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Abstract

This paper describes a Dynare-based toolbox which solves, simulates and estimates

DSGE rational expectations (RE) models under perfect or imperfect information on

the part of agents. The toolbox also delivers tests and conditions for exact and ap-

proximate invertibility providing information as to how well VAR residuals map the

structural shocks in the RE solution to the DSGE model. Seven working examples

come with the package including a version of the Smets and Wouters (2007) model

and a standard small-scale New Keyesian (NK) DSGE model. The estimation exercise

is conducted on both the NK and Smets-Wouters models. The paper provides alter-

native estimation results and an assessment for fundamentalness of structural shocks

assuming that RE agents do not observe all current state variables (including shock

processes) and only have an imperfect information set. Sections of the paper also

examine the impulse response functions and unconditional second moments of the es-

timated model and discuss endogenous persistence.
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1 Introduction

There is now a growing new literature on the importance of imperfect information (hence-

forth II) in DSGE models especially with heterogeneous agents. Despite this many (indeed

most) such models are still use rational expectations (RE) solutions with the assumption

that agents are simply provided with perfect information (henceforth PI) of the current

state of the economy, effectively as an endowment. The strong assumption of RE is

made even stronger by this informational assumption. For example with exogenous shock

processes the assumed information set then includes their current realizations; if agents

observe macroeconomic variables with measurement error then these also enter into their

information set.

The agents’ problem under II is in many respects a standard signal extraction problem,

but it will in general feed back, via optimising behaviour, into the behaviour of any

endogenous states of the model economy. As a direct result the filtering process itself thus

increases the state space relative to the benchmark case of PI and have significant effects for

the dynamics of the model, its estimation and the ability of the econometrician to represent

its solution as a VAR. These are the issues we pursue in our imperfect information toolbox.

1.1 Literature

II models with heterogenous agents distinguish local (idiosyncratic) information and (ag-

gregate) information e.g. Pearlman and Sargent (2005), Nimark (2008), Angeletos and

La’O (2009), Graham and Wright (2010), Nimark (2014), Ilut and Saijo (2018), Rondina

and Walker (2018), Huo and Takayama (2018), Angeletos and Huo (2018) and Angeletos

and Huo (2020).Angeletos and Lian (2016) provide a recent comprehensive survey.1

This paper and toolkit follow a separate II literature where there is no explicit idiosyn-

cratic shocks - see, for example, Collard et al. (2009), Neri and Ropele (2012) and Levine

et al. (2012). Levine et al. (2019) (that this toolbox follows closely) show that this class

of models can be considered as the limiting case of those cited above with heterogeneous

agents and idiosyncratic shocks in the limit as idiosyncratic uncertainly far outweighs ag-

gregate uncertainty a feature that is strongly supported empirically (see, for example, Ilut

and Saijo (2018) and Bloom et al. (2018)).

1.2 The Toolkit

Turning to the toolkit, it then inputs any DSGE model in either non-linear and linear

standard form and carries out the following exercises:

1This survey refers to as the incomplete information literature. Here a comment on terminology is

called for. Our use of perfect/imperfect Information (PI/II) is widely used in the literature when describing

agents’ information of the history of play driven by draws by Nature from the distributions of exogenous

shocks. In previous papers by the authors, and in dynare, partial rather than imperfect information

is used. The complete/incomplete framework of the Angeletos-Lian survey (and other work by these

authors) incorporates PI/II, but also refers to agent’s beliefs regarding each other’s payoffs. In our set-up

this informational friction (leading to “Global Games”) is absent.
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1. A transformation of the Dynare set-up into the Blanchard-Kahn in the form used

by Pearlman et al. (1986) to solve for the RE solution under PI or II;

2. The stochastic first-order solution as in Pearlman et al. (1986) with impulse response

functions, unconditional second moments and simulated data suitable for Monte-

Carlo exercises;

3. The conditions for invertibility under which imperfect information is equivalent to

perfect information as in Levine et al. (2019);

4. Multivariate measures of goodness of fit of the innovation residuals to the funda-

mental shocks, providing information as to how well VAR residuals correspond to

the fundamentals in DSGE models;

5. Bayesian first-order estimation of the both the PI and II cases.

1.3 Road-map

The remainder of the paper sets out instructions to demonstrate the working of the soft-

ware. In what follows, Section 2 first sets out a brief summary of the conversion algorithm,

the RE solution under imperfect information and the invertibility tests and measures.

Section 3 describes the current implementation including a new novel feature on checking

invertibility conditions.2 Sections 4 and 5 introduce the estimation part of the software

and the .mod file syntax rules. Section 6 refers to the examples and applications in the

literature. Section 7 concludes.

In the appendices of this paper, Appendix A first describes in greater detail the algo-

rithm converting our models to the suitable Blanchard-Kahn form and set out the model

equations used in all our examples. It is useful to use artificial data from stochastic simula-

tions of the model to numerically assess the theoretical results of this paper and Appendix

B shows how this is done. Appendices C–G set out and describe the models we use as

examples to demonstrate the implementation of the toolbox. Appendices H–K plot the

empirical autocorrelation and impulse response functions based on the estimated posterior

estimates. Appendix L presents the Dynare output produced for the results that we report

in Section 6.1 and Tables 2–13. Finally, Appendix M shows instructions for installation.

2 Theoretical Background

In Dynare a non-linear DSGE model can be written as

Et[f(Yt, Yt+1, Yt−1, εt+1)] = 0 (1)

Et[εt+1] = 0

Et[εt+1ε
′
t+1] = Σε

2To install the software package, we need to make sure that the solution and simulation subroutines

are stored as source code in ...\dynare\4.x.y\matlab\partial_information. See Section 3 for details.
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where Yt is an n × 1 vector of endogenous macroeconomic variables; and εt is a k × 1

vector of exogenous Gaussian white noise structural shocks. We assume that the structural

shocks are normalized such that their covariance matrix is given by the identity matrix

i.e., εt ∼ N(0, I). Note that this is quite general in that Yt can be enlarged to include

lagged and forward-looking variables.3

Writing yt ≡ log(Yt/Ȳt where Ȳt is the long-term deterministic trend and log-linearizing

about this trend the general form

A0yt+1,t +A1yt = A2yt−1 + Ψεt (2)

where yt+1,t denotes Et[yt+1] and matrix A0 may be singular.4 Note that the user can code

the model in either non-linear or linearized form and in the former case dynare carries

out the linearization in a first-order perturbation solution. Below we provide examples of

both.

We define yt,s ≡ E
[
yt|IAs

]
where IAt is information available at time t to economic

agents, given by IAt = {mA
s : s ≤ t}. We assume that all agents have the same information

set about some strict subset of the elements of Yt, hence information is in general imperfect.

Similarly, this applies to the m × 1 vector mE
t , where m ≤ k, which is the vector of

observables available to the econometrician. These vectors of observables available to the

econometrician and agents respectively are given by

mE
t = LEyt (3)

mA
t = LAyt (4)

Note that measurement errors can be accounted for by including them in the vector εt. In

the special case that agents are endowed with perfect information, LA = I (the identity

matrix).

2.1 Conversion to Blanchard-Kahn Form

In order to move seamlessly from the very general class of linear RE models (2) to results

that are based on Pearlman et al. (1986) - henceforth PCL - we introduce a key result.

This form resembles a representative agent model, but from Levine et al. (2019) shows

(Theorem 2) it also represents a limiting case of a class of heterogenous agent models where

idiosyncratic shocks enter as additions to aggregate shocks and the standard deviations of

the former dominate the latter.

Theorem 1. For any information set, (2) can always be converted into the following

generalized Blanchard-Kahn form, as used by PCL

[
zt+1

xt+1,t

]
=

[
G11 G12

G21 G22

][
zt
xt

]
+

[
H11 H12

H21 H22

][
zt,t
xt,t

]
+

[
B

0

]
εt+1 (5)

3See Dynare User Guide, chapter 7.
4Let xt be some component of yt. Then xt,t denoted by Et[xt] (not necessarily equal to xt under

imperfect information) can be incorporated into this set-up by defining a state variable xLt ≡ xt−1 and

noting that xt,t = xLt+1,t.
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mA
t =

[
M1 M2

] [ zt
xt

]
+
[
M3 M4

] [ zt,t
xt,t

]
(6)

where zt, xt are vectors of backward and forward-looking variables, respectively. The

covariance matrix of shocks is the matrix BB′.

Proof: See Appendix A where a novel comprehensive algorithm is represented that can

handle any model in the form (2).

Note that at this stage we focus solely on the agents’ informational problem: we specify

the properties of m× 1 vector mE
t where m ≤ k, the vector of observables available to the

econometrician later.

2.2 The Agents’ Solution under Perfect Information (API)

Here we assume that agents directly observe all elements of Yt, hence of (zt, xt). Hence

zt,t = zt, xt,t = xt, and using the standard BK solution method there is a saddle path

satisfying

xt +Nzt = 0 where
[
N I

]
(G+H) = ΛU

[
N I

]
(7)

where ΛU is a matrix with unstable eigenvalues. If the number of unstable eigenvalues of

(G+H) is the same as the dimension of xt, then the system will be determinate.5

To find N , consider the matrix of eigenvectors W satisfying

W (G+H) = ΛUW (8)

Then, as for G and H, partitioning W conformably with zt and xt, from PCL we have

N = W−1
22 W21 (9)

From the saddle-path relationship (9), the saddle-path stable RE solution under API is

zt = Azt−1 +Bεt xt = −Nzt (10)

where A ≡ G11 +H11 − (G12 +H12)N .

2.3 RE Solution under Imperfect Information

PCL propose a general framework for introducing information limitations where agents

are not able to perfectly observe states that define the economy at the point agents form

expectations. We first briefly outline how the imperfect information setup is solved, and

then provide the conditions for invertibility.

Following PCL and Levine et al. (2019), we apply the Kalman filter updating given by[
zt,t
xt,t

]
=

[
zt,t−1

xt,t−1

]
+K

[
mA
t −

[
M1 M2

] [ zt,t−1

xt,t−1

]
−
[
M3 M4

] [ zt,t
xt,t

]]
(11)

5Note that in general, as Sims (2002) has pointed out, the dimension of xt will not match the number

of expectational variables in (2), as we see in the algorithm for the proof of Theorem 1 (see Appendix A.2).
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where we denote zt,t ≡ Et[zt] and xt,t ≡ Et[xt]. The Kalman filter was developed in the

context of backward-looking models, but extends as we see here to forward-looking models.

The basic idea behind it is that the best estimate of the states {zt, xt} based on current

information is a weighted average of the best estimate using last period’s information and

the new information mA
t . Thus the best estimator of the state vector at time t − 1 is

updated by multiple K of the error in the predicted value of the measurement as above,

where K (the “Kalman gain”) is given by

K =

[
PAJ ′

−NPAJ ′

]
[(M1 −M2N)PAJ ′]−1 (12)

and J ≡M1−M2G
−1
22 G21, M ≡ [M1 M2] is partitioned conformably with [zt, xt]

′, and PA

satisfies the Riccati equation (17) below for the agents’ filtering problem. G and H are

partitioned conformably with [zt, xt]
′ as in (A.1) in Appendix A.1 and we define F and J

below.

Using the Kalman filter, the agents’ solution under imperfect information (henceforth

AII) as derived by Pearlman et al. (1986) is given by the following processes describing

the pre-determined and non-predetermined variables zt = z̃t + zt,t−1 and xt, and a process

describing the prediction errors z̃t ≡ zt − zt,t−1

Predictions : zt+1,t = Azt +A
[
PAJ ′(JPAJ ′)−1J − I

]
z̃t (13)

Non-predetermined : xt = −Nzt + (G−1
22 G21 −N)

[
PAJ ′(JPAJ ′)−1J − I

]
z̃t(14)

Prediction Errors : z̃t = F [I − PAJ ′(JPAJ ′)−1J ]z̃t−1 +Bεt (15)

Measurement Equation: mA
t = Ezt + E

[
PAJ ′(JPAJ ′)−1J − I

]
z̃t (16)

where A ≡ G11 +H11− (G12 +H12)N , F ≡ G11−G12G
−1
22 G21, J ≡M1−M2G

−1
22 G21 and

E ≡M1 +M3 − (M2 +M4)N . The matrix A is the autoregressive matrix of the states zt
in the agents’ solution under perfect information (henceforth API); B captures the direct

(but unobservable) impact of the structural shocks εt and PA = E[z̃tz̃
′
t] is the solution of

a Riccati equation given by

PA = QAPAQA
′
+BB′ where QA = F

[
I − PAJ ′(JPAJ ′)−1J

]
(17)

We can see that the solution procedure above is a generalization of the Blanchard-Kahn

solution for perfect information and that the determinacy of the system is independent of

the information set.6,7

6Full details of the algorithm for converting the state space under partial information to the Blanchard-

Kahn form (the PCL solver) and its simulation implementation can be found in Appendix A.
7Under perfect information we have that M1 = I and M2 = 0 so xt = −Nzt is also observed. Then

J = I, but then the this information set is in general of higher dimension than the shocks, so we pick a

linear combination J̄ of the information set such that J̄B is invertible and Q̄A = F (I − B(J̄B)−1J̄) has

stable eigenvalues (which is possible if (F,B) is controllable). From (17) it follows that PA = BB′, the

covariance matrix of the structural shocks, and Q̄A is as above. Hence Q̄AB = 0 and thefefore z̃t = Bεt.

Finally, adding z̃t+1 to both sides of (13) yields the result for PI. More details of the solution under agents’

perfect information can be found in Levine et al. (2019).
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2.4 A-Invertibility and E-Invertibility

First we have two definitions and a lemma for E-invertibility under API:

Definition 1. A-Invertibility. The system in (2) is A-invertible if agents can infer the true

values of the shocks εt from the history of their observables,
{
mA
s : s ≤ t

}
, or equivalently,

if the number of observables equals the number of shocks (m = k) and PA = BB′ is a

stable fixed point of the agents’ Ricatti equation, (17).

Corresponding to A-invertibility we now define the corresponding concept from the

viewpoint of the econometrician:

Definition 2. E-Invertibility. The system in (2) is E-invertible if the values of the shocks

εt can be deduced from the history of the econometrician’s observables,
{
mE
s : s ≤ t

}
.

Lemma 1. If agents have perfect information, the conditions for E-invertibility (as in

Definition 2) are: the square matrix EB is of full rank and A(I −B(EB)−1E) is a stable

matrix.

We now pose the question: given the econometrician’s information set, under what

conditions do the RE solutions under agents’ different information sets actually differ?

When can the econometrician infer the full state vector, including shocks? We now consider

the more general case of E-invertibility when agents have imperfect information, Levine

et al. (2019) then show the following result that generalizes the “Poor Man’s Invertibility

Condition” (PMIC) of Fernandez-Villaverde et al. (2007):

Theorem 2. Assume that the number of observables equals the number of shocks (m = k) .

Assume further that the PMIC conditions in Lemma 1 hold (so the system would be E-

invertible under API) but agents do not have perfect information. Then each of the fol-

lowing conditions is necessary and sufficient for each of the other two (i.e., the three

conditions are equivalent):

a) The RE solution where agents have imperfect information is E-invertible (see Defi-

nition 2);

b) The square matrix JB is of full rank, and QA = F (I − B(JB)−1J) is a stable

matrix;

c) The RE solution where agents have imperfect information is A-invertible (see Defi-

nition 1).

This is a new result in the literature, which says that given the econometrician’s obser-

vations mE
t , if the RE solution to a model under agents’ perfect information is invertible,

it does not follow that with the same information set the RE solution to a model under

agents’ imperfect information is also invertible.8

8Fernandez-Villaverde et al. (2007) and Baxter et al. (2011) evaluate the invertibility of rational ex-

pectations models. The former have done this within the context of a general form of the saddle-path

solution of a rational expectations model which is equivalent to a set of vector VARMA processes. This

can encompass perfect or imperfect information for agents, but the authors focus only on general condi-

tions. The only information set mentioned in Fernandez-Villaverde et al. (2007) is that which is available

to the econometrician, but their general results are applicable no matter what is the information set of

private agents.
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2.5 Measures of Fundamentalness

A key issue in estimation is to be able to generate the theoretical responses to a funda-

mental shock. Levine et al. (2019) also examine measures of approximate fundamentalness

when invertibility fails for both perfect and imperfect information cases. More recently,

Beaudry et al. (2016) and Forni et al. (2017) have suggested ways of addressing whether

close approximations to the fundamental shocks can be retrieved from the VARs. The lat-

ter paper suggests a regression of the fundamental shocks on the residuals from the VAR

suitable for non-square systems where agents observe with noisy observations of news

shocks. Levine et al. (2019) provide a generalisation of Forni et al. (2017) and develop

measures of approximate fundamentalness for both perfect and imperfect information cases

based on the following measure of goodness of fit

FPIi = cov(εi,t)− cov(εi,t, ε̂t)cov(ε̂t)
−1cov(ε̂t, εi,t) = 1− (EB)′i(EP

EE′)−1(EB)i (18)

Fi corresponds to a measure of goodness of fit of the innovations residuals to the

fundamental shocks. In addition, the maximum eigenvalue of Fi then provides a measure

of overall non-fundamentalness obtained from the models. If m = k, and if Fi = 0 for all

i, then since FPI is by definition a positive definite matrix, it must be identically equal to

0. The more of the eigenvalues of F that are close to 0, the more one can trust that at

least some of the residuals are good approximations to the fundamental shocks.9

FPI = I −B′E′(EPEE′)−1EB (19)

FII = I −B′J ′(JPAJ ′)−1JPAE′(EZE′)−1EPAJ ′(JPAJ ′)−1JB (20)

where the diagonal terms then correspond to the terms Fi of (18). In (19) we note that

EPEE′ = cov(ε̂t), and (EB)i = cov(ε̂t, εi,t). Analogously to the perfect information case,

EZE′ = cov(ε̂t), with EPAJ ′(JPAJ ′)−1JB = cov(ε̂t, εt). Z satisfies the Riccati solution

corresponding to (A,PAJ ′(JPAJ ′)−1JPA, E)

Z = AZA′ −AZE′(EZE′)−1EZA′ + PAJ ′(JPAJ ′)−1JPA (21)

mE
t is a m × 1 is vector of observables for the econometrician10 and PE the Riccati

equation for the problem for the econometrician when estimating the parameters of the

system. The econometrician’s innovations representation follows the Fernandez-Villaverde

et al. (2007)’s ABCD state-space form and the Riccati solution for the econometrician’s

problem in also given in Section 3 of Levine et al. (2019). Analogously, we can apply these

measures of fundamentalness to the case when all variables are lagged

FII,lagged = cov(εt)− cov(εt, ε̂t−1)cov(ε̂t−1)−1cov(ε̂t−1, εt) (22)

9This provides how well the VAR residuals correspond to the fundamentals. See Levine et al. (2019),

Theorem 5.
10Later in Appendix we distinguish between mE

t and the vector of observations by the economic agents

in the model, mA
t .
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cov(ε̂t−1) is of course equal to cov(ε̂t) = EZE′, so the only change is to cov(ε̂t−1, εt),

which after a little effort can be derived as

cov(ε̂t−1, εt) = EAPAJ ′(JPAJ ′)−1JB − EAZE′(EZE′)−1EPAJ ′(JPAJ ′)−1JB

+EPAJ ′(JPAJ ′)−1JFB − EPAJ ′(JPAJ ′)−1JFPAJ ′(JPAJ ′)−1JB (23)

Then the goodness of fit FII,laggedi to the ith shock is just given by the ith main diagonal

term of FII,lagged. By construction, these measures of approximate fundamentalness when

invertibility fails for both perfect and imperfect information cases can be applied to possible

non-square systems, i.e., when considering models with the number of observables ≤ the

number of shocks (i.e., m ≤ k, k is the row dimension of the structural shocks). In

the case when m = k, the software below also reports BPI = EPEE′ − EBB′E′ and

BII = EZE′−EBB′E′, the Beaudry et al. (2016) measures, which are abbreviated to the

difference between the variances of the innovations and the fundamentals as in (19), (20)

and (23). In particular, the theoretical values of Fi (and Bi) and details of deriving these

fundamentalness measures are explained in Levine et al. (2019).

3 Current Implementation and Use

The software so far is designed to solve the model, perform simulation and generate impulse

response functions (IRFs) in Dynare. To use the package, download the zip-file latest

Dynare version 4.6.2 from click to download the latest Dynare and extract its content.

Also download the zip-file for this package from a GitHub/Dynare source repository (click

to download the Toolbox)11 and extract the folder which contains a sub-folder called

partial information, this paper in pdf format and seven example files that replicate the

results reported in this paper and its appendices.

The code is organised such that, for installation, the user simply copies and moves the

files from partial information to Dynare’s partial information subfolder, overwriting

its content.12 When this is done, the user simply runs the .mod file in Dynare as usual.

In order to do this, there are a number of syntax rules that the user is required to adopt

when writing the .mod file.

