16 The associated optimal mandate then has a weight
on wage growth close to that on inflation.

6.3 General Discussion

We have examined several forms of transparent loss function mandates that impose the
ZLB constraint by penalizing the volatility of nominal interest rate. The results are
striking in several respects. First, from the society welfare criterion, the integrated-ZLB
conventional inflation-output optimal mandate I results in the highest welfare loss, whilst
the nominal price and wage inflation targeting mandate IV leads to the lowest. The
consumption equivalent differences are quite small and of the order 0.01%. But for all
optimal mandates there is a substantial welfare stabilization gain of the order of 0.1%
compared with the outcome of the estimated rule. Generally in our NK model with labour
supply and habit in the utility function and with price and wage stickiness both the
welfare costs of the business cycle and the potential gains from stabilization policy are
substantially greater than those found by Lucas (2003) and in the RBC model without
such distortions.

Second, in the quadratic mandates, the optimal weights attached to real economic
activities (i.e. output or labour demand) are relatively small compared with the weight
attached to price inflation. Only for mandate IV targeting directly both nominal price and
real wage growth do we find that the relative optimal weights attached to these targets are
close to unity. This result is in contrast with Debortoli et al. (2019) who find that simple
loss functions should feature a high weight on measures of economic activity, sometimes
even larger than the weight on inflation. The source of this difference has been discussed
in sub-section 6.2.

Third, the associating optimized simple rules all converge to a price-level targeting
rule, or at least to an interest-rate rule with the smoothing component on the nominal
interest rate close to unity. Overall, the central bank reacts positively to output and labour

16This result is consistent with that of Levine et al. (2008) who find that an optimized simple rule that
targets the real wage closely mimics the Ramsey solution.
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demand, so a looser monetary policy corrects for a decline in these real economic variables.
However, because the optimized weights in the loss function are relatively small, these
real economic activity components also carry a small weight in the optimized simple rules.

Fourth, the formation of the optimal mandates has a little impact on the optimal
steady state inflation level. Overall, the optimal steady state inflation does not vary
across different formations of the mandate and the tightness level of the ZLB (the allowed
probability of the nominal interest rate hitting the ZLB) is the main driving force on
the optimal steady state inflation. The allowed highest quarterly probability of 5% (once
every 5 years) corresponds to the calibration employed by Coibion et al. (2012) which
they note is consistent with the historical experience of the ZLB frequency for the US
since 1945. They find an optimal inflation trend rate in the region 1-2%, a result rather
higher that our finding of close to 1%. There are two possible reasons for this discrepancy:
first, our model is estimated by Bayesian methods with an empirical inflation trend and
could claim to be more empirical; second, our choice of welfare function to design the
mandate avoids any quadratic steady-state small-distortions approximation. We use a
second-order perturbation approach that only assumes the variance of shocks are small
which is confirmed in the estimation. We suspect that the first of these two reasons is the
more important.

Finally in the 2% versus 4% debate over the optimal inflation target (see Section 5.4)
our results favour the latter. The higher inflation target drives the frequency of ZLB
episodes down to p̄zbb = 0.007 to (7 quarters every 250 years) with an optimized interest
rate rule close to a price-level rule. As we have noted, the latter has good determinacy
properties even at the higher inflation trend.

7 Conclusions

Our paper has presented a general framework for monetary policy delegated to an
instrument-independent but goal-dependent central bank. The latter is required to
optimize a particular form of interest rate rule with a steady state inflation target. The
goal mandate includes a penalty on the interest rate variance chosen to be welfare-optimal
given the constraint of hitting the ZLB with a particular frequency. Different goal mandates
are considered all associated with Taylor-type simple rules with the same target variables.
Moreover, the optimal inflation target found from this paper supports the view that raising
the inflation target above the standard 2% per year to 4% is a feasible welfare-enhancing
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mandate for the central banks to deal very effectively with the ZLB in that the quarterly
frequency of violating the constraint falls to well under 1%. The price-level form of the
optimized rule avoids the indeterminacy problem highlighted by proponents of the 2%
target.

