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Abstract

This paper sets out a coherent framework for studying the economic effects of

the Covid-19 pandemic, and policies aimed at controlling both the health and eco-

nomic trade-offs that it poses. It does this by combining two key epidemiological and

macroeconomic models: the SIR model and the RBC model. We argue that much of

the present literature can be understood using this framework. The SIR-type epidemi-

ology model in the paper has the novel feature of both no-disease and endemic steady

states, two possible outcomes of Covid-19. The stability properties of these equilibria

are examined and are shown to depend on the reproduction number and also, possi-

bly, on the complex dynamics introduced by ‘predator-prey’ behaviour of the virus. In

addition, we show how endogenous social interaction fits within the model. Lockdown

– reducing the size of the susceptible population – is then introduced into the RBC

model as a social planner’s problem. By linking this epidemiolgy model with a simple

RBC model, we provide an integrated framework for examining the economic effects of

Covid-related policies and the economic cost of lockdown policies of particular scope

and duration. In principle an empirical implementation of this framework can be used

to deduce the price of a life implied by a particular lockdown policy. Looking forward,

extensions of our framework offer the chance to study economic challenges in areas

such as debt financing, human capital shocks, or vaccine production and roll-out, all

of which are inevitably emerging.
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1 Introduction

The Covid-19 pandemic has posed profound challenges for societies across the world and

these have been reflected in the remarkable development of responses and analyses amongst

physical and social scientists. Work by economists has grown rapidly since early awareness

of the virus in the Spring of 2020 and has generated several new series such as Covid Eco-

nomics (CEPR) and Covid-19 Economic Research (INET) as well as appearing elsewhere.

At the most general, this work has focused on the policy trade-offs at the heart of the pan-

demic (controlling the virus at the expense of economic activity), and a central feature has

been the integration of epidemiological models of virus proliferation with various models

of the economy in order to specify the trade-offs and analyse possible policy responses.

More specifically, three broad strands can be discerned. One, exemplified by Miles

et al. (2020), seeks to quantify the cost and benefits of controlling the virus, by balancing

its costs in terms of QALYs against the output costs of seeking to limit these by curtail-

ing economic activity. The analysis is numerical, rather than technical, but emphasises

the importance, and feasibility, of an evidence-based approach to this naturally emotive

context. Two other strands use more technical approaches to analyse the economic ef-

fects of the Covid pandemic and to assess the effects of alternative policy responses. The

first concentrates on how virus transmission is linked to social and economic activity and

how it might be tempered by policies focusing on these. As such, it explicitly models the

epidemiology of virus transmission using the classic “Susceptible, Infected, Recovered or

Removed” (SIR) model of Kermack and McKendrick (1927) and embeds this, to varying

extents, within an economic model. Both Brodeur et al. (2020) and Lewis (2020) provide

good summaries of this work but we give several examples since the current paper also

makes use of this framework. In a sense, the important feature here is how policy can

influence the interactions between individuals that promote the spread of the virus. Thus,

Eichenbaum et al. (2020) endogenise transitions between the stages of the SIR model via

the way that economic interactions in consumption and work (themselves resulting from

optimising behaviour) affect the probabilities of encountering and contracting the virus.

Alternatively, Farboodi et al. (2020) consider the effect of social distancing on these tran-

sition probabilities. Other work using the SIR model has focused more explicitly on its

structure and how this influences the economic effects of the pandemic. For instance,
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Acemoglu et al. (2020) partition the occupants of the various stages into different groups

of the population so that different age-groups can be allowed for1, while Piguillem and

Shi (2020) consider symptomatic and asymptomatic carriers and Gollier (2020) introduces

uncertainty about the underlying parameters characterising the virus.

A third strand of literature examines the macroeconomic consequences of the pan-

demic. Mihailov (2020) derives these economic effects from an explicit macro model (the

Gali-Smets-Wouters model) but does not incorporate a specific model of virus transi-

tion. Instead, the virus is modelled as a labour supply shock. Chudik et al. (2020) also

treat the virus as an exogenous shock to employment and trace its effects through that.