Section 4 describes estimation under imperfect information using Dynare. Bayesian

maximum likelihood estimation proceeds in the usual way for Dynare;13 the only change is

11Users can also view and download the Toolkit from this link to a Dropbox folder.
12The stable Dynare version of the source code is located in ...\dynare\4.x.y\matlab\partial_

information
13However, there is an area where the software differs from the standard Dynare software; in the latter,

one occasionally encounters an error message that the Hessian evaluated at the mode is not positive

definite. This is almost invariably the consequence of rounding error or ill-conditioning when computing the

second derivatives numerically. To resolve this, when the estimation software, in dynare estimation 1.m,

encounters such a problem (which turns out to be more prevalent under imperfect information because

there are considerably more stages involved in the computations and therefore increased scope for numerical

problems), the software uses the approximate Hessian (e.g. chol(inv(hessian csminwel))) from the

optimization subroutines – not however from the Nelder-Mead simplex algorithm as this does not utilize

the Hessian.

11

https://www.dynare.org/download/
https://git.dynare.org/Yang/dynare.git
https://git.dynare.org/Yang/dynare.git
https://www.dropbox.com/sh/bof0mobic3dh1e8/AADMkanjaLGGpWFXl0FHoZ83a?dl=0


the additional varobs command and the command options .usePartInfo=1; specified

at the beginning of the .mod file. Output has the identical format, including marginal

likelihood results.

Appendix M sets out the details for the installation instructions. The user only needs to

call this version of Dynare setup with the toolbox for all simulations and estimations with

perfect and imperfect information. The only differences are in the syntax rules explained

in Sections 3.1 and 5.

3.1 Dynare Syntax

The only changes that are required from standard Dynare syntax are (i) to declare in a

varobs command those variables that are observed – in the example below pi, y and r

can represent inflation, output and the nominal interest rate, respectively. If the varobs

statement is not present then all endogenous variables are assumed to be observed too

(identical to the case of perfect information); (ii) the inclusion of partial information

as an option in the stoch simul command. Thus the final two lines of the program are:

varobs pi;

stoch_simul(partial_information, irf=20) pi y r;

This option instructs stoch simul to use partial information (PCL) solver and pro-

duces all the second order imperfect information statistics conditional on the observed pi

that would normally be produced by Dynare, with one exception: since the covariance

matrix of the variables is a nonlinear function of the covariance matrix of the shocks, it is

impossible to generate a variance decomposition.

3.2 Invertibility (Rank) Condition

Before the computation of first and second order theoretical moments (variance decom-

positions are omitted), the PCL solver also checks and reports a sufficient condition for

imperfect information to be equivalent to perfect information when number of observables

= number of shocks (a necessary condition). From (16) it requires EPAJ ′(JPAJ ′)−1 to

be of full rank (necessary condition) and that J is of full row rank (sufficient condition),

then imperfect information is equivalent to perfect information, and the system is then

invertible.14 If only the latter is rank-deficient, the Dynare output automatically generates

a message

THE INVERTIBILITY CONDITION IS NOT SATISFIED:

no. of measurements = no. of shocks, but cannot mimic perfect information.

14In addition, the Riccati equation (17) is solved using the subroutine dare.m, that is located in MAT-

LAB’s Control System Toolbox.
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This implies that the VARMA RE solution of the model is not invertible and no longer

has a VAR reduced-form representation. For systems that are otherwise invertible under

imperfect information, the simulation output in Dynare generates:

--- THE INVERTIBILITY CONDITION IS SATISFIED ---

no. of measurements = no. of shocks,

imperfect information is equivalent to perfect information

3.3 A Simple Application

Before proceeding to our seven examples provided in the toolkit we pick out the RBC

model of a decentralized economy (rbc invertibility.mod) used in Examples 2 and 3.15

With two shock processes, At and Gt, the following combinations of two observables result

in no difference between perfect and imperfect solution procedures (i.e. the invertibility

condition holds): (Yt, Ct), (Yt, It), (It, Ht) and (It,Wt). On the other hand, the following

combinations do generate a difference: (Yt, Rt), (Wt, Rt) and (Ct, Rt), when the rank

condition fails. Figure 1 below plots the simulated deterministic IRFs based on different

combinations of the observables. As noted, the Dynare output generates the additional

invertibility message in the latter case:

SOLUTION UNDER IMPERFECT INFORMATION

OBSERVED VARIABLES Y, R

--- THE INVERTIBILITY CONDITION IS NOT SATISFIED ---

no. of measurements = no. of shocks,

but imperfect information cannot mimic perfect information

THEORETICAL MOMENTS

VARIABLE STD. DEV. VARIANCE

Y 1.1930382312 1.4233402212

C 1.6517040243 2.7281261840

I 5.1967903060 27.0066294846

15More details and analysis can be found from and Appendix D below, and in Levine et al. (2019).

13



5 10 15 20

Quarters

0

0.2

0.4

0.6

0.8

1
%

 d
ev

 fr
om

 S
S

Output            

5 10 15 20

Quarters

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

%
 d

ev
 fr

om
 S

S

Consumption       

5 10 15 20

Quarters

-1

0

1

2

3

4

%
 d

ev
 fr

om
 S

S

Investment        

5 10 15 20

Quarters

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

%
 d

ev
 fr

om
 S

S

Hours worked      

5 10 15 20

Quarters

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
%

 d
ev

 fr
om

 S
S

Real wage         

5 10 15 20

Quarters

-5

0

5

10

15

20

%
 d

ev
 fr

om
 S

S

10-3 Real interest rate

RBC-perfect Information
RBC-imperfect information (Y,I)
RBC-imperfect information (Y,R)

(a) Technology Shock: At

5 10 15 20

Quarters

-0.06

-0.04

-0.02

0

0.02

%
 d

ev
 fr

om
 S

S

Output            

5 10 15 20

Quarters

-0.04

-0.03

-0.02

-0.01

0

0.01

%
 d

ev
 fr

om
 S

S

Consumption       

5 10 15 20

Quarters

-1

-0.8

-0.6

-0.4

-0.2

0

%
 d

ev
 fr

om
 S

S

Investment        

5 10 15 20

Quarters

-0.04

-0.02

0

0.02

0.04

%
 d

ev
 fr

om
 S

S

Hours worked      

5 10 15 20

Quarters

-0.04

-0.03

-0.02

-0.01

0

%
 d

ev
 fr

om
 S

S

Real wage         

5 10 15 20

Quarters

0

0.5

1

1.5

2

2.5

%
 d

ev
 fr

om
 S

S

10-3 Real interest rate

RBC-perfect Information
RBC-imperfect information (Y,I)
RBC-imperfect information (Y,R)

(b) Government Spending Shock: Gt

Figure 1: Impulse Response Functions for RBC: Technology and Fiscal Shocks

Notes: Each panel plots the mean response corresponding a positive one standard deviation of the shock’s innovation.

Each response is for a 20 period (5 years) horizon and is level deviation of a variable from its steady-state value in

the RBC model. Observations Yt, Rt (dashed red) lead to a failure of the rank condition so we cannot recover the

exact values of the shocks. Observations Yt, It (dashdot blue) show an example of matching IRFs for a case when

imperfect information is equal to perfect information.
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4 Estimation under Imperfect Information Using Dynare

Internally, the program reflects the fact that the likelihood function for a given draw

of parameters depends on the information set. To evaluate the likelihood for a given

set of parameters (prior to multiplying by their prior probabilities), the econometrician

takes the equations (13)–(16) as representing the dynamics of the system under imperfect

information.

It is a standard result for normally distributed observations that apart from constants,

we can write the likelihood function as

2 lnL = −Tr ln(2π)−
T∑
t=1

[
ln det(cov(ε̂t)) + ε̂′t(cov(ε̂t))

−1ε̂t
]

(24)

where the innovations process ε̂t ≡ mE
t −Et−1m

E
t , T is the number of time periods and r

is the dimension of mE
t .

In order to obtain Et−1mt, we need to solve the appropriate filtering problem. Defining

v̄t = s̄1t, with initial value v̄0 = 0, the Kalman filter updates are given by

v̄t+1 = Av̄t +AZtE
′(EZtE

′)−1ε̂t ε̂t ≡ mE
t − Ev̄t

Zt+1 = AZtA
′ −AZtE′(EZtE′)−1EZtA

′ + PAJ ′(JPAJ ′)−1JPA (25)

the latter being a time-dependent Riccati equation. The initial value of Zt is given by

Z0 = AZ0A
′ + PAJ ′(JPAJ ′)−1JPA (26)

and PA = cov(z̄0), the Riccati matrix defined earlier. Finally, cov(ε̂t) = EZtE
′.

An interesting result emerges from examination of (25). We note that the rank k of the

positive semi-definite matrix PAJ ′(JPAJ ′)−1JPA is ≤ rank(J), where we recall that the

number of rows of K is the number of measurements at each period. Thus the updating

equations are in effect being driven by a set of k shocks, which yields the following:

Theorem 3. If rank(J) < the number of observables, then the system under AII is

over-identified, or the likelihood function is singular. If this is the case, then we have to

exclude a subset of the measurements in order to estimate the system, or to incorporate

measurement error into the system.16

5 The .mod File and Syntax

For versions 4.2.x and following, the only change to the .mod file that is required is to

declare:

options_.usePartInfo=1;

16See, for Proof of Theorem, Levine et al. (2019): Theorem 6.
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Description: This triggers the partial information estimation software, and must be used

in conjunction with the varobs command that lists the variables that agents observe.

Note that at the moment this is only suitable for estimation under information symmetry

as the observable set declared after varobs VARIABLE NAME...; is shared by agents and

econometrician, where the variables in varobs are those that are members of the informa-

tion set. If, for example, inflation is observed with a lag, then a new variable piL=pi(-1)

must be defined, and then piL is listed in the varobs command. If we use observations

with a lag and the information set for lag 1 case at time t is It = {Yt−1,Πt−1, Rn,t}.

Example.mod:

options_.usePartInfo = 1;

...

piL = pi(-1);

yL = y(-1);

...

varobs piL yL r;

estimation(datafile=data, OPTIONS, ...);

In the future version of Dynare, the partial information estimation should be trig-

gered by the keyword partial information in the estimation command and varobs

VARIABLE NAME...; declares the common set of observed variables.

Same as in moment computations, Kalman filtering and likelihood evaluation for par-

tial information estimation requires a time-dependent solution of the Riccati equation in

(25), where PA is given by (17), to be calculated iteratively using MATLAB’s built-in

dare.m which requires the Control System Toolbox. Unlike the procedure described in In-

vertibility/Rank section, this part of software does not report the rank condition (that is,

the condition defined earlier that shows whether equal numbers of shocks and observables

led to an equivalence between perfect and imperfect information17).

6 Examples and Results

The partial information Kalman filter based estimation and DSGE-VAR estimation pro-

duce new empirical results in the literature. Parameter estimates under AII for DSGE

models are often not very different from parameter estimates assuming perfect information

on the part of agents. However, because of the endogenous persistence effects of AII,18

17The same rank condition is used to tell whether the model under imperfect information is over-identified

above.
18There is more persistence in the model, which is generated endogenously by learning through Kalman

Filter forecasts of zt,t and xt,t with imperfect information. By construction, the matrices D and F represent
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IRFs under AII tend to match those from VAR estimation better than do IRFs under

perfect information. One would therefore expect that on balance second moments tend to

be better under AII, leading a better model fit (less misspecified measured by a DSGE-

VAR benchmark) because all these moments are summarized as described earlier via the

likelihood function. For further explanation and more information on the empirical anal-

ysis, see, Levine et al. (2012) estimating various specifications of a canonical NK-DSGE

model assuming AII, and Cantore et al. (2015) for an empirical application with slightly

modified versions of an industry standard DSGE model (Smets and Wouters (2007)).

The following example working models are run under imperfect information, compared

with the conventional perfect information output, and using the latest Dynare version

4.6.2. Examples 1 and 7 in their original form are available for download from the Website

(DYNARE: www.dynare.org) and are briefly described in Appendices C and E. Model 2

(for Examples 2 and 3) is set out and reported in Levine et al. (2019) and Appendix D

presents the functional forms and equilibrium conditions used in this paper. Example 5

is built on Smets and Wouters (2007)’s own code which is available at www.aeaweb.org

and again, for convenience, we remind the reader of the linearized version of equilibrium

conditions in Appendix G below. To sum up,

• Example 1 in Section 6.1: Fernandez-Villaverde basic non-linear RBC model in the

form of the social planner’s problem with a labour-augmenting technology shock

(file name: fvrbc II.mod and fvrbc II YL.mod)

• Examples 2 and 3 in Sections 6.2 and 6.3 respectively: Non-linear RBC model of a

decentralized economy with two shocks set out and described in Appendix D of this

paper and in Levine et al. (2019)

(file name: rbc invertibility II.mod)

• Example 4 in Section 6.4: Estimation and comparison for a small-scale non-linear

NK model with sticky prices and flexi wages and with different numbers (3 and 4)

of observable variables

(file name: NK 3 obs.mod and NK 4 obs.mod)

• Example 5 in Section 6.5: The Smets and Wouters (2007) model in linearized form

and modified versions of the model adding an inflation target shock and measurement

errors to the observations

(file name: sw07 invert.mod, sw07 invert inf.mod and sw07 invert inf me.mod)

• Example 6 in Section 6.6: Estimation and comparison of different versions of the

linearized Smets and Wouters (2007) model

(file name: sw07est II.mod and sw07est inf me II.mod)

• Example 7 in Section 6.7: Estimation of a standard CIA non-linear model from

Schorfheide (2000)

(file name: fs2000 II.mod and fs2000 invert II.mod)

pure endogenous persistence mechanisms independent of Kalman Filter learning: Levine et al. (2019)

provide more explanations and a theoretical example to show this effect.

17
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6.1 Example 1: Invertibility of Social Planner’s RBC Model

The following syntax rule first triggers the imperfect information solution and simulation,

and produces the second order imperfect information statistics conditional on observing

output (Yt) in the RBC model:

alpha = 0.33;

beta = 0.99;

delta = 0.023;

psi = 1.75;

rho = 0.95;

sigma = (0.007/(1-alpha));

shocks;

var e = sigma^2;

end;

varobs Y;

stoch_simul(partial_information, OPTIONS, ...);

With one shock in the system, the technology evolution, and one observable under

AII (Yt), the computation results in no difference between perfect and imperfect solution

procedures. This first example also shows that, when converting the AII state space to the

Blanchard-Kahn form, the non-singularity condition holds for the C2 matrix so the itera-

tive reduction algorithm described in Appendix A.2 is not required in this case (Appendix

L.1 reports the further Dynare output on measures of the invertibility and fundamental-

ness checks). The output produced below exactly replicates that of the simulation using

the original fvrbc.mod:

STEADY-STATE RESULTS:

Y 1.0301

C 0.793902

K 10.2696

I 0.236201

H 0.331892

z 0

--- Transformation to Blanchard-Kahn Form ---

Obtain the singular value decomposition of A0

C2 is invertible: go to final stage of conversion

18



SOLUTION UNDER PARTIAL INFORMATION

OBSERVED VARIABLES

Y

--- THE INVERTIBILITY CONDITION IS SATISFIED ---

no. of measurements = no. of shocks,

imperfect information is equivalent to perfect information

THEORETICAL MOMENTS

VARIABLE STD. DEV. VARIANCE

Y 0.0387828201 0.0015041071

C 0.0218420076 0.0004770733

K 0.3902171827 0.1522694497

I 0.0214464815 0.0004599516

H 0.0039308552 0.0000154516

z 0.0334596142 0.0011195458

If observations are made with a lag this always leads to a failure of the rank condition.

This is confirmed by Table 1 where JB is not invertible despite J being of full rank

(this also applies to EB and E in the case of perfect information). Recall Theorem 2

and Lemma 1. In rbc II YL.mod, YL = Y(-1) defines the lagged output observed by the

agents under AII:

varobs YL;

stoch_simul(partial_information, OPTIONS, ...);

As expected, the invertibility condition is no longer satisfied (the additional output is

recorded in Appendix L.2) and the imperfect information results are now very different to

the perfect information case:

SOLUTION UNDER PARTIAL INFORMATION

OBSERVED VARIABLES

YL

--- THE INVERTIBILITY CONDITION IS NOT SATISFIED ---
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no. of measurements = no. of shocks,

but imperfect information cannot mimic perfect information

THEORETICAL MOMENTS

VARIABLE STD. DEV. VARIANCE

Y 0.0397194642 0.0015776358

C 0.0222620871 0.0004956005

K 0.4012093442 0.1609689378

I 0.0233310511 0.0005443379

H 0.0044545383 0.0000198429

z 0.0334596142 0.0011195458

YL 0.0397194642 0.0015776358

Finally, Figure 2 below shows the deterministic IRFs in response to an unanticipated

labour technology shock et for all the three simulated models: fvrbc.mod, fvrbc II.mod

and fvrbc II YL.mod. There are exactly matching IRFs for the former two, the perfect

information and AII models, as expected, but the failure of the rank condition indicates

the different IRFs as an example for such a case with lagged output observed by the agents

(these are the dashdot blue responses).
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Figure 2: Impulse Responses to a Labour Technology Shock et (Example 1)

6.2 Example 2: Invertibility of Decentralized Economy RBC Model

Example 2 considers the RBC model in Section 3.2 and in Appendix D for a decentral-

ized economy. With two shock processes, At and Gt, the following combinations of two

20



observables are reported in Table 1 that summarises 4 different scenarios. As noted, if ob-

servations are made with a lag this obviously always leads to a failure of the rank condition

as shown in the last row of Table 1 (i.e. EB is no longer of full rank). The cases in the first

row are combinations of two observables (from a set of observables: (Yt, Ct, It, Ht,Wt, Rt))

result in no difference between perfect and imperfect information solution procedures and

exactly replicate the results that would normally be produced by Dynare without any

informational assumptions.19

Combinations of observables and m = k Theorem 2 Description

(where EB is of full rank)

(Yt, Ct), (Yt, Ht), (Yt, It) J is of full (row) rank System is invertible;

(Yt,Wt), (Ct, Ht), (Ct,Wt) JB is of full (row) rank AII is equiv. to API

(It, Ht), (It,Wt), (Ht,Wt) QA is stable

(Yt, Rt), (Ct, Rt), (It, Rt) J is rank deficient System is not invertible;

(Wt, Rt), (Ht, Rt) JB is rank deficient AII is not equiv. to API

(Ct, It) J , JB of full (row) rank System is not invertible;

QA is not stable AII is not equiv. to API

Lagged observations J is of full (row) rank System is not invertible;

(where EB is rank deficient) JB is rank deficient AII is not equiv. to API

Table 1: Summary of Invertibility (Rank) Condition for RBC (Example 2)

The most common non-obvious reason for AII not to be equivalent to API is associated

with the second row in the table, where J is not of full row rank when EB is invertible.20

Recall that Theorem 2 establishes an extra condition, given that models under perfect

information (with API) are E-invertible, that the square matrix JB is of full rank, and

QA = F (I − B(JB)−1J) is a stable matrix (has all eigenvalues inside the unit circle),

for AII to be E-invertible too. In the third row of Table 1, we report the only case with

(Ct, It) when this eigenvalue condition for AII is not satisfied, despite of J being of full

rank. Full details of the invertibility check including the additional eigenvalue condition

based on Theorem 2 are reported below in Table 2 and Appendix L.

We now consider a simplified non-linear RBC model without investment adjustment

costs and variable hours (i.e. Ht = H̄ = 1 and % = 0), in line with the linearized

‘stochastic growth’ model of Campbell (1994), with a single observable, the real interest

rate RK,t. The model is a special case of the full RBC model (set out in Appendix D). In

linearized form the structure of the model is described in Section 5 of Levine et al. (2019)

as a simple analytical example that demonstrates suitable combinations of parameters

α and σ for which E-invertibility holds based on the root of the MA component of the

model (Figure 1 of Levine et al. (2019)). In this exercise, we want to first show there is

a complete agreement between the numerical and analytical results with RK,t observable

and one shock presented in Section 5 and Table 2 in Levine et al. (2019), respectively.

19Note also that, as explained, if JB(EB) is not invertible despite J(E) being of full rank, then this

implies that the imperfect information set in effect contains a lagged variable (and API is not E-invertible

either).
20See, for more details, Corollary 2.1 and Corollary 2.2 in Levine et al. (2019).
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Figure 3 below shows the E- and A-invertibility regions for this RBC model with RK,t
the only observable and one shock, At. For E-invertibility under API, it requires the risk

parameter σc � 1 and this completely agrees with the numerical results reported in Table

2 in Levine et al. (2019). This is also consistent with the analytical results reported on

the E-invertibility for the RE solution Campbell (1994)’s RBC model.
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Figure 3: E- and A-invertibility Regions over Parameters σc and α

Notes: This shows the E- and A-invertibility regions for the linearized model of Campbell (1994) set out as an

analytical example in Levine et al. (2019), and a simplified non-linear RBC model presented in Table 2 of Levine

et al. (2019). In line with Figure 1 of Levine et al. (2019), we choose σc ∈ [0.1, 2] and α ∈ [0.5, 0.8].