Future work will explore a number of directions: first, to develop a general fiscal-
monetary mandate (sketched in Appendix E); second to follow Coibion et al. (2012) and
examine state-dependent wage and price contracts with endogenous durations; and third
to study our mandate framework in a behavioural NK model that relaxes the rational
expectations assumption in different ways.17
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Appendix

A Stationary equilibrium

To stationarize the model labour-augmenting technical progress parameter is decomposed
into a cyclical component, stationary Act , and a deterministic trend Āt:

At = ĀtA
c
t

Āt = (1 + g)Āt−1

Then we can define stationarized variables by

Ωt

Ā1−σ
t

= Ut

Ā1−σ
t

+ βEt
Ωt+1

Ā1−σ
t+1

(
Āt+1

Āt

)1−σ

Ut

Ā1−σ
t

=

[
Ct
Āt
− χCt−1

Āt−1

Āt−1
Āt

]1−σ
1− σ exp

[
(σ − 1)H

1+ψ
t

1 + ψ

]

Λt,t+1 = β
UC,t+1

UC,t
= β(1 + g)(1−%)(1−σ)−1U

c
C,t+1

U c
C,t

≡ βg
U c
C,t+1

U c
C,t

where the growth-adjusted discount rate is defined as

βg ≡ β(1 + g)1−σ,

the Euler equation is still
Et [Λt,t+1Rt+1]

Now stationarize remaining variables by defining cyclical components:

UC,t

Ā−σt
=

(1− σ) Ut
Ā1−σ
t
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Āt
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Āt−1
Āt
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(
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Kc
t = (1− δ) K

c
t−1

1 + gt
+ (1− S(Xc

t ))Ict

Xc
t = (1 + gt)

Ict
Ict−1

S(Xc
t ) = φX(Xc

t − 1− gt)2

S ′(Xc
t ) = 2φX(Xc

t − 1− gt)

Cc
t ≡

Ct

Āt

Ict ≡
It

Āt

W c
t ≡

Wt

Āt

Rewrite the equilibrium conditions as

Household:
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Ā1−σ
t
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Ā1−σ
t

+ βEt
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(
Āt+1
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Āt−1

Āt−1
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(A.2)

Kt

Āt
= (1− δ)Kt−1

Āt−1

Āt−1

Āt
+ (1− S(Xt))

It

Āt
ISt (A.3)

Xt =
It
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Āt

It−1
Āt−1

Āt−1
(A.4)

S(Xt) = φX(Xt − 1− g)2 (A.5)

S ′(Xt) = 2φX(Xt − 1− g) (A.6)
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Āt+1
− χCt

Āt
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rKt = a′(ut) (A.9)

1 = RPStEt [Λt,t+1Rt+1] (A.10)
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Qt = Et
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Wage setting:
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Āt

Πt (A.17)

Jwt
Āt
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Āt
JJwt

(A.20)

1 = ξw

(
Πγw
t−1

Πw
t

)1−ζw

+ (1− ξw)
(
WO
n,t

Wn,t

)1−ζw

(A.21)

∆w,t = ξw
(Πw

t )ζw

Πζwγw
t−1

∆w,t−1 + (1− ξw)
(
WO
n,t

Wn,t

)−ζw
(A.22)

Retail firm:

Y W
t

Āt
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Price setting:

MCt = PW
t

Pt
(A.26)

Jpt
Āt
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Monetary policy:
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Aggregation:
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t = rKt ut − a(ut) +Qt(1− δ)
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(A.36)

Shock processes:

logAt − logA = ρA(logAt−1 − logA) + εA,t (A.37)
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Use change of variables to arrive to the following equilibrium conditions:
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Retail firm:

Y W,c
t =

(
ActH

d
t

)α (
ut
Kc
t−1

1 + g

)1−α

− F̃ Y W,c (A.66)

W c
t = α

PW
t

Pt

Y W,c
t + F̃ Y W,c

Hd
t

(A.67)

rKt = (1− α)P
W
t

Pt

Y W,c
t + F̃ Y W,c

ut
Kc
t−1

1+g

(A.68)
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Price setting:

MCt = PW
t

Pt
(A.69)

Jp,ct = 1
1− 1

ζp

Y c
t MCtMCSt

+ ξp(1 + g)EtΛt,t+1
(Πt,t+1)ζp

(Πt−1,t)γpζp
Jp,ct+1 (A.70)