Like Mihailov, McKibbin and Fernando (2020) examine a formal (DSGE) macro model,

analysing the effects of seven scenarios across a number of countries in a Computable Gen-

eral Equilibrium Framework. Other authors aim to link the macroeconomic consequences

of Covid-19 to the SIR model of virus transmission. Eichenbaum et al. (2020) build their

macro-model onto their version of the SIR model (described above), paying particular

attention to how policies impact on labour market and consumption activity and, thus, to

the probabilities of virus transmission they endogenise through these routes. Bayraktar

et al. (2020) offer a model where a social planner chooses policies (in particular, relating to

lockdown) to minimise a macroeconomic loss function that includes a production function

linking output to labour supply. In common with others, the authors investigate several

interesting amendments to the SIR model, including ‘old’ and ‘young’ population segments

and behaviour-dependent transmission, captured by an inter-group interaction parameter,

and a ‘penalty’ for policies that allow excessive pressure to be placed on ICU facilities in

hospitals. Their simulations suggests that optimal lockdown, coupled with other policies

to slow transmission, can achieve herd immunity before the need for vaccines. Hindsight,

of course, raises questions about these findings but does not undermine the interesting

attempts to build lockdown, heterogeneous groups and several behavioural policies into a

combined SIR/macro model.

The current paper contributes to this literature by presenting a framework for studying

the economic effects of the Covid-19 pandemic that, in principle, can incorporate many of

the developments and policy responses described above: in this way, the paper can also

1As well as age, other groups to have attracted significant attention during the pandemic, and to be
amenable to Acemoglu et al. (2020)’s approach, would include care home residents.
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be read as a survey of the main elements of work to date. We also show how several new

developments of existing literature can be treated within the framework. We do this by

first developing the SIR model in order to identify its steady state equilibria and then

showing how the introduction of ‘predator-prey’ behaviour enables population dynamics

to influence these equilibria. We then integrate this with a simple RBC model with fiscal

policy and illustrate how this can be used to study optimal lockdown policies.

To be more precise, the epidemiological component of the paper extends the SIR

model, drawing upon and adapting the recent work of Cui et al. (2020), which is a model

of hepatitis C. The SIR model is extended to a SIHR model by adding a hospitalized (H)

group. Sections 2 and 3 set out this component. We show that the epidemiology dynamics

have both a ‘no-disease’ steady state and an endemic one in which the disease does not

‘die away’ in equilibrium, thus offering two possible outcomes of Covid-19. The stability

properties of these equilibria are examined and are shown to depend on the reproduction

number. Section 2.4 adapts the SIR model to allow for ‘predator-prey’ behaviour along the

lines of the seminal Lotka-Volterra model, thereby allowing it to illustrate the complex

dynamics that a virus can exhibit, perhaps along the lines of the more recent ‘waves’

associated with Covid-19.

Section 4 shows how the SIHR epidemiology model can incorporate endogenous so-

cial interaction, along the lines of Farboodi et al. (2020). The process for solving the

decentralized laissez-faire market equilibrium where the level of social activity is chosen

by households is compared with that for solving the social planner’s problem, where the

quantity of interaction is chosen to maximise social welfare. We note that treating this as

a deterministic model with perfect foresight rational expectations admits a standard so-

lution technique but we also discuss what would be required to solve a stochastic version,

with information frictions relating to (say) perceptions of risk under uncertainty.

Section 5 then presents a simple model that, when integrated with the SIR model,

allows us to indicate how an optimal Covid policy (in our case, lockdown) can be studied.

Our RBC model is a richer macroeconomic setting compared with Eichenbaum et al.

(2020); it includes capital as a factor of production, capital as well as labour taxes and a

government non-balanced budget constraint that enables us to study the debt aftermath

of lockdown. Medium-sized New Keynesian DSGE models, such as Smets and Wouters
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(2007), have an RBC core in the limit as sticky prices and wages become flexible. Our

model is then are well-suited to interesting extensions that can incorporate, alongside

Keynesian features, financial frictions along the lines of Bernanke et al. (1999), Gertler

and Karadi (2011), Gertler and Kiyotaki (2012) and Iacoviello (2015). It can also be

extended to include an R&D (perhaps pharmaceutical) sector that results in endogenous

technical change as in Comin and Gertler (2006) and Comin et al. (2016). In addition,

the trade-off between lives saved and foregone economic activity suggests an implicit value

of life, as indicated in Section 6, where lockdown is chosen as a social planner’s problem.