In addition, this second example also shows that using an example of a standard RE

model when the invertibility condition fails under AII this requires the iterative reduction

algorithm when converting the AII state space to the Blanchard-Kahn form described in

Appendix B in Levine et al. (2019) and in Appendix A.2 below. This procedure is required

to yield a suitable reduced-form system which is to be processed via the Kalman filter to

obtain the likelihood function for estimation purposes. At the stage when the calibrated

model reports that C2 + C6 is not invertible, where C6 is the matrix associated with st,t
(and st defines the backward-looking states in the system), Stage 4 in Appendix A.2 is

now required to be iterated to reduce the dimension of the forward-looking matrices by a

finite number of times and increase the dimension of the backward-looking Ci matrices by

the same amount, until C2 + C6 is non-singular. In particular, the following algorithm is

implemented for the RBC example below:

1. Obtain the singular value decomposition for A0 and partitions of A0 from (A.3);

2. Transform (A.3) to forward-looking subsystem and and re-define forward-looking

system matrices Fi, i = 1, ..., 5 according to Stage 2 in Appendix A.2;

3. Transform (A.3) to backward-looking subsystem and and re-define backward-looking
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system matrices Ci, i = 1, ..., 5 according to Stage 3 in Appendix A.2;

4. The algorithm reports that C2 + C6 is not invertible, Stage 4 is now required to

be iterated once to reduce the dimension of the forward-looking F matrices by 1

and increase the dimension of the backward-looking C matrices by 1 (this is done

through the reduction procedure (A.13)–(A.16)). Re-define C2, C2 +C6 using (A.16)

which is now of full rank;21

5. Generate C−1
2 and (C2 + C6)−1, proceed to the following stages, and we have the

required Blanchard-Kahn form set out by (A.27) and (A.36).

For example, when the agents in the RBC model observe (Yt, Rt) with AII, the program

now reports a Singular matrix C2 (where C2 is the general term for C2 + C6), as well

as the failed rank condition (due to the rank deficiency of JB and J):

--- Transformation to Blanchard-Kahn Form ---

Obtain the singular value decomposition of A0

Singular matrix C2 ...

Start iterative reduction procedure ...

Invertibility and return to conversion

SOLUTION UNDER PARTIAL INFORMATION

OBSERVED VARIABLES

YY

RR

--- THE INVERTIBILITY CONDITION IS NOT SATISFIED ---

no. of measurements = no. of shocks,

but imperfect information cannot mimic perfect information

THEORETICAL MOMENTS

VARIABLE STD. DEV. VARIANCE

YY 1.1930382312 1.4233402212

CC 1.6517040243 2.7281261840

II 5.1967903060 27.0066294846

6.3 Example 3: Approximate Fundamentalness of Example 2 RBC Model

Before moving to estimation, we want to assess if the models are able to generate the theo-

retical responses to a fundamental shock. We now consider and implement the multivariate

21As a general case, some models may require this stage to be repeated up to a finite number of times

until C2 + C6 is non-singular.
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measure of goodness of fit set out in Section 2. We compare numerically the perfect and

imperfect information measures of the fit of the innovations to the fundamentals for Model

Example 2. The maximum eigenvalue provides a measure of overall non-fundamentalness.

In addition, any zero eigenvalues provide information as to which fundamental shocks can

be satisfactorily identified (i.e. evidence of partial sufficiency of individual shocks in the

system). Table 2 below checks the difference between perfect and imperfect information

in terms of identifying the fundamentals from the perspective of VARs via the eigenvalues

of FPI and FII , assuming that the RBC Model is the DGP.

Combinations of observables (m ≤ k), Theorem 2, Eigenvalues of FPI Diagonal values of FPI

Lemma 1 Corollary 2.1 in Levine et al. (2019) Eigenvalues of FII Diagonal values of FII

(Yt, Ct), (Yt, Ht), (Yt, It) rank(E)=rank(EB)=2 FPI ≡ FII = 0

(Yt,Wt), (Ct, Ht), (Ct,Wt) rank(J)=rank(JB)=2 eig(FPI) ≡ eig(FII)
(It, Ht), (It,Wt), (Ht,Wt) A(I −B(EB)−1E) is stable = [0, 0]

QA is stable

Cases when AII is not equivalent to API

Rank condition failure for AII

(Yt, Rt), E, EB are of full rank J ,JB are rank deficient (=1) eig(FPI) = [0, 0] FPIi = [0, 0]

A(I −B(EB)−1E) is stable QA is non-existent eig(FII) = [0.1186, 1] FIIi = [0.1190, 0.9996]

(Ct, Rt), E, EB are of full rank J ,JB are rank deficient (=1) eig(FPI) = [0, 0] FPIi = [0, 0]

A(I −B(EB)−1E) is stable QA is non-existent eig(FII) = [0.0292, 1] FIIi = [0.0345, 0.9946]

(It, Rt), E, EB are of full rank J ,JB are rank deficient (=1) eig(FPI) = [0, 0] FPIi = [0, 0]

A(I −B(EB)−1E) is stable QA is non-existent eig(FII) = [0.0018, 1] FIIi = [0.0166, 0.9852]

(Wt, Rt), E, EB are of full rank J ,JB are rank deficient (=1) eig(FPI) = [0, 0] FPIi = [0, 0]

A(I −B(EB)−1E) is stable QA is non-existent eig(FII) = [0.5169, 1] FIIi = [0.5195, 0.9975]

(Ht, Rt), E, EB are of full rank J ,JB are rank deficient (=1) eig(FPI) = [0, 0.6593] FPIi = [0.0057, 0.6597]

A(I −B(EB)−1E) is not stable QA is non-existent eig(FII) = [0.0137, 1] FIIi = [0.0149, 0.9988]

Eigenvalue condition failure for AII

(Ct, It), E, EB are of full rank J ,JB are of full rank (=2) eig(FPI) = [0, 0] FPIi = [0, 0]

A(I −B(EB)−1E) is stable QA is not stable eig(FII) = [0, 0.9167] FIIi = [0.0217, 0.8950]

One observation: rank(E)=rank(J)=1

(Ct), E, EB are rank deficient (=1) J ,JB are rank deficient (=1) eig(FPI) = [0, 1] FPIi = [0.0214, 0.9786]

A(I −B(EB)−1E) is non-existent QA is non-existent eig(FII) = [0.0901, 1] FIIi = [0.0952, 0.9950]

Lagged observations: rank(E)=rank(J)=2

(Yt−1, Ct−1), EB are rank deficient (=0) JB are rank deficient (=0) eig(FPI) = [1, 1] FPIi = [1, 1]

A(I −B(EB)−1E) is non-existent QA is non-existent eig(FII) = [0.9967, 0.7620] FIIi = [0.9961, 0.7626]

Table 2: Summary of Non-fundamentalness Measures for RBC (Example 3)

Notes: Order of shocks: At, Gt. See, for a complete set of results, Levine et al. (2019). See also, for the corresponding

Dynare output for the cases with (Yt, Ct), (Yt, Rt), (Ht, Rt), (Ct, It), (Ct) and (Yt−1, Ct−1), in Appendices L.3–L.8.

For the case of the system being invertible, and EB is of full rank, the solutions of the

Riccati equation (specified in Levine et al. (2019) for S and by (17) for PA) are S = PA =

BB′ and, from which it follows that FPI = FII = 0, and the two processes are perfectly

correlated across the perfect information and AII cases. For the case of non-invertibility,

the further is FII from 0, the worse is the fit. Examples (Yt, Rt), (Ct, Rt), (It, Rt), (Wt, Rt)

in the table show the cases while the perfect information solution is invertible (or there is

complete fundamentalness, i.e., FPI = 0) the imperfect information counterparts are not

(i.e. FII > 0 in the positive definite sense). The only way to decide the overall fit of the

RBC model approximating the fundamentals by the innovations process is to determine the

maximum eigenvalue of FII . In Table 2, the fit of the innovations to the structural shocks

under AII is very poor as the eigenvalues are all far from 0, when JB is not of full row rank

and the eigenvalue condition fails. The exceptions are for some cases when the symmetric
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limited information set is contemporaneous, in which case, the first eigenvalue being very

close to 0 (e.g. with (It, Rt) and (Ct, It)) indicates partial fundamentalness or that one of

the the two shocks may be satisfactorily identified in this model. When there are large

differences in the impulse response functions under imperfect and perfect information, non-

fundamentalness may be quantitatively severe, indeed according to Theorem 4 in Levine

et al. (2019), the simulation appears to indicate that this may be a major issue.

The last column of Table 2 reports the diagonal values of the (non-zero) FPI and

FII matrices. These tell us explicitly about the goodness of fit of the residuals to the

structural shocks (At and Gt). Any zero values reported in the diagonal matrices indicate

an exact fit for the corresponding individual shocks in the models. Clearly, the goodness

of fit deteriorates when switching from API to AII, and as we shall show below, the

deterioration is more significant depending on the size of the model and the number of

shocks included.22

The procedure that computes the ‘F Test’ for the multivariate measures of correlation

requires calling an additional .m file in the directory, and reports Table 2, for different

combinations of observables. For example for Yt, Rt:

varobs YY RR;

stoch_simul(partial_information,irf=0);

This above command produces Appendix L.4, where the program checks the Theorem

2 conditions, the rank of the relevant matrices, the eigenvalue stability conditions and the

fundamentalness condition in the form of matrices FPI and F II :

Measures of Invertibility and Fundamentalness

Matrix E EB J JB

Rank 2 2 1 1

The Eigenvalue Condition for PI is satisfied

MATRIX F WITH PI

Shocks epsA epsG

epsA -0.0000 0.0000

epsG 0.0000 -0.0000

Shocks epsA epsG

Eigen 0.0000 0.0000

MATRIX F WITH II

22This is shown by the simulated Smets and Wouters (2007) models and a further illustrative exercise

on the RBC model with a news shock can be found in Appendix I of Levine et al. (2019).
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Shocks epsA epsG

epsA 0.1190 0.0189

epsG 0.0189 0.9996

Shocks epsA epsG

Eigen 0.1186 1.0000

If any of the eigenvalue conditions in Theorem 2 fails, the program displays a message:

The Eigenvalue Condition is not satisfied. The sixth row of Table 2 and Appendix

L.5 present an interesting special case with observable set (Ht, Rt), where API is not E-

invertible and is not equivalent to AII when m = k, since, even though EB is of full rank

A
(
I −B(EB)−1E

)
is not a stable matrix.

Now it is important for us to understand, from this example, why where EB is of

full rank, but J and JB are not, thus AII becomes E-non-invertible? Note that the AII

observable set in this case is (Yt, Rt), then it is clear that what is causing J to be rank-

deficient is the inclusion of Rt observed by the agents. To understand this, we recall

that in (15) and (16) J and JB capture the contemporaneous impact of shocks on the

observed variables. We have M1 and M2 which are observation mapping matrices so the

observations under AII can be written in the form

mA
t =

[
M1 M2

]
εt
st−1

xt−1

xt

+
[
M3 M4

]
εt,t
st−1,t

xt−1,t

xt,t

 (27)

Since J ≡ M1 −M2G
−1
22 G21 and B captures the direct impact of εt in (A.27). From the

JB matrix, it is clear that the model’s assumption implies that Rt in the RBC model

should not respond immediately to either of the two shocks. This is because, in the model

used in Appendix D, there is no interest rate rule and the agents are assumed to observe,

at time t, only (Yt, Rt) and (At, Gt). This is also the reason, when assuming Rt as part of

agents information set, the interest rate is left unchanged by either of the two shocks via

the measurement system. The matrix capturing the immediate impact of shocks on the

observed variables must always be rank-deficient with (Yt, Rt), (Ct, Rt), (It, Rt), (Wt, Rt)

and (Ht, Rt) under AII.23

6.4 Example 4: Estimation of a Small-scale NK Model

We extend the RBC model in Appendix D with sticky prices but flexible wages which

will eventually lead to the Smets and Wouters (2007)’s setup in stages.24 This is now an

NK model with Calvo price-setting, with capital, costs of investment, consumption habit

23Corollary 2.2 in Levine et al. (2019) provides some more technical explanations for this result.
24The Smets and Wouters (2007)’s model we present in this paper has sticky wages and adds two further

features, namely, capacity utilization and a fixed cost of converting the wholesale into a retail good.
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and price indexation, and four shocks: shocks to the monetary policy rule, to labour pro-

ductivity, to government spending and to price mark up. As is standard in NK models,

Appendix F sets out the supply side of the economy which consists of the final and in-

termediate goods producers. Also in Appendix F, we briefly discuss price dispersion that

captures the distortion caused by sticky prices. In this exercise, we also include a form of

indexation to previous period market price. The linearized full NK model for estimation

can be found in Appendix F.

We estimate the NK model and provide results from posterior optimization and provide

posterior distribution from posterior simulation. We use the same data set as in Smets

and Wouters (2007) in first difference at quarterly frequency. Namely, these observable

variables are the log difference of real GDP, the log difference of real consumption, the log

difference of the GDP deflator and the federal funds rate. The sample period is 1984:1-

2008:2 which starts at observation 143 in the data file. There is a pre-sample period of 4

quarters so the observations actually used for the estimation go from 147:245.

We estimate the linear NK model (Appendix F) with 3 and 4 observables, respectively,

and assuming in turn API and AII. The corresponding measurement equations for the 3

observables are ∆(logGDPt) ∗ 100

log(GDPDEFt/GDPDEFt−1) ∗ 100

FEDFUNDSt/4 ∗ 100

 =

 Yt − Yt−1 + trend growth

Πt + constantΠ

Rn,t + constantRn


(28)

Note that the quarterly trend growth rate in real GDP; the quarterly steady-state inflation

rate and the steady-state nominal interest rate are estimated together with the other

parameters.

The following Tables 3–5 report the computed likelihood (log posterior), marginal log

data density (Laplace approximation), marginal log data density (Modified harmonic mean

(MHM) estimator) and the Bayes factors (BF) compared across the estimated NK models

under perfect and imperfect information, respectively. Table 5 summarises the moments

analysis based on the estimated models.

NK PI (4 obs) NK II (4 obs) LL diff

likelihood (log posterior) -114.021906 -114.021906 0

log data density (laplace) -154.701904 -154.701924 -2E-05

computing time 0h00m55s 0h02m22s

Table 3: Log Posterior and Data Density Comparison (NK 4 Observables)

Notes: The two .mod file names are NK PI 4 obs.mod and NK II 4 obs.mod. The posterior mode (and log data density

[Laplace approximation]) are estimated using mode compute=4. Invertibility and fundamentalness checks satisfied

(based on the mode). periods=1000 for simulating artificial data using the mode (identical data between API and

AII).

In Table 3, we report the results from first stage Bayesian log posterior estimation.

As expected, for the case when the number of shocks equals the number of observables,
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NK PI (3 obs) NK II (3 obs) LL diff BF

log data density (laplace) -67.765791 -54.936186 12.829605 373101.2091

log data density (MHM) -69.368172 -56.469285 12.898887 399866.8917

computing time 0h39m07s 2h57m59s

Table 4: Log Posterior and Data Density Comparison (NK 3 Observables)

Notes: The two .mod file names are NK PI 3 obs mh.mod and NK II 3 obs mh.mod; The mode (and log data density

[Laplace approximation]) are estimated using mode compute=6. We first use the prior mean to start the mode-

optimizer, then use the computed mode as initial conditions and combinations of mode compute=4,5,6 for checking

for robustness. We also check the mode solutions using the alternative solvers including mode compute=7,8 to ensure

no further improvement is possible. Then a sample from the posterior distribution is obtained with the Metropolis-

Hastings (MH) algorithm using the inverse Hessian at the estimated posterior mode as the covariance matrix of

the jumping distribution. The covariance matrix needs to be adjusted in order to obtain reasonable acceptance

rates which are very similar across the chains (28% for both PI and II). Two parallel Markov chains of 250,000

runs each are run from the posterior kernel for the MH, sufficient to ensure convergence according to the indicators

recommended by Brooks and Gelman (1998). The first 50,000 draws from each chain have been discarded.

the likelihood values of the parameters should be same, which it is, as is the value of

the marginal likelihood. For the case of just three observables, having the additional

shock leads to a better fit, under the assumption of imperfect information, as implied by

the likelihood values and marginal data densities. To verify this, we also summarize some

second order moments and present graphs of the autocorrelations of the observed variables

below.

As can be seen, standard deviations are much better under AII than under API for

inflation and the interest rate, while AII predicts the wrong sign for the correlations. As

regards autocorrelations, AII is better for GDP and for inflation, generating the model per-

sistence and matching the data correlogram well with longer horizons. Figure 4 depicts the

estimated ACFs from the data and model. However the likelihood function encompasses

all second order moments, so one would need a further analysis of all cross-autocorrelations

to establish exactly where AII becomes noticeably superior to API.

Table 6 below reveals an interesting result with the standard NK model. Based on the

estimated model, the fiscal shock policy seems to be approximately fundamental using the

FPI matrix, but not so using the appropriate F II one. This suggests that the differences

between IRFs for API and AII, from the perspective of identifying VARs, should be

particularly noticeable. The estimated posterior IRFs are plotted in Appendix J, where

we see that AII induces endogenous, hump-shaped persistence, when agents do not observe

the shocks directly and have to use their observations and the Kalman filter to form an

optimal forecasting rule.

6.5 Example 5: Approximate Fundamentalness of Smets and Wouters

(2007)

We run our simulation exercise again using a version of Smets and Wouters (2007) model

(henceforth SW). There are seven structural shocks in SW. The model has five AR(1)

processes, for the shocks on government spending, technology, preference, investment spe-
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Observable dlGDPt dlDEFt INTt

Standard Deviation (in %)

Data 0.5432 0.2392 0.5952

NK PI (3 obs) 0.6067 0.3291 0.3944

NK II (3 obs) 0.6411 0.2940 0.4270

Cross-correlation with dlGDPt

Data 1.0000 -0.2013 0.0323

NK PI (3 obs) 1.0000 0.0120 -0.0968

NK II (3 obs) 1.0000 0.0453 -0.0493

Autocorrelations (order=1)

Data 0.1526 0.5364 0.9462

NK PI (3 obs) -0.0179 0.6227 0.9022

NK II (3 obs) 0.0607 0.4741 0.9371

Table 5: Data and Model Moments for NK Model

NK Model (3 obs)

Theorem 2 E, EB J , JB are rank deficient (=3)

Corollary 2.1 A(I −B(EB)−1E) is non-existent

in Levine et al. (2019) QA is non-existent

Goodness of Fit FPI(4×4) FII(4×4)

Eigenvalues


1

0.0013

0

0




1

0.0410

0

0



Diagonal values


0.0012

0.9988

0

0.0013




0.0393

0.9998

0

0.0019


Table 6: Fundamentalness and Invertibility Measures for Estimated NK (Ex-

ample 4)

Notes: Order of shocks: technology, government spending, monetary policy and price markup. The simulation

results in this table are based on the posterior estimates of the NK model for the parameters and shocks.
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cific, monetary policy, and two ARMA(1,1) processes, for price and wage markup. In this

example, we skip the description of the model (the linearized version is summarised in

Appendix G) and slightly modify the model by gradually adding more shocks. The SW

model is estimated based on seven quarterly macroeconomic time series. When we assume

that this exactly coincides with the agents’ limited information set so in effect the number

of measurements is equal to the number of shocks and EB is non-singular (Case 1: Origi-

nal SW). In the modified versions of the model, the only changes we make are that (1) we

add an inflation target shock so the number of shocks exceeds the number of observables

(Case 2: SW with 8 shocks); (2) we further add measurement errors to the observations of

real variables and inflation (Case 3: SW with 13 shocks). Table 7 presents the key results

from the simulation, based on Levine et al. (2019) and the test for non-fundamentalness

introduced in Section 6.3.

Case 1: Original SW Case 2: SW with Inflation Obj. Case 3: SW with MEs

Appendix L.9 Appendix L.10 Appendix L.11

Measurements = Shocks (=7) 8 Shocks 13 Shocks

Theorem 2 E, EB are full row rank (=7) E, EB are rank deficient (=7) E, EB are rank deficient (=7)

Corollary 2.1 J , JB are full row rank (=7) J , JB are rank deficient (=7) J , JB are rank deficient (=7)

in Levine et al. (2019) A(I −B(EB)−1E) is stable A(I −B(EB)−1E) is non-existent A(I −B(EB)−1E) is non-existent

QA is stable QA is non-existent QA is non-existent

Goodness of Fit FPI = FII = 0 FPI(8×8) FII(8×8) FPI(13×13) FII(13×13)

Eigenvalues eig(FPI) = eig(FII) = 0



1

0.0013

0

0

0

0

0

0





1

0.0016

0.0009

0.0001

0

0

0

0





0.0971

0.0454

0.0138

0.0001

0.0019

0.0058

0.0100

1

1

1

1

1

1





0.5404

0.3627

0.2975

0.0302

0.0011

0.0044

0.8182

1

1

1

1

1

1



Diagonal values -



0

0.0006

0

0.0005

0.0245

0

0.0001

0.9756





0

0.0006

0

0.0004

0.0256

0

0.0001

0.9761





0.2216

0.0924

0.5199

0.1600

0.1007

0.2262

0.2585

0.9780

0.4668

0.7097

0.9053

0.8353

0.6998





0.5754

0.8850

0.5136

0.6945

0.1099

0.4552

0.7095

0.9782

0.5892

0.6749

0.6672

0.7165

0.4854



Table 7: Fundamentalness and Invertibility Measures for Calibrated SW Model)

Notes: Order of shocks: technology, preference, government spending, investment specific, monetary policy, price

and wage markup, inflation objective and measurement errors for output growth, consumption growth, investment

growth, real wage growth and inflation (Appendices L.9–L.11 record the Dynare output corresponding to the results

in this table for the three cases). We assume unit standard deviations so the shocks in this calibrated version are

normalized to have unit covariances.