JJp,ct = Y c
t + ξp(1 + g)EtΛt,t+1

(Πt,t+1)ζp−1

(Πt−1,t)γp(ζp−1)JJ
p,c
t+1 (A.71)

P 0
t

Pt
= Jp,ct
JJp,ct

(A.72)

1 = ξp

(
Πγp
t−1

Πt

)1−ζp

+ (1− ξp)
(
P 0
t

Pt

)1−ζp

(A.73)

∆p,t = ξp
Πζp
t

Πζpγp
t−1

∆p,t−1 + (1− ξp)
(
P 0
t

Pt

)−ζp
(A.74)

Monetary policy:

log
(
Rn,t

Rn

)
= ρr log

(
Rn,t−1

Rn

)
+ (1− ρr)

(
θπ log

(
Πt

Π

)
+ θy log

(
Y c
t

Y c

)
+ θdy log

(
Y c
t

Y c
t−1

))

+ logMPSt (A.75)

Aggregation:

Y c
t = Cc

t +Gc
t + Ict + a(ut)

Kc
t−1

1 + g
(A.76)

Ht = ∆w,tH
d
t (A.77)

Y W,c
t = ∆p,tY

c
t (A.78)

RK
t = rKt ut − a(ut) +Qt(1− δ)

Qt−1
(A.79)

Shock processes:

logAct − logAc = ρA(logAct−1 − logAc) + εA,t (A.80)
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logGc
t − logGc = ρG(logGc

t−1 − logGc) + εG,t (A.81)

logMCSt − logMCS = ρMCS(logMCSt−1 − logMCS) + εMCS,t (A.82)

logMRSSt − logMRSS = ρMRSS(logMRSSt−1 − logMRSS) + εMRSS,t (A.83)

log ISt − log IS = ρIS(log ISt−1 − log IS) + εIS,t (A.84)

logMPSt − logMPS = ρMPS(logMPSt−1 − logMPS) + εMPS,t (A.85)

logRPSt − logRPS = ρRPS(logRPSt−1 − logRPS) + εRPS,t (A.86)

This is a system of 44 equation in the following 44 “variables” (in order of appearance):
V c, U c, Cc, H, Kc, S(X), X, Ic, IS, S ′(X), λc, W c

h, rK , a′(u), RPS, Λ, R, Q, u, a(u),
Rn, Π, Πw, W c, Jw,c, Hd, MRSS, JJw, WO

n

Wn
, ∆w, Y W,c, Ac, PW

P
, MC, Jp,c, Y c, MCS,

JJp,c, P 0

P
, ∆p, MPS, Gc, RK .

Finally we define a consumption equivalent welfare measure CEt as the inter-temporal
increase in welfare resulting from a permanent 1% increase in the equilibrium path of
consumption as

CEt = Et
[ ∞∑
t=s

βsU(1.01Ct+s, 1.01Ct−1+s, Ht+s)
]

− Et
[ ∞∑
t=s

βsU(Ct+s, Ct−1+s, Ht+s)
]

= [1.01Ct − χ1.01Ct−1]1−σ

1− σ exp
[
(σ − 1)H

1+ψ
t

1 + ψ

]
− U(Ct, Ct−1, Ht)

+ βEtCEt+1

= (1.011−σ − 1)Ut + βEtCEt+1 (A.87)

The stationary version is then

CEc
t = (1.011−σ − 1)U c

t + β(1 + g)1−σEtCEc
t+1 (A.88)

In our results we compute consumption equivalent differences using the stationary steady
state CEc.

A.1 Balanced-Growth Steady state

Having stationarized the model we now drop the superscript c. The exogenous variables
have steady states Ac = MCS = MRSS = IS = MPS = RPS = 1, G = gyY . Moreover,
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u = 1 in steady state. Given the steady state inflation rate Π and hours H, the steady
state values of the other variables can be computed in stationary form as

S(X) = 0

S ′(X) = 0

Πw = (1 + g)Π

Q = 1

Λ = β(1 + g)−σ

rK = 1
Λ − (1− δ)

a(u) = 0

a′(u) = γ1

rK = γ1 ⇒ γ1 = 1
β(1 + g)−σ − (1− δ)

P 0

P
=
(

1− ξpΠ(1−γp)(ζp−1)