Our SIR/RBC model, based on well-established modelling, should therefore be seen as a

helpful framework for thinking about many features of the economic effects of Covid-19,

and policies to combat it.

In Section 7, we provide conclusions and directions for future research. Our framework

has the benefit of accommodating, and opening up, a number of policy and modelling op-

portunities which, we argue, can lead to empirically-backed contributions on the design

and effects of policy, both now and in the future. Not least amongst these is the oppor-

tunity, offered by the incorporation of a fully specified macro model, to consider how the

inevitable government expenditures of the past year can be financed, whether the pandemic

is eliminated or remains endemic (possibly through variants), and against a background

of shocks to human capital that may emerge from Covid-19’s impact on education.2

2 Covid-19 Model

We adapt the seminal SIR model to model important features of the Covid-19 virus epi-

demic, drawing upon the recent work of Cui et al. (2020) which is a model of hepatitis C.

We now allow for four categories of living people: susceptible (S), newly infected with

the virus (I), seriously infected and hospitalized (H) and recovered (R). Then in discrete

time in period t, the living population Nt = St + It + Ht + Rt. In addition there is a

mortality stock of people (Dt) who have died from the virus. Nt, St, It, Ht and Rt are

2On completing this paper our attention was drawn to a special issue in the Journal of Mathematical
Economics with an editorial introduction by Boucekkine et al. (2021). The articles address multiple topics
where economic theory may help understand the evolution of a pandemic, the policies that may best deal
with it, and its socio-economic implications. A survey of this impressive work is beyond the scope of our
article, except to say that both complementary and contrasting approaches to the use of an integrated
epidemiology-macro model for designing lock-down policy are to be found in this issue.
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Figure 1: Covid-19 Model

end-of-period t stocks of people.

Flows take place from the S-group to the I-group; then from the I-group to the H-group

with probability p and to the R-group with probability (1−p) both at a rate γ1; then from

the H-group to the D-group with a probability µ and the R-group with probability 1− µ

at rate γ2. The infection rate β is defined by the flow of new infections = βSt(It + Ht).

For all groups there is a natural mortality rate a. For the S-group there is a birth rate Λ

= the natural mortality rate a. Population then declines at the virus mortality rate µ.

2.1 Dynamics with Full Immunity

The epidemiology model dynamics are given by:

St = St−1 + ΛNt−1 − βSt−1(It−1 +Ht−1)− aSt−1 − log ISt (1)

It = It−1 + βSt−1(It−1 +Ht−1)− (a+ γ1)It−1 + log ISt (2)

Ht = Ht−1 + pγ1It−1 − (a+ µ)Ht−1 − (1− µ)γ2Ht−1 (3)
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Rt = Rt−1 + (1− p)γ1It−1 + (1− µ)γ2Ht−1 − aRt−1 (4)

Dt = Dt−1 + γ2µHt−1 (5)

Nt = St + It +Ht +Rt (6)

ISt = ISρt−1 exp(εI,t) (7)

An infection shock at time t, log ISt, transfers people from the S-group to the I-group.

2.2 No-Disease and Endemic Steady State Equilibria

Consider a zero-growth steady state with denoted by S, I, H, R and D. There are two

of these steady-state equilibria, one associated with zero disease and one with permanent

disease. We consider these in turn.