As before, the models are solved and simulated through the conversion procedure set

out in Appendix A.2. We find that the original system is completely invertible according to

30



Case 1: Original SW Case 2: SW with Inflation Obj. Case 3: SW with MEs

Appendix L.12 Appendix L.13 Appendix L.14

Measurements = Shocks (=7) 8 Shocks 13 Shocks

Theorem 2 E, EB are full row rank (=7) E, EB are rank deficient (=7) E, EB are rank deficient (=7)

Corollary 2.1 J , JB are full row rank (=7) J , JB are rank deficient (=7) J , JB are rank deficient (=7)

in Levine et al. (2019) A(I −B(EB)−1E) is stable A(I −B(EB)−1E) is non-existent A(I −B(EB)−1E) is non-existent

QA is stable QA is non-existent QA is non-existent

Goodness of Fit FPI = FII = 0 FPI(8×8) FII(8×8) FPI(13×13) FII(13×13)

Eigenvalues eig(FPI) = eig(FII) = 0



1

0.0002

0

0

0

0

0

0





1

0

0

0

0

0

0

0





1

1

0.0064

0.0058

0.0018

0

0.0009

0.0006

0.0005

1

1

1

1





0.2538

0.1241

0.0941

0.0177

0.0010

0

0

1

1

1

1

1

1



Diagonal values -



0

0.0001

0

0

0.0015

0

0

0.9986





0

0

0

0

0.0001

0

0

0.9999





0.0020

0.0068

0.0022

0.0018

0.0081

0.0115

0.0044

0.9943

0.9980

0.9975

0.9997

0.9982

0.9916





0.0023

0.2401

0.0007

0.1007

0.1222

0.0076

0.0189

0.9998

1

0.9999

1

0.9999

0.9985


Table 8: Fundamentalness and Invertibility Measures for Estimated SW Model

Notes: Order of shocks: technology, preference, government spending, investment specific, monetary policy, price

and wage markup, inflation objective and measurement errors for output growth, consumption growth, investment

growth, real wage growth and inflation (Appendices L.12–L.14 record the Dynare output corresponding to the results

in this table for the three cases). The simulation results in this table are based on the estimated posterior mode of

the SW models for the parameters and shocks.

the eigenvalue measures and indeed produces exactly the same simulated moments across

the perfect and imperfect information assumptions. When we add the additional shock in

Case 2, compared to non-invertibility of API the eigenvalues are larger for AII (FII > FPI),
introducing non-fundamentalness into the model. The overall fit for fundamentalness

under AII is much improved from the RBC results (in Section 6.3), but with a larger-sized

model (e.g. Case 2) the difference between API and AII is less marked. Based on Theorem

3 in Levine et al. (2019), this means that the differences between IRFs with API and AII,

from the perspective of identifying VARs, are less marked. This result clearly depends

on the size of the model and the number of shocks, and via simulation, is consistent

with previous literature. When we further add measurement errors to the measurement

equations for the 4 real variables and the inflation rate (Case 3), the multivariate fit for

fundamentalness or invertibility of SW significantly declines for the both AII and API

cases. It is very clear that, even with a medium-sized model like SW, it is the decreasing

ratio of observables to shocks that drives a bigger wedge between API and AII, in the sense
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that the fundamentalness problem worsens for the performance of VARs, and the difference

of empirical likelihood between API and AII models increases, with fewer observations by

agents.

6.6 Example 6: Estimation of Smets and Wouters (2007)

Example 6 estimates the SW Case 1 and Case 3 used in Section 6.5 and reports the

likelihood comparison below. The data sample is 1966Q1-2004Q4 which is the same as

in Smets and Wouters (2007). The SW model is estimated based on seven quarterly

macroeconomic time series: real output, consumption, investment, and real wage growth,

hours, inflation, and interest rates. Appendices record the Dynare output corresponding

to the results in this table for the two cases. As discussed, when invertibility fails in

Case 3, the estimation under II therefore improves the data density slightly based on the

estimated posterior mode and data densities. The corresponding measurement equations

for the 7 observables are



output growth

consumption growth

investment growth

real wage growth

hours

inflation

fed rate


=



γ̄ + ∆yt
γ̄ + ∆ct
γ̄ + ∆it
γ̄ + ∆wt
l̄ + lt
π̄ + πt
R̄+Rt


(29)

where all variables are measured in percent, π̄ and R̄ measure the steady state level of net

inflation and short term nominal interest rates, respectively, γ̄ captures the deterministic

long growth rate of real variables, and l̄ captures the mean of hours. Output growth is

measured as the percentage growth rate of real GDP, consumption growth as the percent-

age growth rate of personal consumption expenditure deflated by the GDP deflator and

investment growth as the percentage growth rate of the Fixed Private Domestic Invest-

ment. Hourly compensation is divided by the GDP price deflator in order to get the real

wage variable. The aggregate real variables are expressed per capita by dividing with the

population over 16. Inflation is the first difference of the log of the Implicit Price Deflator

of GDP and the interest rate is the Federal Funds Rate divided by four.

For the 7-shock case the perfect and imperfect information cases coincide. From Case

3, including the additional shocks under II leads to a relatively small improvement in

fitting the data for the Smets and Wouters (2007) model, as implied by the marginal

data densities. Again, we report our results from Bayesian maximum-likelihood estima-

tion, log posterior optimization, both of which for this model, are very similar to those

from Bayesian MCMC estimation. To show more evidence that supports the likelihood

comparison, we also summarize some second order moments and present graphs of the

autocorrelations of the observed variables below. The model-implied second moments are

much better under AII than under API for hours, inflation and the interest rate, while the
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SW PI SW II LL diff

likelihood (log posterior) -821.352518 -821.352518 0

log data density (laplace) -900.934858 -900.935161 -0.000303

computing time 0h01m20s 0h06m16s

Table 9: Log Posterior and Data Density Comparison (SW Case 1)

Notes: The two .mod file names are sw07est.mod and sw07est II.mod. The posterior mode (and log data density

[Laplace approximation]) are estimated using mode compute=4. Invertibility and fundamentalness checks satisfied

(based on the mode). periods=1000 for simulating artificial data using the mode (identical data between PI and

II).

SW PI SW II LL diff BF

log data density (laplace) -910.631977 -908.170031 2.461946 11.72761128

log data density (MHM) -905.469531 -904.886754 0.582777 1.791005153

computing time 1h17m32s 8h22m44s

Table 10: Log Posterior and Data Density Comparison (SW Case 3)

Notes: The two .mod file names are sw07est inf me mh.mod and sw07est inf me II mh.mod; The mode (and log data

density [Laplace approximation]) are estimated using mode compute=4. We also check the mode solutions using the

alternative solvers including combinations of mode compute=4,5,6 for checking for robustness. Then a sample from

the posterior distribution is obtained with the Metropolis-Hastings (MH) algorithm using the inverse Hessian at

the estimated posterior mode as the covariance matrix of the jumping distribution. The covariance matrix needs

to be adjusted in order to obtain reasonable acceptance rates which are very similar across the chains (20-22% for

PI and 17% for II). Two parallel Markov chains of 250,000 runs each are run from the posterior kernel for the MH,

sufficient to ensure convergence according to the indicators recommended by Brooks and Gelman (1998). The first

50,000 draws from each chain have been discarded.
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differences from the other real variables are very small. This explains the data support

for the II assumption. When it comes to matching the autocorrelograms in Figure 5, the

evidence is now clearer, with the II model fitting better the dynamics seen in the data for

most variables. The implied autocorrelograms produced by SW model II match very well

the observed autocorrelation of interest rate and hours.

Observable dlGDPt dlCONt dlINVt dWt Labt dlDEFt INTt

Standard Deviation (in percent)

Data 0.8593 0.6970 2.0627 0.6139 2.8952 0.6073 0.8179

SW PI 0.9256 0.7709 2.2626 0.6315 3.7724 0.8043 0.9164

SW II 0.9581 0.7527 2.2699 0.6650 2.5385 0.6421 0.8089

Cross-correlation with dlGDPt

Data 1.0000 0.6586 0.6755 0.0318 0.1096 -0.3051 -0.2258

SW PI 1.0000 0.5910 0.6889 0.1962 0.0811 -0.1738 -0.1985

SW II 1.0000 0.6093 0.7110 0.3117 0.1193 -0.2581 -0.2416

Autocorrelations (order=1)

Data 0.2486 0.1979 0.5282 0.0926 0.9678 0.8897 0.9341

SW PI 0.3597 0.4115 0.6159 0.0984 0.9835 0.9327 0.9498

SW II 0.3712 0.3670 0.6121 0.2434 0.9630 0.8845 0.9322

Table 11: Data and Model Moments for Estimated SW Case 3

The previous simulations either imposed a common 1% standard deviation for all the

shocks or were based on the estimated mode. But AII results depend critically on the

relative size of these standard deviations which need to be arrived at empirically. Table

12 below addresses this issue by estimating the model by Bayesian methods and posterior

simulations. It is clear that, when incorporating measurement errors, compared to non-

invertibility of API the eigenvalues are larger for AII, introducing non-fundamentalness

into the empirical model, even though the parameter estimates are quite similar between

the two models. The finding is consistent with what the calibrated exercise shows.

6.7 Example 7: Estimation of Schorfheide (2000)

Example 7 re-estimates the estimated model in Schorfheide (2000) under imperfect infor-

mation (the original model fs2000.mod is downloadable from DYNARE: www.dynare.org).

As noted, at the moment the current setup is only suitable for estimation under informa-

tion symmetry as the observable set declared after varobs VARIABLE NAME...; is shared

by agents and econometrician, where the variables in varobs are those that are members

of the information set:

options_.usePartInfo=1;
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SW with MEs (13 shocks)

Theorem 2 E, EB J , JB are rank deficient (=7)

Corollary 2.1 A(I −B(EB)−1E) is non-existent

in Levine et al. (2019) QA is non-existent

Goodness of Fit FPI(13×13) FII(13×13)

Eigenvalues



0.1040

0.0417

0.0189

0.0021

0

0.0004

0.0011

1

1

1

1

1

1





0.6043

0.1651

0.0075

0.0055

0.0030

0

0.0002

1

1

1

1

1

1



Diagonal values



0.0447

0.1805

0.3072

0.1283

0.0551

0.8423

0.1894

0.9965

0.9128

0.4779

1

0.1062

0.9993





0.0057

0.9330

0.3383

0.1242

0.0931

0.5505

0.9996

0.9996

0.9898

0.1724

1

0.0005

1


Table 12: Fundamentalness and Invertibility Measures for Estimated SW (Ex-

ample 7)

Notes: Order of shocks: technology, preference, government spending, investment specific, monetary policy, price

and wage markup, inflation objective and measurement errors for output growth, consumption growth, investment

growth, real wage growth and inflation. The simulation results in this table are based on the posterior estimates of

the NK model for the parameters and shocks.
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...

varobs gp_obs gy_obs;

estimation(datafile=fsdat,nobs=192,loglinear,mh_replic=0);

The file fs2000 II.mod reproduces the posterior mode and the model data density

estimated using the imperfect information procedures (based on the Laplace approxima-

tion):

RESULTS FROM POSTERIOR MAXIMIZATION

parameters

prior mean mode s.d. t-stat prior pstdev

alp 0.356 0.4035 0.0207 19.4824 beta 0.0200

bet 0.993 0.9909 0.0020 500.1914 beta 0.0020

gam 0.009 0.0047 0.0009 5.0288 norm 0.0030

mst 1.000 1.0141 0.0015 656.9036 norm 0.0070

rho 0.129 0.8456 0.0344 24.5731 beta 0.2230

psi 0.650 0.6894 0.0481 14.3255 beta 0.0500

del 0.010 0.0017 0.0010 1.6023 beta 0.0050

standard deviation of shocks

prior mean mode s.d. t-stat prior pstdev

e_a 0.035 0.0135 0.0009 15.2019 invg Inf

e_m 0.009 0.0033 0.0002 18.1618 invg Inf

Log data density [Laplace approximation] is 1298.520395.

The original file fs2000.mod produces the posterior mode and the model data density

(based on the Laplace approximation) under the standard perfect information assumption:

RESULTS FROM POSTERIOR ESTIMATION

parameters

prior mean mode s.d. prior pstdev

alp 0.356 0.4035 0.0207 beta 0.0200

bet 0.993 0.9909 0.0020 beta 0.0020

gam 0.009 0.0046 0.0009 norm 0.0030
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mst 1.000 1.0143 0.0015 norm 0.0070

rho 0.129 0.8455 0.0341 beta 0.2230

psi 0.650 0.6890 0.0482 beta 0.0500

del 0.010 0.0017 0.0010 beta 0.0050

standard deviation of shocks

prior mean mode s.d. prior pstdev

e_a 0.035 0.0136 0.0009 invg Inf

e_m 0.009 0.0033 0.0002 invg Inf

Log data density [Laplace approximation] is 1299.009910.

Although the number of measurements are equal to the number of shocks in this

model, the aforementioned invertibility condition is not satisfied, the estimation under

II therefore does generate a difference, and in fact, improves the data density slightly

based on the estimated mode and data density (compared to 1299.009910 under standard

perfect information). As noted, the parameter estimates under II are not very different,

however, one would expect that on balance second moments tend to be better under

II, leading a better model fit overall. The model performance is expected to improve

significantly when the number of shocks exceeds the number of observations assuming

imperfect information on the part of agents because of the endogenous persistence effects

caused by the assumption that agents cannot immediately tell from their measurements

of the shocks (more empirical evidence can be found in Collard et al. (2009), Levine et al.

(2012) and Cantore et al. (2015)).

Finally, we run a simulated version of this model and report the solution proce-

dure, invertibility condition, simulation output and non-fundamentalness measures for

fs2000 II.mod as in the RBC and SW examples:

--- Transformation to Blanchard-Kahn Form ---

Obtain the singular value decomposition of A0

Singular matrix C2 ...

Start iterative reduction procedure ...

Invertibility and return to conversion

SOLUTION UNDER PARTIAL INFORMATION

OBSERVED VARIABLES

gp_obs

gy_obs
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--- THE INVERTIBILITY CONDITION IS NOT SATISFIED ---

no. of measurements = no. of shocks,

but imperfect information cannot mimic perfect information

MATRIX E EB J JB

Rank 2 2 2 2

The Eigenvalue Condition is not satisfied

THEORETICAL MOMENTS

VARIABLE STD. DEV. VARIANCE

m 0.0062684346 0.0000392933

P 0.0353367907 0.0012486888

c 0.1171446328 0.0137228650

e 0.0136000000 0.0001849600

W 0.0370836678 0.0013751984

R 0.0041539493 0.0000172553

k 6.9664112313 48.5308854438

d 0.0488127787 0.0023826874

n 0.0122229629 0.0001494008

l 0.0445231024 0.0019823066

gy_obs 0.0098921348 0.0000978543

gp_obs 0.0211463947 0.0004471700

y 0.1181523948 0.0139599884

dA 0.0136627041 0.0001866695

As before, Table 13 corresponds to Appendix L.15, showing that imperfect information

is not equivalent to perfect information because of the failure of the eigenvalue condition

in Theorem 2 for AII only. This is another interesting case: with m = k, we find that

EB is of full rank and A
(
I −B(EB)−1E

)
is a stable matrix therefore API is E-invertible

(See Lemma 1); however, JB is invertible but the eigenvalue stability fails with AII, i.e.,

QA = F (I − B(JB)−1J) has eigenvalues outside the unit circle (the second condition in

Theorem 2). As expected. there is complete fundamentalness when FPI = 0 for API but

with AII FII > 0 and this confirms the finding based on Theorem 2.

To complete the estimation section, the procedure applies the standard numerical opti-

mization routines to obtain the Hessian matrix which is then used in the Metropolis simu-

lation algorithm to generate a sample from the posterior distribution. The following results

are based on minimization by csminwel, 20,000 random draws from the posterior density

that are obtained via the MCMC-MH algorithm, the reasonable acceptance rates (26%)

and are confirmed by the standard convergence indicators (Brooks and Gelman (1998)).

The two .mod file names are fs2000 II Metropolis.mod and fs2000 Metropolis.mod

for imperfect and perfect information estimations, respectively:
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Observations Theorem 2 Eigenvalues of FPI

(m = k) Corollary 2.1 Eigenvalues of FII

in Levine et al. (2019) Order of shocks: εA,t, εM,t

(gyobs, gpobs) E, EB are of full rank (=2) FPI = [0, 0]

J , JB are of full rank (=2) FII = [0, 1]

A(I −B(EB)−1E) is stable

QA is not stable

Table 13: Non-fundamentalness for Estimated Schorfheide (2000) Model (Ex-

ample 7)

Estimation::mcmc: Current acceptance ratio per chain:

Chain 1: 26.27%

Chain 2: 26.4%

Log data density is 1298.679945.

parameters

prior mean post. mean 90% HPD interval prior pstdev

alp 0.356 0.4041 0.3684 0.4367 beta 0.0200

bet 0.993 0.9904 0.9871 0.9939 beta 0.0020

gam 0.009 0.0048 0.0032 0.0065 norm 0.0030

mst 1.000 1.0139 1.0116 1.0168 norm 0.0070

rho 0.129 0.8416 0.7859 0.9000 beta 0.2230

psi 0.650 0.6779 0.5981 0.7601 beta 0.0500

del 0.010 0.0025 0.0006 0.0045 beta 0.0050

standard deviation of shocks

prior mean post. mean 90% HPD interval prior pstdev

e_a 0.035 0.0138 0.0123 0.0153 invg Inf

e_m 0.009 0.0033 0.0030 0.0037 invg Inf

Total computing time : 0h07m25s

Estimation::mcmc: Current acceptance ratio per chain:

Chain 1: 26.2%

Chain 2: 26.58%

Log data density is 1299.240091.

parameters

prior mean post. mean 90% HPD interval prior pstdev

alp 0.356 0.4044 0.3688 0.4397 beta 0.0200

bet 0.993 0.9905 0.9871 0.9939 beta 0.0020
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gam 0.009 0.0046 0.0031 0.0062 norm 0.0030

mst 1.000 1.0142 1.0114 1.0171 norm 0.0070

rho 0.129 0.8461 0.7826 0.9012 beta 0.2230

psi 0.650 0.6834 0.6066 0.7634 beta 0.0500

del 0.010 0.0024 0.0004 0.0042 beta 0.0050

standard deviation of shocks

prior mean post. mean 90% HPD interval prior pstdev

e_a 0.035 0.0138 0.0123 0.0153 invg Inf

e_m 0.009 0.0034 0.0030 0.0037 invg Inf

Total computing time : 0h03m09s

6.8 A Note on Posterior Mode Optimization

Finding the posterior mode can often be hard and any of the optimization routines can

fail to find a (global) maximum. The key to robust estimation results is to find the highest

posterior density point and use sufficiently large number of MH-MCMC replications for

getting to the targeted ergodic distribution and sample from it. The aim is to get to

the point that has the highest likelihood value which may not be improved by another

mode optimizer. The resulting mode (with the inverse Hessian) should provide the most

efficient starting conditions for the MCMC. However, it is not mandatory to use the

posterior mode (with Hessian at the estimated mode) as the initial conditions to start the

chains for running the metropolis. The latter can explore the whole parameter space and

asymptotically move to its ergodic distribution.

Newton-type optimizers such as mode compute=4 (Chris Sim’s csminwel25), which pro-

vides an estimate of the posterior covariance matrix based on the inverse of the Hessian

matrix, tends to find and get stuck at a local maximum, especially if we have more dif-

fuse priors that do not smooth out the likelihood by much. The issue is to find the true

mode (global), but the problem is that the inverse of the Hessian matrix computed at

the point is not necessarily positive definite if that point is not being at the true mode.

A poorly specified model may not be estimable with mode compute=4. mode compute=6

uses a Monte-Carlo based optimization routine, involving drawing random numbers, for

the mode computation so does not require the inverse of the Hessian matrix when con-

structing the covariance matrix for the proposal distribution. The call to it avoids the non-

invertible Hessian problem when initialising the MCMC but does not necessarily guarantee

convergence to the mode and is very time intensive.