1− ξp

) 1
1−ζp

∆p = 1− ξp
1− ξpΠζp(1−γp)

(
P 0

P

)−ζp

MC =
(

1− 1
ζp

)
1− ξp(1 + g)ΛΠζp(1−γp)

1− ξp(1 + g)ΛΠ(ζp−1)(1−γp)
P 0

P

PW

P
= MC

WO
n

Wn

=
(

1− ξwΠγw(1−ζw)(Πw)ζw−1

1− ξw

) 1
1−ζw

∆w = 1− ξw
1− ξw (Πw)ζw

Πζwγw

(
WO
n

Wn

)−ζw

Hd = H

∆w

K

Y W
= (1− α)(1 + g)(1 + F̃ )

urK
PW

P

Y W = Hd

(1 + F̃ ) 1
α

(
K
YW

1 + g

) 1−α
α

K = Y W K

Y W

Y = Y W

∆p
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I = Kc

1
g + δ

1 + g

G = gyY

C = Y −G− I

JJw = Hd

1− ξwΛ (Πw)ζw Πγw(1−ζw)−1

W = α
PW

P

Y W,c + F

Hd

Jw = WO
n

Wn

WJJw

Wh

W
=

(
1− ξw(1 + g)Λ (Πw)ζw

Πγwζw

) (
1− 1

ζw

)
Jw

WHd

=

(
1− ξw(1 + g)Λ (Πw)ζw

Πγwζw

) (
1− 1

ζw

)
WO
n

Wn

1− ξwΛ (Πw)ζw Πγw(1−ζw)−1

To examine the impact of trend inflation Π on the steady state further we consider the
zero growth case g = 0 for which wage and price inflation are equal (Πw = Π). Then we
have for price-setting:

P 0

P
=
(

1− ξpΠ(1−γp)(ζp−1)

1− ξp

) 1
1−ζp

∆p = 1− ξp
1− ξpΠζp(1−γp)

(
P 0

P

)−ζp

MC =
(

1− 1
ζp

)
1− ξpΛΠζp(1−γp)

1− ξp(1 + g)ΛΠ(ζp−1)(1−γp)
P 0

P

and for wage-setting:

WO
n

Wn

=
(

1− ξwΠ(1−γw)(ζw−1)

1− ξw

) 1
1−ζw

∆w = 1− ξw
1− ξwΠ(1−γw)ζw

(
WO
n

Wn

)−ζw
Wh

W
=

(
1− ξwΛΠ(1−γw)ζw

) (
1− 1

ζw

)
WO
n

Wn

1− ξwΛΠ(1−γw)(ζw−1) .

Thus for ζp > 1, both the optimized price P 0

P
and price dispersion ∆p increase with the
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trend inflation rate Π. However noting that the price mark-up is the inverse of the real
marginal cost, i.e., equal to = 1/MC, we can see that the price response to the re-optimized
price decreases with Π. Analogous results for ζw > 1 hold for the optimized nominal wage,
wage dispersion and the wage mark-up which is the inverse of Wh

W
.

A.2 Solution of the Steady State

We solve for the steady state as follows:

1. We guess the value of H.

2. We solve for the steady state of the model given our guess.

3. We use the foc on hours

W c
h,t =

[
Cc
t − χ

Cct−1
1+g

]
Hψ
t

1− βχ(1 + g)−σ U
c
t+1
Uct

Cct−χ
Cc
t−1

1+g

Cct+1−χ
Cc
t

1+g

(A.89)

to evaluate our guess. Note that the above equation in steady state simplifies to

W c
h =

[
Cc − χ Cc

1+g

]
Hψ

1− βχ(1 + g)−σ (A.90)

which elimantes the need to compute the steady state value for utility.