The zero-growth steady state of (1)–(6) takes the form:

ΛN − βS(I +H)− aS = 0

βS(I +H)− (a+ γ1)I = 0

(1− p)γ1I + (1− µ)γ2H − aR = 0

D = γ2µH

Taking N as given this has a solution

I = αIN (8)

H = αHN (9)

R = αRN (10)

where

βS(αI + αH) = (a+ γ1)αI (11)

pγ1αI = (a+ µ+ (1− µ)γ2)αH (12)

αR =
(1− p)γ1αI + (1− µ)γ2αH

a
(13)

Now introduce the reproduction number R0 that plays a central role in epidemiology
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modelling. For now we define R0 in the steady state by

R0 ≡
ΛN

aS
(14)

Then from (8)–(14) a little algebra gives

R0 =
βΛN

a+ γ1︸ ︷︷ ︸
primary infections

+

(
βΛN

a+ γ1

)(
pγ1

a+ µ+ (1− µ)γ2

)
︸ ︷︷ ︸

secondary infections

(15)

This shows how the reproduction number R0 captures two flows: the first term is the flow

from the S-group into the I-group; the second term is the flow from the I-group into the

H-group.

Up to now the analysis is general and applies to two possible steady-state equilibria.

The first is a no-disease steady-state with I = H = R = 0. Then from (8) we have

S = ΛN
a . The second equilibrium is endemic with I, H, R and D all greater than zero.

This has a unique solution for R0 > 1 of the form:

I = αI(R0 − 1) (16)

H = αH(R0 − 1) (17)

R = αR(R0 − 1) (18)

ΛN = βS(αI + αH)(R0 − 1) + aS (19)

pγ1αI = (a+ µ+ (1− µ)γ2)αH (20)

αR =
(1− p)γ1αI + (1− µ)γ2αH

a
(21)

S =
ΛN

aR0
(22)

Then from (16), (17) and (22) we have that

(R0 − 1) =
β

a
(αI + αH)(R0 − 1) (23)

Hence for R0 > 1 we have

1 =
β

a
(αI + αH) (24)
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Equations (20) and (24) give us two equations in αI and αH leading to

αI =
(a+ µ+ (1− µ)γ2)a

β(a+ µ+ (1− µ)γ2 + pγ1)
(25)

which completes the solution.

2.3 Stability Properties about the Two Steady States

We generalize the following propositions of Cui et al. (2020) obtained for γ2 = 0 case

(Hepatitis C) to the γ2 > 0 case (Covid19):

Proposition 1.

The model is locally stable in the vicinity of the no-disease steady state iff the reproduction

number R0 < 1.

The model is always locally stable in the vicinity of the positive-disease steady state.

Proof. A straightforward generalization of those in Cui et al. (2020) confirmed by nu-

merical simulations.

2.4 Epidemic Dynamics as Predator-Prey Models

Consider a small change to the SIR model, and the S-group dynamics (1) in particular, to

give

St = St−1 + ΛSt−1 − βSt−1It−1 − aSt−1 (26)

Here flows into the S-group are ΛSt−1 rather than ΛNt−1. Now, away from the steady

state, Nt − Nt−1 = ΛSt−1 − aNt−1 6= 0: the total population can grow or decline away

from a unique zero growth steady state given by

S =
γ1 + a

β

I =
Λ− a
β

R =
γ1I

a

8



Since we must have that I,R ≥ 0, it follows that Λ ≥ a and as Λ→ a we then arrive at a

no-disease steady state, I = R = 0, N = S.

In continuous time we can write the SIR model as

Ṡ = S(Λ− a− bI) (27)

İ = I(cS − d) (28)

Ṙ = γ1I − aR (29)

N = S + I +R (30)

where b = c = β and d = γ1 +a. Equations (27) and (28) form the seminal Lotka-Volterra

(LV) predator-prey model in population dynamics extensively studied in Murray (2002).

They describe the dynamic interaction of two species, the prey (population S in our SIR

model) and predators (population I). As such, Λ− a is the growth rate of the S-group in

the absence of a virus, bI is the removal rate to the I-group (mortality in the predator-prey

interpretation), c = βS is the growth rate of the “predator”, the virus-infected population

in our case and d = γ1 +a is its removal rate either to the R-group or directly to mortality.