In summary, for the estimation, we start from the prior mean and go for a ‘brute-

force’ search for finding the highest posterior density point. Our strategy is to use al-

ternative optimizers and check if we stay at the same point which may not be further

improved or whether other optimizers find higher likelihood values. For example, for our

Table 10, the mode is computed using mode compute=6, and subsequently using the like-

25See, for more details, Chris Sim’s homepage: http://www.princeton.edu/ sims/.
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lihood values computed as an initial condition and running it through mode compute=5

and mode compute=4. As a results, we find the same log-likelihood (and of course the

same mode) for both models under AII and API. Similarly, we repeat this procedure us-

ing a combination of mode compute=7,8 for the log posterior optimization26 and check it

returns the same maximum. We then proceed to starting the chains with a large number

of draws consistent with Smets and Wouters (2007), to ensure the MCMC moves to its

ergodic distribution. The accedence ratios between the two chains are always very similar

and convergence of the chains are checked using the indicators recommended by Brooks

and Gelman (1998). We compare the log marginal data density approximated by Laplace

around the estimated posterior mode and the log marginal data density approximated by

MHM sampling from the posterior. In our applications, the results of both approximations

are very close.

7 Summary and Discussion

This paper introduces a MATLAB toolbox in Dynare designed for solving, simulating and

estimating RE-DSGE models under the assumption that both econometrician and agents

have the same imperfect information set. The implementation of the software provides

additional checks on whether the solution of a linearized DSGE model is a VARMA which

may be approximated by a finite VAR model. A necessary condition for such a representa-

tion is that the VARMA is invertible (or, almost equivalently, satisfies fundamentalness).

We then show an extra condition for invertibility and the examples which demonstrate

that the imperfect information assumption can make the invertibility problem worse, intro-

ducing an important additional source of non-fundamentalness. The examples and results

further demonstrate whether and to what extent the solution can be approximated by a

finite reduced form VAR with Gaussian shocks which may be identifiable.

The output produced by the toolbox is important to empirical researchers who often try

to match the impulse responses of an identified VAR with a DSGE model. The information

from the analysis, results and contained in the relevant matrices, e.g., JB and EB, etc.,

can provide important insights for considering and choosing the appropriate identification

strategy in estimating the SVAR model form consistent with the DSGE model assumed to

be the true DGP.27 The examples and results in this paper clearly suggest some potential

pitfalls of using VARs to generate the IRFs of the structural shocks and to then validate

empirical DSGE models. The problem may be significantly worsened provided that the

econometrician is no better informed than the agents. With any forms of invertibility

failure, common approaches in empirical work, for example, in Christiano et al. (2005)

26Based on Dynare’s User Guide, mode compute=5: Uses Marco Ratto’s routine newrat; mode compute=7:

Uses the matlab routine fminsearch which is a simplex-based optimization routine; mode compute=8: Uses

the Nelder-Mead simplex-based optimization routine. mode compute=5 is often quite good but can be slow.

mode compute=7,8 can be useful for computing some initial estimates.
27If you use this toolbox or substantial parts of the code please cite : Levine, P., Pearlman, J. and Yang,

B. (2020). DSGE Models under Imperfect Information: A Dynare-based Toolkit. University of Surrey

Discussion Papers.
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and Kehoe (2006), that are often used for comparisons of IRFs could produce seriously

misleading results since the reduced form residuals in the data VAR cannot be a linear

transformation of the structural shocks, regardless of the choice of identification schemes.
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Appendix

A Transformation of Model to Blanchard-Kahn Form

A.1 The Problem Stated

The only general results on imperfect information solutions to rational expectations models

date back to Pearlman et al. (1986), who utilize the Blanchard-Kahn setup, which is given

by [
zt+1

xt+1,t

]
=

[
G11 G12

G21 G22

][
zt
xt

]
+

[
H11 H12

H21 H22

][
zt,t
xt,t

]
+

[
B

0

]
εt+1 (A.1)

with agents’ measurements given by

mA
t =

[
M1 M2

] [ zt
xt

]
+
[
M3 M4

] [ zt,t
xt,t

]
(A.2)

and these can be solved together to yield a reduced-form system. The latter can then be

processed via the Kalman filter to obtain the likelihood function for estimation purposes.

Note that measurement errors on observations can be incorporated into εt.

Dynare does not accept models in the form of (A.1). In linearized form, the typical

Dynare modfile setup will lead to a system of the form

A0yt+1,t +A1yt = A2yt−1 + Ψεt (A.3)

with measurements

mE
t = Lyt (A.4)

The next section describes a completely novel algorithm for converting the state space

(A.3), (A.4) under partial information to the form (A.1), (A.2). We assume that the system

is ‘proper’, by which we mean the matrix A1 is invertible; this precludes the possibility

of a system that includes equations of the form hT yt+1 = 0, but it is fairly easy to take

account of these as well.
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A.2 Conversion to Pearlman et al. (1986) Setup

Although complicated, the basic stages for the conversion are fairly simple:

1. We first (Stages 1 to 3) find the singular value decomposition for the n × n matrix

A0 (which is typically of reduced rank m < n) which allows us to define a vector of

m forward-looking variables that are linear combinations of the original yt.

2. We then introduce a novel iterative stage (Stage 4) which replaces any forward-

looking expectations that use model-consistent updating equations. This reduces the

number of equations with forward-looking expectations, while increasing the number

of backward-looking equations one-for-one. But at the same time it introduces a

dependence of the additional backward-looking equations on both state estimates

zt,t
(
≡ Etzt|IAt

)
and estimates of forward-looking variables, xt,t. This in turn implies

that both (A.26) and (A.2) in general contain such terms.

3. A simple example may help to provide intuition for this iterative stage: Suppose

two of the equations in the system are of the form: zt = ρzt + εt, yt = zt+1,t (where

both yt and zt are scalars) i.e., we have one backward-looking (BL) equation and

one forward-looking (FL) equation. However using the first equation we can write

zt+1,t = Etzt+1 = ρzt,t, hence substituting into the second equation, yt = ρzt,t : i.e.,

we can use a model-consistent updating equation. Note, however, a crucial feature:

since under II we cannot assume that zt is directly observable, this updating equation

is expressed in terms of the filtered state estimate zt,t rather than directly in terms

of xt We thus now have two BL equations, but one of these is expressed in term of

a state estimate.

4. The iterative Stage 4 may need to be repeated a finite number of times. In the case

of perfect information this is all that is needed, apart from defining what are the

t+ 1 variables.

5. For imperfect information, we retain the same backward and forward looking vari-

ables as in the perfect information case, but the solution process is a little more

intricate.

The detailed procedure for conversion of (A.3) and (A.4) to the form in (A.26) and

(A.2) is as follows:

Stage 1: SVD and partitions of A0

Obtain the singular value decomposition for matrix A0: A0 = U0S0V
T

0 , where U0, V0 are

unitary matrices. Assuming that only the first m values of the diagonal matrix S0 are

non-zero (m = FL RANK = the rank of S0), we can rewrite this as A0 = U1S1V
T

1 , where

U1 are the first m columns of U0, S1 is the first m ×m block of S0 and V T
1 are the first

m rows of V T
0 . In addition, U2 are the remaining n −m columns of U0, and V T

2 are the

remaining n−m rows of V T
0 (A0 is n× n).
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Stage 2: Transform (A.3) to FL subsystem using S1 and U1

Multiply (A.3) by S−1
1 UT1 , which yields:

V T
1 yt+1,t + S−1

1 UT1 A1yt = S−1
1 UT1 A2yt−1 + S−1

1 UT1 Ψεt (A.5)

Now define forward-looking xt = V T
1 yt, backward-looking st = V T

2 yt, and use the fact that

I = V V T = V1V
T

1 + V2V
T

2 to rewrite (A.5) as (note that yt = V1xt + V2st):

xt+1,t + S−1
1 UT1 A1(V1xt + V2st) = S−1

1 UT1 A2(V1xt−1 + V2st−1) + S−1
1 UT1 Ψεt (A.6)

or simply:

xt+1,t + F1xt + F2st = F3xt−1 + F4st−1 + F5εt (A.7)

where F1 = S−1
1 UT1 A1V1, F2 = S−1

1 UT1 A1V2, F3 = S−1
1 UT1 A2V1, F4 = S−1

1 UT1 A2V2 and

F5 = S−1
1 UT1 Ψ

Stage 3: Transform (A.3) to BL subsystem using U2

Multiply (A.3) by UT2 which yields:

UT2 A1yt = UT2 A2yt−1 + UT2 Ψεt (A.8)

which can be rewritten as

UT2 A1(V1xt + V2st) = UT2 A2(V1xt−1 + V2st−1) + UT2 Ψεt (A.9)

or more simply:

C1xt + C2st = C3xt−1 + C4st−1 + C5εt (A.10)

where C1 = UT2 A1V1, C2 = UT2 A1V2, C3 = UT2 A2V1, C4 = UT2 A2V2 and C5 = UT2 Ψ.

If C2 is invertible then multiply (A.10) by C−1
2 , and go straight to Stage 6. If C2 is

not invertible, then write (A.7) and (A.10) in the more general form:

xt+1,t + F1xt + F2st = F3xt−1 + F4st−1 + F5εt (A.11)

C1xt + C2st + C7xt,t + C6st,t = C3xt−1 + C4st−1 + C5εt (A.12)

where by comparison of (A.12) with (A.10) we have introduced two new matrices, C6

and C7 that must be zero in the first stage of iteration. However, at the end of the first

iteration of Stage 4 below we shall increase the dimension of st, and reduce the dimension

of xt one-for-one, which will require us to re-define all the matrices in (A.11) and (A.12),

such that, from the second iteration onwards, C6 and C7 will be non-zero. The whole of

Stage 4 may then need to be iterated a finite number of times.

Stage 4: C2 + C6 singular

Find a matrix J2 such that JT2 (C2 + C6)=0 (by using the SVD of C2 + C6). Then take

forward expectations of (A.12) and pre-multiply by JT2 to yield:

JT2 (C1 + C7)xt+1,t = JT2 C3xt,t + JT2 C4st,t (A.13)
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Then reduce the number of forward-looking variables by substituting for xt+1,t from (A.11).

In addition find a matrix Q that has the same number of columns as JT2 (C1 + C7) and is

made up of rows that are orthogonal to it. Then we define[
x̄t
x̂t

]
=

[
Q

JT2 (C1 + C7)

]
xt xt = M1x̄t +Q2x̂t (A.14)

where [Q1 Q2] =

[
Q

JT2 (C1 + C7)

]−1

From the substitution of xt+1,t into (A.13), we can

rewrite the system in terms of forward-looking variables x̄t and backward-looking variables

st, x̂t:

x̄t+1,t +QF1Q1x̄t + [QF2 QF1Q2]

[
st
x̂t

]
(A.15)

= QF3Q1x̄t−1 + [QF4 QF3Q2]

[
st−1

x̂t−1

]
+QF5εt

[
C1Q1

JT2 (C1 + C7)F1Q1

]
x̄t +

[
C2 C1Q2

JT2 (C1 + C7)F2 JT2 (C1 + C7)F1Q2

][
st
x̂t

]
(A.16)

+

[
C7Q1

JT2 C3Q1

]
x̄t,t +

[
C6 C7Q2

JT2 C4 JT2 C3Q2

][
st,t
x̂t,t

]

=

[
C3Q1

JT2 (C1 + C7)F3Q1

]
x̄t−1 +

[
C4 C3Q2

JT2 (C1 + C7)F4 JT2 (C1 + C7)F3Q2

][
st−1

x̂t−1

]

+

[
C5

JT2 (C1 + C7)F5

]
εt

The number of forward-looking states has decreased because x̄t = Q1xt, and the number

of backward-looking states s̄t = [st, x̂t]
′ has increased by the same amount. In addition

the relationship yt = V1xt + V2st has changed to

yt = V1Q1x̄t +
[
V2 V1Q2

]
s̄t (A.17)

The system is now again the form of (A.11) and (A.12). Repeat this stage until C2 +C6 is

of full rank. In the perfect information case, the form (A.11), (A.12) with st = st,t, xt = xt,t
is generated after a finite number of iterations of Stage 3 – the number of iterations cannot

exceed the number of variables. The forward looking variables are now xt and the back-

ward looking variables are st and xt−1, and the system can be set up in Blanchard-Kahn

form by defining zt+1 = [st, xt]
′. The only additional calculation is to invert C2 + C6 to

obtain the equation for st, and to substitute into (A.11). From this point, we eschew the

details of matrix manipulations, as these are much more straightforward to understand

conceptually compared with those above.
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Stage 5: C2 non-singular

Firstly form expectations of (A.12) and invert C2+C6 to obtain st,t in terms of xt,t, xt−1,t, st−1,t

and εt,t. Then substitute this back into (A.12), and invert C2 to yield an expression for

st in terms of the above expected values and also xt, xt−1, st−1, εt. This can be further

substituted into (A.11) to yield an expression for xt+1,t in terms of these variables and

their expectations. Similarly the measurement equations mt = Lyt can now be expressed

in terms of all these variables. It follows that if we define zt+1 = [εt+1, st, xt]
′ then the

system can now be described by (A.1).

Stage 6: C2 singular

We again start from (A.11) and (A.12), and regard xt as the forward looking variable and

st, xt−1 as the backward looking variables. Now advance these equations by changing t

to t+ k : k = 1, 2, 3, ... and take expectations using information at time t, implying that

Etst+k = Etst+k,t+k. Because C2 + C6 is invertible, we can rewrite these equations with

just xt+k+1,t and st+k,t on the LHS, which implies the relationship xt+k,t
st+k,t
xt+k+1,t

 = AA

 xt+k−1,t

st+k−1,t

xt+k,t

 (A.18)

where,

AA =

 0 0 I

(C2 + C6)−1C3 (C2 + C6)−1C4 −(C2 + C6)−1(C1 + C7)

F3 − F2(C2 + C6)−1C3 F4 − F2(C2 + C6)−1C4 −F1 + F2(C2 + C6)−1(C1 + C7)


(A.19)

Then the usual Blanchard-Kahn conditions for stable and unstable roots imply a sad-

dlepath relationship of the form

xt+k+1,t +N1st+k,t +N2xt+k,t = 0 (A.20)

where [I N1 N2] represents the eigenvectors of the unstable eigenvalues. In particular,

this holds for k = 0, so if we substitute for xt+1,t = −N1st,t − N2xt,t into (A.11), then

together with (A.12) we obtain solutions for xt, st in terms of xt,t, st,t, xt−1, st−1, εt. This

is possible, because we have assumed the system is proper i.e. A1 is invertible28, and any

manipulations of A1 in the previous stages have been simple linear transformations of it

to yield the matrices F1, F2, C1, C2. From (A.20), (A.11) and (A.12) become

F1xt + F2st = N1st,t +N2xt,t + F3xt−1 + F4st−1 + F5εt (A.21)

C1xt + C2st = −C6st,t − C7xt,t + C3xt−1 + C4st−1 + C5εt (A.22)

Taking expectations at t of (A.21) and (A.22) and solving jointly for [xt,t, st,t]
′, in terms

28The algorithm can be reworked without too much much difficulty if for example some of the forward

looking equations in (A.3) are of the form S0EtYt+1 = 0.
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of [xt−1,t, st−1,t, εt,t]
′ yield:

[
xt,t
st,t

]
=

[
F1 −N2 F2 −N1

C1 + C7 C2 + C6

]−1 [
F3 F4 F5

C3 C4 C5

] xt−1,t

st−1,t

εt,t

 (A.23)

Substituting (A.23) into (A.21) and (A.22) and now solving jointly for [xt, st]
′, in terms

of [xt−1,t, st−1,t, εt,t, xt−1, st−1, εt]
′ yield (A.24) below with FF1 = 0 and GG13 = 0:

st = G13xt+G12xt−1 +G11st−1 +P1εt+FF1xt,t+FF2xt−1,t+FF3st−1,t+FF4εt,t (A.24)

Further substituting this expression into (A.11) to yield an expression for xt+1,t

xt+1,t = G33xt +G32xt−1 +G31st−1 + P3εt + FF5xt,t + FF6xt−1,t + FF7st−1,t + FF8εt,t
(A.25)

The system is now again the form described by (A.1). Finally, to summarise the required

Blanchard-Kahn setup[
zt+1

xt+1,t

]
=

[
G11 G12

G21 G22

][
zt
xt

]
+

[
H11 H12

H21 H22

][
zt,t
xt,t

]
+

[
C

0

]
εt+1 (A.26)

and we define zt+1 = [εt+1, st, xt]
′, the converted form (A.26) becomes (when invertibility

of A0 holds)
εt+1

st
xt

xt+1,t

 =


0 0 0 0

P1 G11 G12 G13

0 0 0 I

P3 G31 G32 G33




εt
st−1

xt−1

xt



+


0 0 0 0

FF4 FF3 FF2 FF1

0 0 0 0

FF8 FF7 FF6 FF5




εt,t
st−1,t

xt−1,t

xt,t

+


I

0

0

0

 εt+1 (A.27)

where G13 = −C−1
2 C1, G12 = C−1

2 C3, G11 = C−1
2 C4, P1 = C−1

2 C5, G33 = −F2G13 − F1,

G32 = −F2G12+F3, G31 = −F2G11+F4, P3 = −F2P1+F5, FF1 = −C−1
2 C7+C−1

2 C6(C2+

C6)−1(C1 + C7), FF2 = −C−1
2 C6(C2 + C6)−1C3, FF3 = −C−1

2 C6(C2 + C6)−1C4, FF4 =

−C−1
2 C6(C2 + C6)−1C5, FF5 = −F2FF1, FF6 = −F2FF2, FF7 = −F2FF3 and FF8 =

−F2FF4 (for the case when C2 is non-singular).

Now define [
F1 F2

C1 C2

]−1

=

[
F 1 F 2

C1 C2

]
(A.28)

we have G13 = 0, G12 = C1F3 + C2C3, G11 = C1F4 + C2C4, P1 = C1F5 + C2C5,

G33 = −F2G13 − F1 = −F1, G32 = −F2G12 + F3, G31 = −F2G11 + F4, P3 = −F2P1 + F5,

FF1 = 0, FF2 = C1BB1 + C2DD1, FF3 = C1BB2 + C2DD2, FF4 = C1BB3 + C2DD3,
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and FF5 = −F2FF1 = 0, FF6 = −F2FF2, FF7 = −F2FF3 and FF8 = −F2FF4 (for the

case when C2 is singular), where, if we define[
F1 −N2 F2 −N1

C1 + C7 C2 + C6

]−1

=

[
F1 −N2 F2 −N1

C1 + C7 C2 + C6

]
(A.29)

the BB and DD matrices take the form of

BB1 = N1C1 + C7F3 +N1C2 + C6C3 +N2F1 −N2F3 +N2F2 −N1C3 (A.30)

BB2 = N1C1 + C7F4 +N1C2 + C6C4 +N2F1 −N2F4 +N2F2 −N1C4 (A.31)

BB3 = N1C1 + C7F5 +N1C2 + C6C5 +N2F1 −N2F5 +N2F2 −N1C5 (A.32)

DD1 = −C6C1 + C7F3 − C6C2 + C6C3 − C7F1 −N2F3 − C7F2 −N1C3 (A.33)

DD1 = −C6C1 + C7F4 − C6C2 + C6C4 − C7F1 −N2F4 − C7F2 −N1C4 (A.34)

DD1 = −C6C1 + C7F5 − C6C2 + C6C5 − C7F1 −N2F5 − C7F2 −N1C5 (A.35)

The C and F matrices are the reduction system matrices in (A.15) and (A.16) in the form

of (A.11) and (A.12) (i.e. the iterative procedure that ensures invertibility to be achieved).

The measurements mt = Lyt can be written in terms of the states as mt = L(V1xt +

V2st), where V1, V2 have been updated by (A.17) through the same reduction procedure

as above. Using (A.27), we show that mt can be rewritten as

mt =
[
LV2P1 LV2G11 LV2G12 LV1 + LV2G13

]
εt
st−1

xt−1

xt



+
[
LV2FF4 LV2FF3 LV2FF2 LV2FF1

]
εt,t
st−1,t

xt−1,t

xt,t

 (A.36)

So the observations (A.36) can now be cast into the form in (A.2)

mt =
[
M1 M2

] [ zt
xt

]
+
[
M3 M4

] [ zt,t
xt,t

]
(A.37)

where M1 = [LV2P1 LV2G11 LV2G12] and M2 = LV1 + LV2G13. Similarly, M3 =

[LV2FF4 LV2FF3 LV2FF2] and M4 = LV2FF1. Thus the setup is as required, with

the vector of predetermined variables given by [ε′t s
′
t−1 x′t−1]′, and the vector of jump

variables given by xt.