The rest of the variables can be computed as

U c =

[
Cc − χ Cc

1+g

]1−σ
1− σ exp

[
(σ − 1)H

1+ψ

1 + ψ

]
(A.91)

V c = U c

1− β(1 + g)1−σ labelV ss (A.92)

X = 1 + g (A.93)

λc = (1− σ)U c

Cc − χ Cc

1+g
− βχ(1 + g)−σ (1− σ)U c

Cc − χ Cc

1+g
(A.94)

R = 1
Λ (A.95)

Rn = RΠ (A.96)

Jp,c = YMCMCS(
1− 1

ζp

)
(1− ξp(1 + g)ΛΠζp(1−γp))

(A.97)
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JJp,c = Jp,c

P 0

P

(A.98)

RK = rK + 1− δ (A.99)

CEquivc = (1.011−σ − 1)U
1− β(1 + g)1−σ (A.100)

B Calibrated and Estimated Parameters

The parameters Π̄, R̄n and ḡ are related to the steady state variables of our model by

Π = Π̄
100 + 1

Rn = R̄n

100 + 1

g = ḡ

100

From our non-zero-inflation-growth steady state this implies that we can impose the
restrictions

Rn = Π
β(1 + g)−σ = R̄n

100 + 1 (B.101)

on β. This implies that β can be calibrated as

β =
Π̄

100 + 1(
R̄n
100 + 1

) (
1 + ḡ

100

)−σ (B.102)

However, in order to evaluate welfare ranking with a consistent form of the objective
function, we still impose the standard quarterly value in the literature, β = 0.99, and
impose Rn accordingly.

The first-order condition for capital utilisation is

rKt = a′(ut) (B.103)

which has the linear approximation

r̂Kt = γ2

γ1
ût (B.104)
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Smets and Wouters write the above equation as (see equation (6) in their paper)

zt = z1r
k
t (B.105)

where z1 = 1−ψ
ψ

and they estimate ψ. Consequently, z1 = γ1
γ2
.

Recall that the capital utilisation adjustment function is

a(ut) = γ1(ut − 1) + γ2

2 (ut − 1)2 (B.106)

which can be rewritten as

a(ut) = γ1(ut − 1) + γ2

γ1

γ1

2 (ut − 1)2

= γ1(ut − 1) + 1
z1

γ1

2 (ut − 1)2

= γ1(ut − 1) + ψ

1− ψ
γ1

2 (ut − 1)2 (B.107)

Its derivative is

a′(ut) = γ1 + ψ

1− ψγ1(ut − 1) (B.108)

The production function (equation (5) in the paper) is given by

yt = φp(αkst + (1− α)lt + εat ) (B.109)

where φp = y∗+Φ
y∗

is one plus the share of fixed costs in production.18 They use the prior
φp ∼ N (1.25, 0.25) for the parameter (may be missing from the paper altogether), which
implies that Φ

y∗ ∼ N (0.25, 0.25). Hence we need to rewrite the equilibrium condition (17)
as

Y W
t =

(
AtH

d
t

)α
(utKt−1)1−α − F̃ Y W (B.112)

18In the technical appendix the production function is given by

yt(i) = Ztkt(i)αLt(i)1−α − Φ (B.110)

which becomes
ŷt = α

y∗ + Φ
y∗

k̂t + (1− α)y∗ + Φ
y∗

L̂t + y∗ + Φ
y∗

Ẑt (B.111)

when loglinearized.
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and define the prior on F̃ = F
YW

Āt

.

C Computation of the Likelihood Density using the
Kalman Filter

• Prediction
Predicted (a priori) state estimate: st|t−1 = A(θ)st−1|t−1.
Predicted (a priori) estimate covariance: Pt|t−1 = A(θ)Pt−1|t−1A

T (θ)+B(θ)ΣutB
T (θ).

Where Pt|t is the posteriori estimate covariance matrix (a measure of the estimated accuracy
of the state estimate), st|t is the posteriori state estimate at time k given observations up
to and including at time t. Σut is the covariance of the transition noise which is assumed
with zero-mean normal distribution.

• Updating
Innovation or measurement pre-fit residual: x̂t = yt − C(θ)st|t−1

Innovation (or pre-fit residual) covariance: Ht = C(θ)Pt−1|t−1C
T (θ)+D(θ)ΣωtD

T (θ).
Optimal Kalman gain: Kt = Pt|t−1C

T (θ)H−1
t

19.
Updated (a posteriori) state estimate: st|t = st|t−1 +Ktx̂t.
Updated (a posteriori) estimate covariance: Pt|t = (I −KtC(θ))Pt|t−1.
Measurement post-fit residual: x̂t|t = yt − C(θ)st|t

Hence, the likelihood density, L(p(y|θ)), is computed from the distribution of the measure-
ment post-fit residual, x̂t|t.