A.3 Example of Stage 6 Being Needed for Imperfect Information

Suppose that at the end of Stage 4, the system appears as

xt+1,t + αxt + st = βst−1 + εt xt − xt,t + st,t = γst−1 (A.38)
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It is clear from examining these equations that they cannot be manipulated into B-K form

directly. However, if we now advance these equations by k periods and take expectations

subject to It, one obtains two equations relating xt+k+1,t, st+k,t to xt+k,t, st+k−1,t. Since

this is true for all k ≥ 1, and provided there is exactly one unstable eigenvalue corre-

sponding to these dynamic relationships, it follows that there must be an expectational

saddlepath relationship xt+1,t = −nst,t. Substituting this into the first of the above equa-

tions allows us to solve in particular for st in terms of xt, st,t, st−1, εt; from the second

equation we can solve for st,t in terms of st−1,t, so that we can replace the second equa-

tion by an equation for st in terms of xt, st−1,t, st−1, εt. Redefining zt+1 = st, it is now

straightforward to obtain the B-K form for the first equation and the new second equation.

So for example, we set out (A.38) in Dynare, but to avoid confusion, as the definitions

of xt, st are constantly changing through the stages, we rewrite (A.38) as ut+1,t+αut+vt =

βvt−1 + εt, ut − ut,t + vt,t = γvt−1:

alpha = 1.50; beta = 0.90; gamma = 0.50;

model;

v1 = v(-1); u1 = u(-1);

u(+1) + alpha * u + v = beta * v(-1) + e;

u - u1(+1) + v1(+1) = gamma * v(-1);

end;

From Stage 3, we obtain equations for the 2-dimensional vectors xt, st, where x2t =

−ut, s2t = vt, with C2 =

[
−0.7071 0

0.7071 0

]
being rank deficient so that Stage 4 is required.

(A.11) and (A.12) in the more general form become

xt+1,t +

[
0 −0.7071

0 1.5

]
xt +

[
0 0

0 −1

]
st (A.39)

=

[
0 0

0 0

]
xt−1 +

[
0 0.3536

0 −0.9

]
st−1 +

[
0

−1

]
εt

[
−0.7071 0

−0.7071 0

]
xt +

[
−0.7071 0

0.7071 0

]
st +

[
0 0

0 0

]
xt,t +

[
0 0

0 0

]
st,t (A.40)

=

[
0 0

0 −1

]
xt−1 +

[
0 −1

0 0

]
st−1 +

[
0

0

]
εt

Now from Stage 4, xt = x̄t becomes a 1-dimensional vector, and st becomes a 3-dimensional
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vector [s′t x̂t]
′, with (A.15) and (A.16) given by

x̄t+1,t + [1.5] x̄t +
[

0 −1 0
] [ st

x̂t

]
(A.41)

= [0] x̄t−1 +
[

0 −0.9 0
] [ st−1

x̂t−1

]
+ [−1]εt

 0

0

0.7071

 x̄t +

 −0.7071 0 0.7071

0.7071 0 0.7071

0 0 0

[ st
x̂t

]
(A.42)

+

 0

0

−0.7071

 x̄t,t +

 0 0 0

0 0 0

0 −0.7071 0

[ st,t
x̂t,t

]

=

 0

−1

0

 x̄t−1 +

 0 −1 0

0 0 0

0 −0.3536 0

[ st−1

x̂t−1

]
+

 0

0

0

 εt
At this stage, because C2 is singular but C2+C6 is invertible, we move to Stage 6 recalling

(A.18) we compute AA as follows

 xt+k,t
st+k,t
xt+k+1,t

 =


0 0 0 0 1

−0.7071 0 0.7071 0 0

0 0 0.5 0 0

−0.7071 0 −0.7071 0 0

0 0 −0.4 0 −1.5


 xt+k−1,t

st+k−1,t

xt+k,t

 (A.43)

The saddlepath relationship of the form (A.20) solves for

N2 = 0 N1 =
[

0 0.2 0
]

(A.44)

This is consistent with the saddlepath relationship obtained from the original setup in

terms of ut, vt: 
vt+k,t
vt+k+1,t

ut+k,t
ut+k+1,t

 =


0 1 0 0

0 0.5 0 0

0 0 0 1

0.9 −1 0 −1.5



vt+k−1,t

vt+k,t
ut+k−1,t

ut+k,t

 (A.45)

The unstable eigenvalue of the matrix above is -1.5, with eigenvector [−0.6 0.8 0 1],

implying that ut+1,t = 0.6vt,t − 0.8vt+1,t; it is straightforward to check from the second

dynamic equation for (u, v) that vt+1,t = 0.5vt,t, which implies that ut+1,t = 0.2vt,t; this

corresponds to (A.44). We can now substitute this into the first of the (u, v) equations,

so that they become 0.2vt,t + 1.5ut + vt = 0.9vt−1 + εt, ut − ut,t + vt,t = 0.5vt−1. A little

bit of manipulation of these equations results in:

vt = 0.15vt−1 + 0.35vt−1,t + εt − εt,t (A.46)
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We can then eliminate xt+1,t from xt+1,t = −N1st,t−N2xt,t and (A.11) to obtain equa-

tion (A.21). Take expectations at t of (A.21) and (A.22) and solve jointly for [xt,t, st,t]
′,

in terms of [xt−1,t, st−1,t, εt,t]
′; Then substitute (A.23) into (A.21) and (A.22) and now

solving jointly for [xt, st]
′, in terms of [xt−1,t, st−1,t, εt,t, xt−1, st−1, εt]

′ yield (A.24) below

with FF1 = 0 and GG13 = 0. Retain just the solution for st which is (A.24), substituting

this expression into (A.11) to yield (A.25). We now have all the matrices required for this

simple testing model set out in (A.38):

FF3 =

 0 0 0

0 0.35 0

0 0 0

, FF4 =

 0

−1

0

, P1 =

 0

1

0

, G11 =

 0 0.7071 0

0 0.15 0

0 −0.7071 0


It is now obvious that the middle element of the vector st in (A.24) corresponds precisely

to vt in (A.46).

B Generating Artificial Data

This Appendix describes how artificial data is obtained from tochastic simulations of the

model.

First, we rewrite the system (??) with a one-period lead[
zt+1,t

z̃t+1

]
=

[
A A

[
PAJ ′(JPAJ ′)−1J − I

]
0 F [I − PAJ ′(JPAJ ′)−1J ]

][
zt,t−1

z̃t

]
+

[
B

0

]
εt+1 (B.47)

To obtain the impulse response for the underlying variables yt we use the relationship

yt = V1xt + V2st (B.48)

Recalling that zt+1 = [εt+1, st, xt]
′, it follows that st = [0 I 0]zt+1, and we may write

yt = V1xt +

[
0 V2 0

](
Azt +A

[
PAJ ′(JPAJ ′)−1J − I

]
z̃t

)
(B.49)

or more simply

yt =

[
0 V2 V1

]
zt+1 =

[
0 V2 V1

] εt+1

st
xt

 (B.50)

To calculate the IRFs of observable states st, we know that, at time t, the first period

response, using (B.47), is

Is,1 =

[
A A

[
PAJ ′(JPAJ ′)−1J − I

]
0 F [I − PAJ ′(JPAJ ′)−1J ]

][
B

0

]
σε (B.51)

where σε is the standard error of εt. So the first period IRF of yt can be obtained using

(B.50) after a one-time shock.
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To obtain a simulation with shocks happening every single period, we use the same

strategy as above for simulating data. The only thing that is different is that we com-

pute the sum of the IRFs from all of the past shocks when at each point in time a new

random shock hits the above system. In other words, for the length of the simulation

(periods=1000), at each t, [B, 0]′σε is produced by multiplying a sequence of normally

distributed random numbers by the standard error of εt.

varobs a_obs b_obs;

stoch_simul(partial_information, periods=1000, OPTIONS, ...);

C Fernandez-Villaverde Basic RBC Model

The modelling example starts from the basic RBC prototype which is an infinite horizon

model with logarithmic utility, inelastic labour supply, Cobb-Douglas technology, and with

a zero growth steady state. We analyse the canonical social planner’s problem

maxEt
∞∑
t=0

βt {logCt + ψ log(1−Ht)} (C.52)

subject to a resource constraint

Ct +Kt = Kα
t−1(eztHt)

1−α + (1− δ)Kt−1 ; ∀t > 0 (C.53)

zt = ρzt−1 + εt ; εt ∼ N(0, σ2) (C.54)

where Ct is consumption, zt ≡ log(At) where At is labour productivity, Ht is the proportion

of hours worked out of time available and Kt is defined as end-of-period t capital stock.

The following equilibrium conditions are derived from the household problem, the firms’

problem and aggregate conditions

1

Ct
= βEt

{
1

Ct+1

(
1 + αKα−1

t (ezt+1Ht+1)1−α − δ
)}

(C.55)

ψ
Ct

1− Lt
= (1− α)Kα

t−1(ezt)1−αH−1
t (C.56)

Yt = Kα
t (eztHt)

1−α (C.57)

It = Kt − (1− δ)Kt−1 (C.58)

Yt = Ct + It (C.59)

where Yt is output and It is investment.

D The RBC Model in Levine et al. (2019)

We now consider the standard RBC model of a decentralized economy. There are now two

shock AR(1) exogenous processes, At and Gt where Gt is government spending.
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Euler consumption and the household behaviour is summarised by

Utility : Ut = U(Ct, Ht) (D.60)

Euler Consumption : UC,t = βRtEt [UC,t+1] (D.61)

Labour Supply :
UH,t
UC,t

= −Wt (D.62)

where UC,t ≡ ∂Ut
∂Ct

is the marginal utility of consumption and Et[·] denotes rational expec-

tations based on the agents’ information set, describes the optimal consumption-savings

decisions of the household. It equates the marginal utility from consuming one unit of

income in period t with the discounted marginal utility from consuming the gross income

acquired, Rt, by saving the income. For later use define Λt,t+1 ≡ β
UC,t+1

UC,t
is the real

stochastic discount factor over the interval [t, t+1]. (D.62) equates the real wage with the

marginal rate of substitution between consumption and leisure.

Output and the firm behaviour is summarised by

Output : Yt = F (At, Ht,Kt−1) (D.63)

Labour Demand : FH,t = Wt (D.64)

Capital Demand : 0 = Et [Λt+1(FK,t+1 −Rt + 1− δ)] (D.65)

Stochastic Discount Factor : Λt,t+1 = β
UC,t+1

UC,t
(D.66)

(D.63) is a production function where again Kt is end-of-period t capital stock. Equation

(D.64), where FH,t ≡ ∂Ft
∂Ht

, equates the marginal product of labour with the real wage.

(D.65), where FK,t ≡ ∂Ft
∂Kt−1

, equates the marginal product of capital with the cost of

capital. The model is completed with an output equilibrium, law of motion for capital

and a balanced budget constraint with fixed lump-sum taxes.

The equilibrium of the model can be summarised by a vector with endogenous vari-

ables [Ut, UC,t, Ct, UH,t, Ht, Rt,Λt,Wt, RK,t, Yt,Kt, It]
′ and a vector of two shock processes

[At, Gt]
′. New variables are utility Ut which is of Cobb-Douglas form, marginal utilities of

consumption and hours, UC,t and Ct, UH,t respectively, the gross real interest rate Rt, the

real wage Wt and the gross return on capital RK,t. These 12 endogenous variables satisfy
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the following 12 equations

Ut =
(C

(1−%)
t (1−Ht)

%)1−σ − 1

1− σ
(D.67)

UC,t = (1− %)C
(1−%)(1−σ)−1
t (1−Ht)

%(1−σ) (D.68)

UH,t = −%C(1−%)(1−σ)
t (1−Ht)

%(1−σ)−1 (D.69)

1 = RtEt [Λt,t+1] (D.70)

UH,t
UC,t

= −Wt (D.71)

Λt = β
UC,t
UC,t−1

(D.72)

Yt = (AtHt)
αK1−α

t−1 (D.73)

RK,t =
(1− α)Yt
Kt−1

+ 1− δ (D.74)

Wt =
αYt
Ht

(D.75)

1 = Et[Λt,t+1RK,t+1] (D.76)

Yt = Ct +Gt + It (D.77)

It = Kt − (1− δ)Kt−1 (D.78)

In the .mod file we define scaled variables Y Yt ≡ Yt
Y , CCt ≡ Ct

C etc where Y,C denotes the

zero-growth steady state.

E The Monetary CIA Model in Schorfheide (2000)

In this standard cash-in-advance model29 where decisions of the agents are made after

the current period surprise change in money growth εM,t ∼ N(0, σ2
M ) and technology

εA,t ∼ N(0, σ2
A), there are three agents who solve for their optimality conditions. The

household chooses consumption Ct, hours worked Ht, and deposits Dt to maximise the

sum of discounted expected future utility. Firms and the financial intermediary are owned

by households. The firm chooses desired capital, Kt+1, labour demand, Nt, dividends

Ft and loans Lt to maximise a discounted unit of date t nominal dividends in terms of

the consumption it enables during t + 1. Similarly the financial intermediary values the

dividends from the financial intermediaries Bt and chooses Bt, Lt and Dt to maximise a

discounted unit of date t nominal dividends. The equilibrium conditions are summarised

29See also Nason and Cogley (1994).
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as follows

Et

{
Pt

Ct+1Pt+1

}
= βEt

{
Pt+1αK

α−1
t (At+1Nt+1)1−α + 1− δ

Ct+2Pt+2

}
(E.79)

1

CtPt
= βEt

{
Rt

Ct+1Pt+1

}
(E.80)

Wt =
ψ

1− ψ
CtPt

1−Nt
(E.81)

Rt =
Pt(1− α)Kα

t−1A
1−α
t N−αt

Wt
(E.82)

Wt =
Lt
Nt

(E.83)

Lt = Mt −Mt−1 +Dt (E.84)

Mt = PtCt (E.85)

Yt = Kα
t−1(AtNt)

1−α (E.86)

It = Kt − (1− δ)Kt−1 (E.87)

Yt = Ct + It (E.88)

gA,t =
At
At−1

(E.89)

gM,t =
Mt

Mt−1
(E.90)

log gA,t = γ + εA,t (E.91)

log gM,t = (1− ρ) log gM∗ + ρ log gM,t−1 + εM,t (E.92)

where At is a labour-augmenting technology; Pt the price index and the central bank lets

the money stock Mt grow at gM,t. The innovations εM,t capture unexpected changes of

the money growth rate due to ‘normal’ policy making gM∗ and changes in M∗ correspond

to regime shifts.

F A Small-scale New Keynesian Model

F.1 Supply Side

The retail sector uses a homogeneous wholesale good to produce a basket of differentiated

goods for consumption

Ct =

(∫ 1

0
Ct(m)(ζ−1)/ζdm

)ζ/(ζ−1)

(F.93)

where ζ is the elasticity of substitution. For each m, the consumer chooses Ct(m) at a

price Pt(m) to maximize (F.93) given total expenditure
∫ 1

0 Pt(m)Ct(m)dm. This results

in a set of consumption demand equations for each differentiated good m with price Pt(m)

of the form

Ct(m) =

(
Pt(m)

Pt

)−ζ
Ct (F.94)

57



where Pt =
[∫ 1

0 Pt(m)1−ζdm
] 1

1−ζ
. Pt is the aggregate price index. Note that Ct and Pt

are Dixit-Stiglitz aggregators. So in aggregate

Yt(m) =

(
Pt(m)

Pt

)−ζ
Yt (F.95)

where Yt(m) is the quantities of output needed in the wholesale sector to produce good m

in the retail sector. Integrating over m we then have∫ 1

0
Yt(m)dm = Y W

t =

(∫ 1

0

(
Pt(m)

Pt

)−ζ
dm

)
Yt = ∆tYt (F.96)

where ∆t ≡
∫ 1

0

(
Pt(m)
Pt

)−ζ
dm is price dispersion.

Following Calvo (1983), we now assume that there is a probability of 1 − ξ at each

period that the price of each retail good mis set optimally to POt (m). If the price is not

re-optimized, then it is held fixed.30 For each retail producer m, given its real marginal

cost MCt =
PWt
Pt

, the objective is at time t to choose {POt (m)} to maximize discounted

real profits

Et
∞∑
k=0

ξk
Λt,t+k
Pt+k

Yt+k(m)
[
POt (m)− Pt+kMCt+k

]
(F.97)

subject to

Yt+k(m) =

(
POt (m)

Pt+k

)−ζ
Yt+k (F.98)

where Λt,t+k ≡ βk
UC,t+k
UC,t

is the stochastic discount factor over the interval [t, t + k]. The

solution to this is

Et
∞∑
k=0

ξk
Λt,t+k
Pt+k

Yt+k(m)

[
POt (m)− 1

(1− 1/ζ)
Pt+kMCt+k

]
= 0 (F.99)

Using (F.98) and rearranging this leads to

POt =
1

(1− 1/ζ)

Et
∑∞

k=0 ξ
k Λt,t+k
Pt+k

(Pt+k)
ζ Yt+kMCt+k

Et
∑∞

k=0 ξ
k Λt,t+k
Pt+k

(Pt+k)
ζ Yt+k

(F.100)

where the m index is dropped as all firms face the same marginal cost so the right-hand

side of the equation is independent of firm size or price history.

By the law of large numbers the evolution of the price index is given by

P 1−ζ
t = ξP 1−ζ

t−1 + (1− ξ)(POt )1−ζ (F.101)

Prices now are indexed to last period’s aggregate inflation, with a price indexation

parameter γp. Then the price trajectory with no re-optimization is given by POt (j),

POt (j)
(

Pt
Pt−1

)γp
, POt (j)

(
Pt+1

Pt−1

)γp
, · · ·. where Yt+k(m) is given by (F.95) with indexing

so that

Yt+k(m) =

(
POt (m)

Pt+k

(
Pt+k−1

Pt−1

)γp)−ζ
Yt+k (F.102)

30Thus we can interpret 1
1−ξ as the average duration for which prices are left unchanged.
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F.2 Linearization

The log linearized equilibrium conditions of the full NK model are summarised as follows

at = ρAat−1 + εA,t (F.103)

gt = ρGgt−1 + εG,t (F.104)

mst = ρmsmst−1 + εMS,t (F.105)

kt = (1− δ)kt−1 + δit (F.106)

Et[uC,t+1] = uC,t − rt (F.107)

uC,t = −(1 + (σc − 1)(1− %))ct + (σc − 1)%
H

1−H
ht (F.108)

uL,t = uC,t + ct +
H

1−H
ht (F.109)

wt = uL,t − uC,t (F.110)

yt = α(at + ht) + (1− α)kt−1 (F.111)

yt = cyct + iyit + gy gt (F.112)

gt = tt (F.113)

rt = Et[xt+1]− qt (F.114)

Rxt ≡ (R− 1 + δ)(yt − kt−1) + (1− δ)qt (F.115)(
1 +

1

R

)
it =

1

R
Etit+1 + it−1 +

1

S′′(1)
qt (F.116)

wt = yt − ht (F.117)

πt = βEtπt+1 +
(1− βξ)(1− ξ)

ξ
(mct +mst) (F.118)

mct = pwt − pt = wt + ht − yt (F.119)

rn,t = ρrrn,t−1 + (1− ρr)(θππt + θyyt) + εM,t (F.120)

where the NK model has four structural shocks: three AR(1) which are for technology at,

government gt and price markup mst, and one IID monetary policy εM,t.
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G The SW Model Linearized Equilibrium Conditions

The log linearized equilibrium conditions of Smets and Wouters (2007) are summarised as

follows

yt = C/Y ct + I/Y it +RkK/Y zt + egt (G.121)

ct = c1ct−1 + (1− c1)Ect+1 + c2(ht − Eht+1)− c3(rt − Eπt+1 + ebt) (G.122)

it = i1it−1 + (1− i1)Etit+1 + i2qt + εit (G.123)

qt = q1Eqt+1 + (1− q1)Erkt+1 − (rt − Eπt+1 + ebt) (G.124)

yt = αφpkt + (1− α)φpht + φpε
a
t (G.125)

kst = kt−1 + zt (G.126)

zt = ψ/(1− ψ)rkt (G.127)

kt = k1kt−1 + (1− k1)it + k2ε
i
t (G.128)

mpt = α(kst − ht) + eat − wt (G.129)

πt = π1πt−1 + π2Eπt+1 − π3mpt + ept (G.130)

rkt = −(kt − ht) + wt (G.131)

mwt = wt −
(
σnht +

1

1 + λ/γ
(ct − λ/γct−1)

)
(G.132)

wt = w1wt−1 + (1− w1)E(πt+1 + wt+1)− w2πt + w3πt−1 +mwt + ewt (G.133)

rt = ρrrt−1 + (1− ρr)(ρππt + ρy(yt − yft ) + ρ∆y∆(yt − yft )) + ert

+ flexible economy equations (G.134)

where variables with time subscript are variables from the original non-linear model ex-

pressed in log deviation from the steady state. Variables without time subscript are the cor-

responding balanced growth steady state with growth rate γ (these are Y,C, I,Rk,K,W,H

and e.g. yt = log
(
Yt
Y

)
,where Yt is output from the non-linear equilibrium conditions). The

notation is consistent with the Smets and Wouters (2007) paper and with the Dynare code

in Section 6.5. Flexible output is defined as the level of output that would prevail under

flexible prices and wages in the absence of the two mark-up shocks. There are even struc-

tural shocks. The model has five AR(1), government, technology, preference, investment

specific, monetary policy, and two ARMA(1,1) processes, price and wage markup.

The nominal interest rate rule in the SW model (G.134) differs from that used in the

small-scale NK model (F.120) in that the latter does not require knowledge of the output

gap yt − yft and is referred to as ‘implementable’ by Schmitt-Grohe and Uribe (2007).

This is a more natural choice of rule in our imperfect information set-up. Indeed in the

version of the SW model with measurement errors neither output nor inflation is directly

observed so we introduce an implementable form of (G.134):

rt = ρrrt−1 + (1− ρr)(ρππt,t + ρyyt,t + ρ∆y∆yt,t) + ert (G.135)
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H Data and Model Autocorrelations (NK with 3 Observ-

ables)

See Figure 4.
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Figure 4: Autocorrelations of Observables in the Actual Data and in the Esti-

mated NK Models

Note: The approximate 95% confidence bands are constructed using the large-lag standard errors (see Anderson

(1976)).

I Data and Model Autocorrelations (SW Case 3)

See Figure 5.

J Impulse Response Functions (NK with 3 Observables)

See Figure 6.

K Impulse Response Functions (SW Case 3)

See Figure 7.

L Additional Dynare Output on Theorem 2 and Fundamen-

talness

Here we refer the reader to the additional output produced in Dynare for checking the

invertibility and fundamentalness conditions for all our example models under API and
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Figure 5: Autocorrelations of Observables in the Actual Data and in the Esti-

mated SW Models

Note: The approximate 95% confidence bands are constructed using the large-lag standard errors (see Anderson

(1976)).

AII. The results in the tables above have Dynare output counterparts reported in this

Appendix below.

L.1 Example 1: Simulation with One Observable (yt): rbc II.mod

--- THE INVERTIBILITY CONDITION IS SATISFIED ---

no. of measurements = no. of shocks,

imperfect information is equivalent to perfect information

Measures of Invertibility and Fundamentalness

Matrix E EB J JB

Rank 1 1 1 1

The Eigenvalue Condition for PI is satisfied

The Eigenvalue Condition for II is satisfied

MATRIX F WITH PI

Shocks e

e 0.0000

Shocks e

Eigen 0.0000
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MATRIX F WITH II

Shocks e

e 0.0000

Shocks e

Eigen 0.0000

MATRIX B FOR SQUARE SYSTEMS AND PI ONLY

Shocks e

e 0.0000

Shocks e

Eigen 0.0000

Notes: There is one shock and one observable; imperfect information is equivalent to

perfect information and this is verified by the rank and eigenvalue conditions: EB is of full

rank; A
(
I −B(EB)−1E

)
has stable eigenvalues; JB is of full rank and F (I−B(JB)−1J)

has stable eigenvalues. As expected, there is complete fundamentalness when FPI = 0 and

FII = 0. The fit of the innovations to the structural shocks is determined by the maximum

eigenvalue of eig(F) = 0. Finally, the program also reports BPI = EPEE′ −EBB′E′ = 0

only when m = k.

L.2 Example 1: Simulation with One Lagged Observable (yt−1): rbc yl II.mod

--- THE INVERTIBILITY CONDITION IS NOT SATISFIED ---

no. of measurements = no. of shocks,

but imperfect information cannot mimic perfect information

Measures of Invertibility and Fundamentalness

Matrix E EB J JB

Rank 1 0 1 0

MATRIX F WITH PI

Shocks e

e 1.0000

Shocks e

Eigen 1.0000

MATRIX F WITH II

Shocks e

e 0.8630

63



Shocks e

Eigen 0.8630

MATRIX B FOR SQUARE SYSTEMS

Shocks e

e 1.0000

Shocks e

Eigen 1.0000

Notes: There is one shock and one lagged observable; imperfect information is not equiv-

alent to perfect information and this is verified by the rank conditions: EB is not of

full rank; JB is not of full rank despite E, J being of full rank; A
(
I −B(EB)−1E

)
and F (I − B(JB)−1J) are non-existent. There is no complete fundamentalness for both

cases when FPI > 0 and FII > 0. The fit of the innovations to the structural shocks is

determined by the maximum eigenvalue of F. Finally, the program also reports BPI =

EPEE′ − EBB′E′ only when m = k.

L.3 Table 2: RBC Model with Observables (Yt, Ct): rbc invertibility.mod

--- THE INVERTIBILITY CONDITION IS SATISFIED ---

no. of measurements = no. of shocks,

imperfect information is equivalent to perfect information

Measures of Invertibility and Fundamentalness

Matrix E EB J JB

Rank 2 2 2 2

The Eigenvalue Condition for PI is satisfied

The Eigenvalue Condition for II is satisfied

MATRIX F WITH PI

Shocks epsA epsG

epsA 0.0000 0.0000

epsG 0.0000 0.0000

Shocks epsA epsG

Eigen 0.0000 0.0000

MATRIX F WITH II

Shocks epsA epsG

epsA 0.0000 -0.0000
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epsG 0.0000 0.0000

Shocks epsA epsG

Eigen 0.0000 0.0000

MATRIX B FOR SQUARE SYSTEMS

Shocks epsA epsG

epsA 0.0000 -0.0000

epsG -0.0000 0.0000

Shocks epsA epsG

Eigen 0.0000 0.0000

Notes: There are two shocks and two observables; imperfect information is equivalent

to perfect information and this is verified by both the rank and eigenvalue conditions:

EB is of full rank; A
(
I −B(EB)−1E

)
has stable eigenvalues; JB is of full rank and

F (I−B(JB)−1J) has stable eigenvalues. There is complete fundamentalness when FPI =

0 and FII = 0. The fit of the innovations to the structural shocks is determined by the

maximum eigenvalue of F. Finally, the program also reports BPI = EPEE′−EBB′E′ = 0

only when m = k.

L.4 Table 2: RBC Model with Observables (Yt, Rt): rbc invertibility.mod

--- THE INVERTIBILITY CONDITION IS NOT SATISFIED ---

no. of measurements = no. of shocks,

but imperfect information cannot mimic perfect information

Measures of Invertibility and Fundamentalness

Matrix E EB J JB

Rank 2 2 1 1

The Eigenvalue Condition for PI is satisfied

MATRIX F WITH PI

Shocks epsA epsG

epsA -0.0000 0.0000

epsG 0.0000 -0.0000

Shocks epsA epsG

Eigen 0.0000 0.0000

MATRIX F WITH II

Shocks epsA epsG
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epsA 0.1190 0.0189

epsG 0.0189 0.9996

Shocks epsA epsG

Eigen 0.1186 1.0000

MATRIX B FOR SQUARE SYSTEMS

Shocks epsA epsG

epsA -0.0000 0.0000

epsG 0.0000 0.0000

Shocks epsA epsG

Eigen 0.0000 0.0000

Notes: There are two shocks and two observables; imperfect information is not equivalent

to perfect information and this is verified by both the rank and eigenvalue conditions:

EB is of full rank; A
(
I −B(EB)−1E

)
has stable eigenvalues; JB is not of full rank

and F (I − B(JB)−1J) is non-existent. There is complete fundamentalness for API, as

expected, when FPI = 0 but not for AII when FII > 0. The fit of the innovations to the

structural shocks is determined by the maximum eigenvalue of F. Finally, the program

also reports BPI = EPEE′ − EBB′E′ = 0 only when m = k.

L.5 Table 2: RBC Model with Observables (Ht, Rt): rbc invertibility.mod

--- THE INVERTIBILITY CONDITION IS NOT SATISFIED ---

no. of measurements = no. of shocks,

but imperfect information cannot mimic perfect information

Measures of Invertibility and Fundamentalness

Matrix E EB J JB

Rank 2 2 1 1

The Eigenvalue Condition for PI is not satisfied

MATRIX F WITH PI

Shocks epsA epsG

epsA 0.0060 -0.0627

epsG -0.0627 0.6533

Shocks epsA epsG

Eigen 0.0000 0.6593

MATRIX F WITH II
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Shocks epsA epsG

epsA 0.0149 0.0345

epsG 0.0345 0.9988

Shocks epsA epsG

Eigen 0.0137 1.0000

MATRIX B FOR SQUARE SYSTEMS

Shocks epsA epsG

epsA 0.0006 0.0191

epsG 0.0191 0.6588

Shocks epsA epsG

Eigen 0.0000 0.6593

Notes: There are two shocks and two observables; imperfect information is not equivalent

to perfect information and this is verified by both the rank and eigenvalue conditions:

although EB is of full rank API is not invertible because A
(
I −B(EB)−1E

)
is

not stable – The Eigenvalue Condition for PI is not satisfied; JB is not of full

rank; There is no complete fundamentalness when both FPI > 0 and FII > 0. The fit of

the innovations to the structural shocks is determined by the maximum eigenvalue of F.

Finally, the program also reports BPI = EPEE′ − EBB′E′ > 0 only when m = k.

L.6 Table 2: RBC Model with Observables (Ct, It): rbc invertibility.mod

--- THE INVERTIBILITY CONDITION IS NOT SATISFIED ---

no. of measurements = no. of shocks,

but imperfect information cannot mimic perfect information

Measures of Invertibility and Fundamentalness

Matrix E EB J JB

Rank 2 2 2 2

The Eigenvalue Condition for PI is satisfied

The Eigenvalue Condition for II is not satisfied

MATRIX F WITH PI

Shocks epsA epsG

epsA 0.0000 0.0000

epsG 0.0000 0.0000

Shocks epsA epsG

Eigen 0.0000 0.0000
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MATRIX F WITH II

Shocks epsA epsG

epsA 0.0217 0.1394

epsG 0.1394 0.8950

Shocks epsA epsG

Eigen 0.0000 0.9167

MATRIX B FOR SQUARE SYSTEMS

Shocks epsA epsG

epsA 0.0000 -0.0000

epsG -0.0000 0.0000

Shocks epsA epsG

Eigen 0.0000 0.0000

Notes: There are two shocks and two observables; imperfect information is not equivalent

to perfect information and this is verified by both the eigenvalue conditions only for AII:

although JB is of full rank AII is not invertible because F (I − B(JB)−1J) has

unstable roots – The Eigenvalue Condition for PI is not satisfied; There is no

complete fundamentalness when both FPI = 0 but not surprisingly FII > 0. The fit of

the innovations to the structural shocks is determined by the maximum eigenvalue of F.

Finally, the program also reports BPI = EPEE′ − EBB′E′ > 0 only when m = k.

L.7 Table 2: RBC Model with One Observable (Ct): rbc invertibility.mod

--- THE INVERTIBILITY CONDITION IS NOT SATISFIED ---

no. of measurements < no. of shocks,

imperfect information cannot mimic perfect information

Measures of Invertibility and Fundamentalness

Matrix E EB J JB

Rank 1 1 1 1

MATRIX F WITH PI

Shocks epsA epsG

epsA 0.0126 0.1100

epsG 0.1100 0.9877

Shocks epsA epsG

Eigen 0.0003 1.0000
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MATRIX F WITH II

Shocks epsA epsG

epsA 0.0172 0.0109

epsG 0.0109 0.9999

Shocks epsA epsG

Eigen 0.0171 1.0000

Notes: Number of measurements < number of shocks; imperfect information is not equiv-

alent to perfect information and this is verified by the rank conditions: EB and JB are

not of full rank therefore API and AII are not invertible. There is no complete funda-

mentalness when both FPI > 0 and FII > 0. The fit of the innovations to the structural

shocks is determined by the maximum eigenvalue of F. BPI is no longer applicable for a

non-square case (m < k).

L.8 Table 2: RBC Model with Observables (Yt−1, Ct−1): rbc invertibility.mod

--- THE INVERTIBILITY CONDITION IS NOT SATISFIED ---

no. of measurements = no. of shocks,

but imperfect information cannot mimic perfect information

Measures of Invertibility and Fundamentalness

Matrix E EB J JB

Rank 2 0 2 0

MATRIX F WITH PI

Shocks epsA epsG

epsA 1.0000 0.0000

epsG 0.0000 1.0000

Shocks epsA epsG

Eigen 1.0000 1.0000

MATRIX F WITH II

Shocks epsA epsG

epsA 0.9776 -0.0007

epsG -0.0007 0.8908

Shocks epsA epsG

Eigen 0.9776 0.8908
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MATRIX B FOR SQUARE SYSTEMS

Shocks epsA epsG

epsA 1.0000 0.0000

epsG 0.0000 1.0000

Shocks epsA epsG

Eigen 1.0000 1.0000

Notes: There are two shocks and two observables; imperfect information is not equivalent

to perfect information and this is verified by the rank conditions: JB is not of full rank

despite J being of full rank and this must imply there are lagged observations in the

AII information set. There is no complete fundamentalness when both FPI > 0 and

FII > 0. The fit of the innovations to the structural shocks is determined by the maximum

eigenvalue of F. Finally, the program also reports BPI = EPEE′−EBB′E′ > 0 only when

m = k.

L.9 Table 7: SW Model Case 1: sw07 invertibility.mod

--- THE INVERTIBILITY CONDITION IS SATISFIED ---

no. of measurements = no. of shocks,

imperfect information is equivalent to perfect information

Measures of Invertibility and Fundamentalness

Matrix E EB J JB

Rank 7 7 7 7

The Eigenvalue Condition for PI is satisfied

The Eigenvalue Condition for II is satisfied

MATRIX F WITH PI

Shocks eta_a eta_b eta_g eta_i eta_r eta_p eta_w

eta_a 0.0000 0.0000 0.0000 -0.0000 0.0000 0.0000 0.0000

eta_b 0.0000 0.0000 -0.0000 -0.0000 -0.0000 0.0000 -0.0000

eta_g 0.0000 -0.0000 0.0000 -0.0000 0.0000 0.0000 0.0000

eta_i -0.0000 -0.0000 -0.0000 0.0000 -0.0000 -0.0000 -0.0000

eta_r 0.0000 -0.0000 0.0000 -0.0000 0.0000 0.0000 -0.0000

eta_p 0.0000 0.0000 0.0000 -0.0000 0.0000 0.0000 -0.0000

eta_w 0.0000 -0.0000 0.0000 -0.0000 -0.0000 -0.0000 0.0000

Shocks eta_a eta_b eta_g eta_i eta_r eta_p eta_w

Eigen 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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MATRIX F WITH II

Shocks eta_a eta_b eta_g eta_i eta_r eta_p eta_w

eta_a 0.0000 0.0000 0.0000 -0.0000 0.0000 0.0000 0.0000

eta_b 0.0000 0.0000 -0.0000 -0.0000 -0.0000 0.0000 -0.0000

eta_g 0.0000 -0.0000 0.0000 -0.0000 0.0000 0.0000 0.0000

eta_i -0.0000 -0.0000 -0.0000 0.0000 -0.0000 -0.0000 -0.0000

eta_r 0.0000 -0.0000 0.0000 -0.0000 0.0000 0.0000 -0.0000

eta_p 0.0000 0.0000 0.0000 -0.0000 0.0000 0.0000 -0.0000

eta_w 0.0000 -0.0000 0.0000 -0.0000 -0.0000 -0.0000 0.0000

Shocks eta_a eta_b eta_g eta_i eta_r eta_p eta_w

Eigen 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

MATRIX B FOR SQUARE SYSTEMS

Shocks eta_a eta_b eta_g eta_i eta_r eta_p eta_w

eta_a 0.0000 0.0000 -0.0000 0.0000 -0.0000 -0.0000 0.0000

eta_b 0.0000 0.0000 -0.0000 -0.0000 -0.0000 -0.0000 0.0000

eta_g -0.0000 -0.0000 0.0000 -0.0000 0.0000 0.0000 -0.0000

eta_i 0.0000 -0.0000 -0.0000 0.0000 0.0000 -0.0000 -0.0000

eta_r -0.0000 -0.0000 0.0000 0.0000 0.0000 -0.0000 -0.0000

eta_p -0.0000 -0.0000 0.0000 -0.0000 -0.0000 0.0000 0.0000

eta_w 0.0000 0.0000 -0.0000 -0.0000 -0.0000 0.0000 0.0000

Shocks eta_a eta_b eta_g eta_i eta_r eta_p eta_w

Eigen 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Notes: There are seven shocks and seven observables (as in the original Smets and Wouters

(2007)); imperfect information is equivalent to perfect information and this is verified by

both the rank and eigenvalue conditions: EB is of full rank; A
(
I −B(EB)−1E

)
has

stable eigenvalues; JB is of full rank and F (I −B(JB)−1J) has stable eigenvalues. There

is complete fundamentalness when FPI = 0 and FII = 0. The fit of the innovations to the

structural shocks is determined by the maximum eigenvalue of F. Finally, the program

also reports BPI = EPEE′ − EBB′E′ = 0 only when m = k.

L.10 Table 7: SW Model Case 2: sw07 invertibility inf.mod

--- THE INVERTIBILITY CONDITION IS NOT SATISFIED ---

no. of measurements < no. of shocks,

imperfect information cannot mimic perfect information

Measures of Invertibility and Fundamentalness
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Matrix E EB J JB

Rank 7 7 7 7

MATRIX F WITH PI

Shocks eta_a eta_b eta_g eta_i eta_r eta_p eta_w eta_t

eta_a 0.0000 -0.0000 -0.0000 0.0000 0.0000 0.0000 -0.0000 -0.0000

eta_b -0.0000 0.0006 0.0000 0.0005 -0.0038 0.0001 0.0002 -0.0232

eta_g -0.0000 0.0000 0.0000 -0.0000 -0.0000 -0.0000 0.0000 0.0000

eta_i 0.0000 0.0005 -0.0000 0.0005 -0.0034 0.0001 0.0002 -0.0223

eta_r 0.0000 -0.0038 -0.0000 -0.0034 0.0245 -0.0006 -0.0015 0.1504

eta_p 0.0000 0.0001 -0.0000 0.0001 -0.0006 0.0000 0.0000 -0.0041

eta_w -0.0000 0.0002 0.0000 0.0002 -0.0015 0.0000 0.0001 -0.0096

eta_t -0.0000 -0.0232 0.0000 -0.0223 0.1504 -0.0041 -0.0096 0.9756

Shocks eta_a eta_b eta_g eta_i eta_r eta_p eta_w eta_t

Eigen 1.0000 0.0013 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

MATRIX F WITH II

Shocks eta_a eta_b eta_g eta_i eta_r eta_p eta_w eta_t

eta_a 0.0000 0.0000 0.0000 -0.0001 0.0000 -0.0000 -0.0000 -0.0000

eta_b 0.0000 0.0006 -0.0000 -0.0004 0.0000 0.0000 -0.0002 -0.0000

eta_g 0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000

eta_i -0.0001 -0.0004 -0.0000 0.0004 -0.0000 -0.0000 0.0001 0.0000

eta_r 0.0000 0.0000 0.0000 -0.0000 0.0256 -0.0000 0.0000 0.1526

eta_p -0.0000 0.0000 -0.0000 -0.0000 -0.0000 0.0000 -0.0000 0.0000

eta_w -0.0000 -0.0002 0.0000 0.0001 0.0000 -0.0000 0.0001 -0.0000

eta_t -0.0000 -0.0000 -0.0000 0.0000 0.1526 0.0000 -0.0000 0.9761

Shocks eta_a eta_b eta_g eta_i eta_r eta_p eta_w eta_t

Eigen 1.0000 0.0016 0.0009 0.0001 0.0000 0.0000 0.0000 0.0000

Notes: Number of measurements < number of shocks; imperfect information is not equiv-

alent to perfect information and this is verified by the rank conditions: EB and JB are

not of full rank therefore both API and AII are not invertible. There is no complete

fundamentalness when both FPI > 0 and FII > 0. The fit of the innovations to the struc-

tural shocks is determined by the maximum eigenvalue of F. BPI is not applicable for a

non-square case (m < k).