D Identification and Estimation

Following Iskrev and Ratto (2010), we provide the identification (locally) analysis of the
our tool model here. In the upper panel of the figure the bars depict the identification
strength of the parameters based in the Fisher information matrix normalized by either the
parameter at the prior mean (blue bars) or by the standard deviation at the prior mean
(red bars). Intuitively, the bars represent the normalized curvature of the log likelihood
function at the prior mean in the direction of the parameter. If the strength is 0 (for both
bars) the parameter is not identified as the likelihood function is flat in this direction. The

19The optimal Kalman gain minimizes the residual error (Miao ch. 10).
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Identification strength with asymptotic Information matrix (log-scale)
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Figure 5: Identification Strength in the tool Model

larger the absolute value if the bars, the stronger the identification. Hence, it is clear that
all parameters are identified in the model.

The convergence property is represented in figure (6). The appended (Interval) shows
the Brooks and Gelman’s convergence diagnostics for the 80% interval. The blue line
shows the 80% interval/quantile range based on the pooled draws from all sequences, while
the red line shows the mean interval range based on the draws of the individual sequences.
The appended (m2) and (m3) show an estimate of the same statistics for the second and
third central moments, i.e. the squared and cubed absolute deviations from the pooled
and the within-sample mean, respectively. All statistics are based on the range of the
posterior likelihood function. The posterior kernel is used to aggregate the parameters.
Convergence is indicated by the two lines stabilizing and being close to each other.

The figures from (7) to (10) indicate the prior-posterior plots. The grey line shows the
prior density, while the black line shows the density of the posterior distribution. The
green horizontal line indicates the posterior mode. If the posterior looks like the prior,
either your prior was a very accurate reflection of the information in the data or the
parameter under consideration is only weakly identified and the data does not provide
much information to update the prior.
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Figure 6: Multivariate convergence diagnostic
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Figure 7: Priors and Posteriors for 20000 MCMC draws
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Figure 8: Priors and Posteriors for 20000 MCMC draws
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Figure 9: Priors and Posteriors for 20000 MCMC draws

55



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

rhoIS

Figure 10: Priors and Posteriors for 20000 MCMC draws

E A General Mandate for Monetary-Fiscal Policy In-
teractions

We now sketch out a generalization of our mandate framework to include a fiscal dimension.
First we describe the fiscal Taylor-type rules. Then we set out the fiscal mandate with a
constraint on the upper bound for the debt-income ratio. Finally we propose a closed-loop
Nash equilibrium for independent monetary and fiscal authorities with delegated mandate.

E.1 Fiscal Policy Rules

Let τw,t = τtτw and τk,t = τtτk so relative tax rates on labour and capital remain constant.
We examine general fiscal rules suitable for non-flexi price NK models of the form: for
governnment spending:

log
(
Gt

G

)
= ρg log

(
Gt−1

G

)
+(1−ρg)

(
−θg,B log

(
Br
t−1
Br

)
− θg,y log

(
Yt
Y

)
− θg,dy log

(
Yt
Yt−1

))
(E.113)
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and for taxes:

log
(
τt
τ

)
= ρτ log

(
τt−1

τ

)
+ (1− ρτ )

(
θτ,B log

(
Br
t−1
Br

)
θτ,y log

(
Yt
Y

)
+ θτ,dy log

(
Yt
Yt−1

))
(E.114)

In (E.113) and (E.114) θg,B, θτB > 0 to ensure a stable debt profile and we normally expect
θg,y, θg,dy > 0 and θτ,y, θτ,dy > 0 as well. We also require Br 6= 0.

The steady state choice of the debt-income ratio D ≡ Br

Y
pins down the common tax

rate. From
Br = G−WHττw − rKKττk

1−R (E.115)

we have
τ = gy + (R− 1)D

ατw + (1− α)τk
> 0 (E.116)

where gy ≡ G
Y
. This completes the fiscal additions to the model.

E.2 A Debt Upper Bound Mandate

As in the monetary policy ZLB mandate in we can design a mandate for a fiscal authority
in the form of a tax or government spending rule, separately or together, that keeps the
debt-to-income ratio below a target upper bound with a low probability, p̄.

Consider the tax rule keeping Gt as an exogenous AR1 process as before. Write it in
the form:

log
(
τt
τ

)
= ρτ log

(
τt−1

τ

)
+
(
ατ,B log

(
Br
t−1
Br

)
+ ατ,y log

(
Yt
Y

)
+ ατ,dy log

(
Yt
Yt−1

))
(E.117)

Let Dt ≡ Brt
Yt
. We then have a 3-stage delegation game as follows:

Stage 3: Choice of the Fiscal Rule:
Given an initial debt-income rate ratio, D0, a target steady state D < D0 and transition
rate ρd ∈ (0, 1) with a transition path D∗t for t ≥ 1

D∗t = D1−ρd(D∗t−1)ρd → D as t→∞ (E.118)

Given the target steady state D, (E.116) then determines the tax rate τ that will achieve
the target given gy. Alternatively any combination τ and gy consistent with (E.116) will
result in the target D. For the transition to the new target (the deterministic component
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of policy), (E.118) replaces (E.117).20

The fiscal authority, separate from the Central Bank, then receives a mandate to
implement this transition path alongside the stochastic stabilization rule (E.117) about
the new steady state defined by D, τ and gy. The authority then maximizes with respect
to ρf = [ρτ , ατ,B, ατ,y, ατ,dy] a modified welfare criterion

Ωmod
t ≡ Et

[ ∞∑
s=0

βs
(
Ut+s − wd (Dt+s −D)2

)
= Ut − wd (Dt −D)2 + β(1 + g)1−σEt

[
Ωmod
t+1

] ]
(E.119)

In designing the rule we now decompose the expected welfare into deterministic and
stochastic steady state components.21 Then the fiscal authority takes the former as given
and maximizes the latter as for the monetary delegation game.

Stage 2: Choice of the Steady State Debt-Income Ratio D Given a target low
probability p̄ and given wd, D = D∗ in equilibrium is chosen so satisfy

p(Dt ≥ Dtarget) ≡ p(D∗, ρ∗d(D∗, wd)) ≥ p̄ (E.120)

This then achieves the upper bound constraint

Dt ≤ Dtarget with high probability 1− p̄ (E.121)

Stage 1: Design of the Mandate
The policymaker first chooses a per period probability p̄ of the debt-income rate hitting
the UB (which defines the tightness of the UB constraint). Then it maximizes the actual
household inter-temporal welfare

Ωt = Et
[ ∞∑
s=0

βsUt+s

]
= Ut + β(1 + g)1−σEt [Ωt+1] (E.122)

20This deterministic component of policy is solved as a perfect foresight solution.
21In what follows we consider these components separately and use a second-order stochastic solution around
the new steady-state. However this is an approximation which Ajevskis (2017) avoids by providing a
perturbation solution about a deterministic steady state. The latter can be the accurate solution using
the perfect foresight solver.
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with respect to wd and the speed of transition ρd.
This three-stage delegation game defines an equilibrium in choice variables w∗d, ρ∗f , D∗

and ρ∗d that maximizes the true household welfare subject to the UB constraint (E.121).

E.3 Closed-loop Nash Equilibrium

In the NK model with both fiscal and monetary policy conducted independently, in Stage
3 we need a Closed-loop Nash Equilibrium (CLNE) in the optimized feedback coefficients.
First, we redefine the objective functions of the fiscal and monetary authorities in stage 3
here, respectively:

Ωfiscal,mod
t ≡ Et

[ ∞∑
s=0

βs
(
Ut+s − wd (Dt+s −D)2

)
= Ut − wd (Dt −D)2 + β(1 + g)1−σEt

[
Ωfiscal,mod
t+1

] ]
(E.123)

Ωmonetary,mod
t ≡ Et

[ ∞∑
s=0

βs
(
Ut+s − wr (Rnt+s −Rn)2

)
= Ut − wr (Rnt −Rn)2 + β(1 + g)1−σEt

[
Ωmonetary,mod
t+1

] ]
(E.124)

Hence, we denote Ωj,mod
t , where j = [fiscal, monetary], are the modified welfare function

for each policy maker. Each policy maker has her own policy instrument, intj,t. For instance,
monetary policy maker uses nominal interest rule (53) and fiscal authority employs the
rule (E.117), τt.
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