L.11 Table 7: SW Model Case 3: sw07 invertibility inf me.mod

--- THE INVERTIBILITY CONDITION IS NOT SATISFIED ---

no. of measurements < no. of shocks,
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imperfect information cannot mimic perfect information

Measures of Invertibility and Fundamentalness

Matrix E EB J JB

Rank 7 7 7 7

MATRIX F WITH PI

Shocks eta_a eta_b eta_g eta_i eta_r eta_p eta_w eta_t me_y me_c me_i me_w me_pi

eta_a 0.2216 0.0505 0.2269 -0.0324 0.0098 0.0237 -0.0341 -0.0013 -0.2978 -0.1207 -0.0524 0.0806 -0.0100

eta_b 0.0505 0.0924 -0.0722 -0.0712 -0.0195 -0.0157 -0.0250 -0.0206 -0.0677 -0.2191 0.0043 0.0000 0.0376

eta_g 0.2269 -0.0722 0.5199 0.0098 0.0600 0.0169 -0.0027 -0.0107 -0.3237 0.2712 0.0931 0.0379 -0.0064

eta_i -0.0324 -0.0712 0.0098 0.1600 0.0083 0.0206 0.0108 -0.0219 0.0493 0.1631 -0.2551 0.0222 -0.0322

eta_r 0.0098 -0.0195 0.0600 0.0083 0.1007 -0.0958 -0.0904 0.1372 -0.0057 0.0806 -0.0051 0.0210 0.1940

eta_p 0.0237 -0.0157 0.0169 0.0206 -0.0958 0.2262 0.1182 0.0128 -0.0009 -0.0078 0.0039 0.1149 -0.3026

eta_w -0.0341 -0.0250 -0.0027 0.0108 -0.0904 0.1182 0.2585 0.0068 -0.0299 0.0314 0.0112 -0.3117 -0.2136

eta_t -0.0013 -0.0206 -0.0107 -0.0219 0.1372 0.0128 0.0068 0.9780 0.0001 -0.0137 -0.0048 -0.0053 -0.0332

me_y -0.2978 -0.0677 -0.3237 0.0493 -0.0057 -0.0009 -0.0299 0.0001 0.4668 0.1745 0.0764 0.0967 -0.0040

me_c -0.1207 -0.2191 0.2712 0.1631 0.0806 -0.0078 0.0314 -0.0137 0.1745 0.7097 0.0013 -0.0207 0.0065

me_i -0.0524 0.0043 0.0931 -0.2551 -0.0051 0.0039 0.0112 -0.0048 0.0764 0.0013 0.9053 0.0024 -0.0069

me_w 0.0806 0.0000 0.0379 0.0222 0.0210 0.1149 -0.3117 -0.0053 0.0967 -0.0207 0.0024 0.8353 -0.0753

me_pi -0.0100 0.0376 -0.0064 -0.0322 0.1940 -0.3026 -0.2136 -0.0332 -0.0040 0.0065 -0.0069 -0.0753 0.6998

Shocks eta_a eta_b eta_g eta_i eta_r eta_p eta_w eta_t me_y me_c me_i me_w me_pi

Eigen 0.0971 0.0454 0.0138 0.0001 0.0019 0.0058 0.0100 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

MATRIX F WITH II

Shocks eta_a eta_b eta_g eta_i eta_r eta_p eta_w eta_t me_y me_c me_i me_w me_pi

eta_a 0.5754 0.0324 0.1915 -0.0129 0.0799 0.0718 -0.0552 -0.0125 -0.0918 -0.0911 -0.0486 -0.0201 0.0069

eta_b 0.0324 0.8850 -0.0436 -0.0261 0.0465 0.0116 -0.0049 -0.0073 -0.0183 -0.0781 -0.0180 -0.0060 -0.0065

eta_g 0.1915 -0.0436 0.5136 0.0280 0.0565 0.0100 -0.0068 -0.0088 -0.3519 0.2408 0.1185 0.0415 -0.0126

eta_i -0.0129 -0.0261 0.0280 0.6945 0.0222 0.0057 -0.0067 -0.0035 0.0207 0.1334 -0.3107 -0.0108 -0.0061

eta_r 0.0799 0.0465 0.0565 0.0222 0.1099 -0.1121 -0.0521 0.1394 0.0478 0.1168 0.0117 -0.0173 0.1291

eta_p 0.0718 0.0116 0.0100 0.0057 -0.1121 0.4552 0.1214 0.0176 0.0479 0.0148 0.0038 0.1195 -0.4220

eta_w -0.0552 -0.0049 -0.0068 -0.0067 -0.0521 0.1214 0.7095 0.0082 -0.0473 0.0150 -0.0054 -0.2786 -0.0721

eta_t -0.0125 -0.0073 -0.0088 -0.0035 0.1394 0.0176 0.0082 0.9782 -0.0075 -0.0183 -0.0018 0.0027 -0.0202

me_y -0.0918 -0.0183 -0.3519 0.0207 0.0478 0.0479 -0.0473 -0.0075 0.5892 0.1870 0.0862 0.0272 -0.0013

me_c -0.0911 -0.0781 0.2408 0.1334 0.1168 0.0148 0.0150 -0.0183 0.1870 0.6749 0.0886 -0.0191 -0.0109

me_i -0.0486 -0.0180 0.1185 -0.3107 0.0117 0.0038 -0.0054 -0.0018 0.0862 0.0886 0.6672 -0.0186 -0.0038

me_w -0.0201 -0.0060 0.0415 -0.0108 -0.0173 0.1195 -0.2786 0.0027 0.0272 -0.0191 -0.0186 0.7165 -0.0764

me_pi 0.0069 -0.0065 -0.0126 -0.0061 0.1291 -0.4220 -0.0721 -0.0202 -0.0013 -0.0109 -0.0038 -0.0764 0.4854

Shocks eta_a eta_b eta_g eta_i eta_r eta_p eta_w eta_t me_y me_c me_i me_w me_pi

Eigen 0.5404 0.3627 0.2975 0.0302 0.0011 0.0044 0.8182 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Notes: Number of measurements < number of shocks; imperfect information is not equiv-

alent to perfect information and this is verified by the rank conditions: EB and JB are

not of full rank therefore both API and AII are not invertible. There is no complete fun-

damentalness when both FPI > 0 and FII > 0. The fit of the innovations to the structural

shocks is determined by the maximum eigenvalue of F which is now much worse than Case

2. BPI is not applicable for a non-square case (m < k).

L.12 Table 8: SW Model Case 1: sw07 estimation invertib.mod

--- THE INVERTIBILITY CONDITION IS SATISFIED ---

no. of measurements = no. of shocks,

imperfect information is equivalent to perfect information

Measures of Invertibility and Fundamentalness

Matrix E EB J JB

Rank 7 7 7 7

The Eigenvalue Condition for PI is satisfied
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The Eigenvalue Condition for II is satisfied

MATRIX F WITH PI

Shocks eta_a eta_b eta_g eta_i eta_r eta_p eta_w

eta_a 0.0000 0.0000 0.0000 -0.0000 0.0000 0.0000 0.0000

eta_b 0.0000 0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000

eta_g 0.0000 -0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

eta_i -0.0000 -0.0000 0.0000 0.0000 -0.0000 0.0000 -0.0000

eta_r 0.0000 -0.0000 0.0000 -0.0000 0.0000 0.0000 -0.0000

eta_p 0.0000 -0.0000 0.0000 0.0000 0.0000 0.0000 -0.0000

eta_w 0.0000 -0.0000 0.0000 -0.0000 -0.0000 -0.0000 0.0000

Shocks eta_a eta_b eta_g eta_i eta_r eta_p eta_w

Eigen 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

MATRIX F WITH II

Shocks eta_a eta_b eta_g eta_i eta_r eta_p eta_w

eta_a -0.0000 -0.0000 -0.0000 0.0000 -0.0000 -0.0000 -0.0000

eta_b -0.0000 0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000

eta_g -0.0000 -0.0000 0.0000 0.0000 0.0000 0.0000 -0.0000

eta_i 0.0000 -0.0000 0.0000 0.0000 0.0000 -0.0000 0.0000

eta_r -0.0000 -0.0000 0.0000 0.0000 0.0000 0.0000 -0.0000

eta_p -0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000 0.0000

eta_w -0.0000 -0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000

Shocks eta_a eta_b eta_g eta_i eta_r eta_p eta_w

Eigen 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

MATRIX B FOR SQUARE SYSTEMS

Shocks eta_a eta_b eta_g eta_i eta_r eta_p eta_w

eta_a 0.0000 0.0000 -0.0000 0.0000 -0.0000 -0.0000 0.0000

eta_b 0.0000 0.0000 -0.0000 -0.0000 -0.0000 -0.0000 0.0000

eta_g -0.0000 -0.0000 0.0000 -0.0000 0.0000 0.0000 -0.0000

eta_i 0.0000 -0.0000 -0.0000 0.0000 0.0000 -0.0000 -0.0000

eta_r -0.0000 -0.0000 0.0000 0.0000 0.0000 -0.0000 -0.0000

eta_p -0.0000 -0.0000 0.0000 -0.0000 -0.0000 0.0000 0.0000

eta_w 0.0000 0.0000 -0.0000 -0.0000 -0.0000 0.0000 0.0000

Shocks eta_a eta_b eta_g eta_i eta_r eta_p eta_w

Eigen 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Notes: There are seven shocks and seven observables (as in the original Smets and Wouters

(2007)); imperfect information is equivalent to perfect information and this is verified by

both the rank and eigenvalue conditions: EB is of full rank; A
(
I −B(EB)−1E

)
has
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stable eigenvalues; JB is of full rank and F (I −B(JB)−1J) has stable eigenvalues. There

is complete fundamentalness when FPI = 0 and FII = 0. The fit of the innovations to the

structural shocks is determined by the maximum eigenvalue of F. Finally, the program

also reports BPI = EPEE′ − EBB′E′ = 0 only when m = k.

L.13 Table 8: SW Model Case 2: sw07 estimation inf invertib.mod

--- THE INVERTIBILITY CONDITION IS NOT SATISFIED ---

no. of measurements < no. of shocks,

imperfect information cannot mimic perfect information

Measures of Invertibility and Fundamentalness

Matrix E EB J JB

Rank 7 7 7 7

MATRIX F WITH PI

Shocks eta_a eta_b eta_g eta_i eta_r eta_p eta_w eta_t

eta_a 0.0000 -0.0000 -0.0000 0.0000 0.0000 0.0000 -0.0000 -0.0000

eta_b -0.0000 0.0001 0.0000 0.0000 -0.0003 0.0000 0.0000 -0.0082

eta_g -0.0000 0.0000 0.0000 -0.0000 -0.0000 -0.0000 0.0000 0.0000

eta_i 0.0000 0.0000 -0.0000 0.0000 -0.0001 0.0000 0.0000 -0.0038

eta_r 0.0000 -0.0003 -0.0000 -0.0001 0.0015 -0.0001 -0.0001 0.0360

eta_p 0.0000 0.0000 -0.0000 0.0000 -0.0001 0.0000 0.0000 -0.0028

eta_w -0.0000 0.0000 0.0000 0.0000 -0.0001 0.0000 0.0000 -0.0026

eta_t -0.0000 -0.0082 0.0000 -0.0038 0.0360 -0.0028 -0.0026 0.9986

Shocks eta_a eta_b eta_g eta_i eta_r eta_p eta_w eta_t

Eigen 1.0000 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

MATRIX F WITH II

Shocks eta_a eta_b eta_g eta_i eta_r eta_p eta_w eta_t

eta_a 0.0000 -0.0000 0.0000 0.0000 0.0000 0.0000 -0.0000 -0.0000

eta_b -0.0000 0.0000 -0.0000 -0.0000 -0.0000 -0.0000 0.0000 0.0000

eta_g 0.0000 -0.0000 0.0000 0.0000 0.0000 0.0000 -0.0000 -0.0000

eta_i 0.0000 -0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0000

eta_r 0.0000 -0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0071

eta_p 0.0000 -0.0000 0.0000 0.0000 0.0000 -0.0000 0.0000 -0.0000

eta_w -0.0000 0.0000 -0.0000 0.0000 0.0000 0.0000 -0.0000 -0.0000

eta_t -0.0000 0.0000 -0.0000 -0.0000 0.0071 -0.0000 -0.0000 0.9999

Shocks eta_a eta_b eta_g eta_i eta_r eta_p eta_w eta_t

Eigen 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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Notes: Number of measurements < number of shocks; imperfect information is not equiv-

alent to perfect information and this is verified by the rank conditions: EB and JB are

not of full rank therefore both API and AII are not invertible. There is no complete

fundamentalness when both FPI > 0 and FII > 0. The fit of the innovations to the struc-

tural shocks is determined by the maximum eigenvalue of F. BPI is not applicable for a

non-square case (m < k).

L.14 Table 8: SW Model Case 3: sw07 estimation inf me invertib.mod

--- THE INVERTIBILITY CONDITION IS NOT SATISFIED ---

no. of measurements < no. of shocks,

imperfect information cannot mimic perfect information

Measures of Invertibility and Fundamentalness

Matrix E EB J JB

Rank 7 7 7 7

MATRIX F WITH PI

Shocks eta_a eta_b eta_g eta_i eta_r eta_p eta_w eta_t me_y me_c me_i me_w me_pi

eta_a 0.0020 0.0004 0.0014 -0.0003 0.0006 0.0007 -0.0002 -0.0000 -0.0315 -0.0000 -0.0000 0.0049 0.0000

eta_b 0.0004 0.0068 -0.0017 -0.0019 -0.0023 0.0001 0.0002 -0.0164 -0.0004 -0.0358 0.0008 -0.0032 -0.0025

eta_g 0.0014 -0.0017 0.0022 0.0002 0.0008 0.0003 0.0001 -0.0001 -0.0304 0.0286 0.0088 0.0020 -0.0000

eta_i -0.0003 -0.0019 0.0002 0.0018 -0.0007 0.0011 0.0004 -0.0076 0.0021 0.0132 -0.0142 0.0020 -0.0075

eta_r 0.0006 -0.0023 0.0008 -0.0007 0.0081 -0.0028 -0.0021 0.0727 -0.0046 0.0133 0.0003 0.0036 0.0362

eta_p 0.0007 0.0001 0.0003 0.0011 -0.0028 0.0115 0.0040 -0.0054 -0.0057 -0.0002 0.0009 0.0190 -0.0731

eta_w -0.0002 0.0002 0.0001 0.0004 -0.0021 0.0040 0.0044 -0.0050 0.0007 0.0027 0.0013 -0.0372 -0.0400

eta_t -0.0000 -0.0164 -0.0001 -0.0076 0.0727 -0.0054 -0.0050 0.9943 0.0003 -0.0015 -0.0001 -0.0004 -0.0034

me_y -0.0315 -0.0004 -0.0304 0.0021 -0.0046 -0.0057 0.0007 0.0003 0.9980 0.0009 0.0003 0.0004 -0.0002

me_c -0.0000 -0.0358 0.0286 0.0132 0.0133 -0.0002 0.0027 -0.0015 0.0009 0.9975 -0.0000 -0.0001 -0.0004

me_i -0.0000 0.0008 0.0088 -0.0142 0.0003 0.0009 0.0013 -0.0001 0.0003 -0.0000 0.9997 0.0000 0.0000

me_w 0.0049 -0.0032 0.0020 0.0020 0.0036 0.0190 -0.0372 -0.0004 0.0004 -0.0001 0.0000 0.9982 -0.0002

me_pi 0.0000 -0.0025 -0.0000 -0.0075 0.0362 -0.0731 -0.0400 -0.0034 -0.0002 -0.0004 0.0000 -0.0002 0.9916

Shocks eta_a eta_b eta_g eta_i eta_r eta_p eta_w eta_t me_y me_c me_i me_w me_pi

Eigen 1.0000 1.0000 0.0064 0.0058 0.0018 0.0000 0.0009 0.0006 0.0005 1.0000 1.0000 1.0000 1.0000

MATRIX F WITH II

Shocks eta_a eta_b eta_g eta_i eta_r eta_p eta_w eta_t me_y me_c me_i me_w me_pi

eta_a 0.0023 0.0046 -0.0002 -0.0106 -0.0107 0.0023 -0.0005 0.0002 -0.0017 0.0001 -0.0000 0.0003 0.0001

eta_b 0.0046 0.2401 -0.0035 -0.0333 0.0264 0.0029 -0.0035 -0.0004 0.0000 -0.0074 -0.0001 -0.0000 0.0001

eta_g -0.0002 -0.0035 0.0007 0.0068 -0.0058 0.0011 -0.0005 0.0001 -0.0014 0.0013 0.0004 0.0001 0.0000

eta_i -0.0106 -0.0333 0.0068 0.1007 -0.0103 0.0012 -0.0030 0.0001 -0.0000 0.0018 -0.0029 -0.0000 0.0000

eta_r -0.0107 0.0264 -0.0058 -0.0103 0.1222 -0.0236 0.0101 0.0127 -0.0000 0.0003 -0.0000 0.0001 -0.0008

eta_p 0.0023 0.0029 0.0011 0.0012 -0.0236 0.0076 -0.0039 0.0003 -0.0004 0.0000 0.0000 0.0006 -0.0380

eta_w -0.0005 -0.0035 -0.0005 -0.0030 0.0101 -0.0039 0.0189 -0.0001 -0.0000 0.0002 -0.0000 -0.0075 -0.0064

eta_t 0.0002 -0.0004 0.0001 0.0001 0.0127 0.0003 -0.0001 0.9998 0.0000 -0.0000 0.0000 -0.0000 0.0000

me_y -0.0017 0.0000 -0.0014 -0.0000 -0.0000 -0.0004 -0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 -0.0000

me_c 0.0001 -0.0074 0.0013 0.0018 0.0003 0.0000 0.0002 -0.0000 0.0000 0.9999 0.0000 0.0000 0.0000

me_i -0.0000 -0.0001 0.0004 -0.0029 -0.0000 0.0000 -0.0000 0.0000 0.0000 0.0000 1.0000 -0.0000 0.0000

me_w 0.0003 -0.0000 0.0001 -0.0000 0.0001 0.0006 -0.0075 -0.0000 0.0000 0.0000 -0.0000 0.9999 -0.0000

me_pi 0.0001 0.0001 0.0000 0.0000 -0.0008 -0.0380 -0.0064 0.0000 -0.0000 0.0000 0.0000 -0.0000 0.9985

Shocks eta_a eta_b eta_g eta_i eta_r eta_p eta_w eta_t me_y me_c me_i me_w me_pi

Eigen 0.2538 0.1241 0.0941 0.0177 0.0010 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Notes: Number of measurements < number of shocks; imperfect information is not equiv-

alent to perfect information and this is verified by the rank conditions: EB and JB are

not of full rank therefore both API and AII are not invertible. There is no complete fun-

damentalness when both FPI > 0 and FII > 0. The fit of the innovations to the structural

shocks is determined by the maximum eigenvalue of F which is now much worse than Case

2. BPI is not applicable for a non-square case (m < k).

76



L.15 Table 13: Simulation of the Estimated Model: fs2000 invertibility II.mod

--- THE INVERTIBILITY CONDITION IS NOT SATISFIED ---

no. of measurements = no. of shocks,

but imperfect information cannot mimic perfect information

Measures of Invertibility and Fundamentalness

Matrix E EB J JB

Rank 2 2 2 2

The Eigenvalue Condition for PI is satisfied

The Eigenvalue Condition for II is not satisfied

MATRIX F WITH PI

Shocks e_a e_m

e_a -0.0000 -0.0000

e_m -0.0000 0.0000

Shocks e_a e_m

Eigen 0.0000 0.0000

MATRIX F WITH II

Shocks e_a e_m

e_a 0.0667 0.2495

e_m 0.2495 0.9333

Shocks e_a e_m

Eigen 0.0000 1.0000

MATRIX B FOR SQUARE SYSTEMS

Shocks e_a e_m

e_a -0.0000 0.0000

e_m 0.0000 -0.0000

Shocks e_a e_m

Eigen 0.0000 0.0000

Notes: There are two shocks and two observables; imperfect information is not equivalent

to perfect information and this is verified by just the failure of the eigenvalue condition

for AII: EB is of full rank and A
(
I −B(EB)−1E

)
is a stable matrix therefore API is

E-invertible; JB is of full rank but the eigenvalue condition fails with AII: F (I −
B(JB)−1J) has eigenvalues outside the unit circle – The Eigenvalue Condition

for II is not satisfied. There is complete fundamentalness when FPI = 0 for API

but with AII FII > 0 and this is consistent with the finding based on Theorem 2. The
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fit of the innovations to the structural shocks is determined by the maximum eigenvalue

of F. Finally, the program also reports BPI = EPEE′ − EBB′E′ = 0 = FPI only when

m = k.

M The PartInfoDyn Toolbox: Instructions

1. Click here for viewing and downloading PartInfoDyn.zip.

2. Download and install dynare-4.6.2 in the usual way, download the zip-file PartInfoDyn.zip

and extract its content which contains:

• partial_information

• examples

• partinfo_doc

3. Replace subfolder ...\dynare-4.6.2\matlab\partial_information with the above

folder partial_information (i.e. copy the codes from partial_information, paste

them into the dynare-4.6.2 subfolder, overwriting the content).

4. Run standard .mod files as usual; Run .mod files under imperfect information by fol-

lowing the syntax rules introduced above for simulation and estimation respectively.
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Figure 6: Impulse Response Functions (NK Model with 3 Observables)

Notes: Solid black line PI responses. Dashed red line II responses. Each panel plots the mean response corresponding

a positive one standard deviation of the shock’s innovation. Each response is for a 40 period (10 years) horizon and

is level deviation of a variable from its steady-state value.
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Figure 7: Impulse Response Functions (SW Model Case 3)

Notes: Solid black line PI responses. Dashed red line II responses. Each panel plots the mean response corresponding

a positive one standard deviation of the shock’s innovation. Each response is for a 40 period (10 years) horizon and

is level deviation of a variable from its steady-state value.
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