To make further progress, following Murray (2002), Chapter 3, subsection 3.1, we first

de-dimensionalise the system by defining new variables

u(τ) ≡ cS(t)

d

βS(t)

γ1 + a

v(τ) ≡ bI(t)

a
=
βI(t)

Λ− a
τ ≡ et

e ≡ γ1 + a

Λ− a

The system becomes

du

dτ
= u(1− v) (31)

dv

dτ
= ev(u− 1) (32)

9



In the space of (u, v) (31) and (32) give

du

dv
= e

v(u− 1)

u(1− v)
(33)

which can be written ∫ (
1

v
− 1

)
dv = e

∫ (
1− 1

u

)
du (34)

Integrating we have

H + log v − v = e(− log u+ u)⇒ eu+ v − log uev = H(u, v) = constant (35)

where H is a constant.

We can now show that H(u, v) has a minimum at u = v = 1.

Proof :

First order (necessary) conditions are:

∂H

∂u
= e

(
1− 1

u

)
= 0⇒ u = 1

∂H

∂v
= 1− 1

v
= 0⇒ v = 1

The second order (sufficient) condition is that the Hessian

 ∂2H
∂u2

∂2H
∂u∂v

∂2H
∂v∂u

∂2H
∂v2

 =

 e
u2

0

0 1
v2

 =

 e 0

0 1

 (36)

at the turning point is positive definite, which is clearly the case. Hence H ≥ 1 + e and in

periodic solutions initial conditions u(0) and v(0) determine the constant in H.3

The steady state relevant for the SIR model is u = v = 1. Then Murray (2002), page

82, shows (for a continuous time model) that the eigenvalues are purely imaginary, so the

solution is periodic: ‘waves’ in the language of the Covid pandemic. Figure 2 illustrates

this feature in a discretized version of the model.

Sections 3.3 and 3.4 in Murray (2002) extend the L-V model to interesting cases of bi-

furcation, limit cycles and, for three or more species, chaos. Our 4-group Covid model can

3See Murray (2002), page 81, for the phase plane trajectories.
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possibly be seen as a 4-species L-V model with the possibility of these forms of complexity.
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Figure 2: SIR-Lotka-Volterra Model: No-Disease Steady State. R0 = 1; a =
0.01/365; p = 0.2; γ1 = 0.05; γ2 = 0.025; µ = 0.5/365; ρ = 0.75; Λ > a;

3 Quantitative Analysis of Covid-19 Model

This section first sets out a calibration strategy that can be adopted given emerging

available data and then proceeds to examine the impulse responses following an infection

shock at the no-disease and endemic steady states examined in Section 2.2.

3.1 Calibration of the SIHR Model

The parameter values chosen in Table 1 are tentative, drawing upon the existing litera-

ture; they enable us to explore some interesting dynamics without providing a definitive

quantitative assessment.
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Calibrated Parameters Value Data

Average Death Rate a 0.01 (annual) Available

Infection Rate β Calibrated to R0 Available

Proportion with mild attack 1− p 0.8 Available

Recovery rate for mild attach group γ1 0.05 (daily) Available

Recovery rate for serious attack group γ2 0.025 (daily) Available

Serious Covid Death Rate µ 0.5/365 (daily) Available

Table 1: Calibration of Epidemiology Model

3.2 Impulse Response Functions Following an Infection Shock

Figures 3 and 4 show responses to a persistent infection for different values of the repro-

duction R0 parameter. Starting from a no-disease steady state the elimination of the virus

and a return to the same steady state requires that R0 < 1. This is illustrated in Figure 3

which shows the ‘flattening of the curve’ and the substantial mortality gains from lowering

the reproduction number to well below unity. By contrast, if the goal is to return to an

endemic steady state, a reproduction number above unity is possible, though again there

are substantial gains from keeping the reproduction number close to unity.

Now consider a lockdown policy that at time t reduces the size of the susceptible

population by a proportion λt and follows a process:

λt = λρλt−1 exp(−ελ,t) (37)

λ = 1 in the steady state and ελ,0 = 0.0, 0.1, 0.25, 0.5, a one-off shock as in the Figure,

ελ,t = 0 for t > 0. ελ,0 then measures the scope of lockdown and ρλ is the speed of

lockxit.

In Figure 5, ρλ = 0.95 and λt returns to 1 after 100 days following the same infection

shock as Figure 3. Lockdown then flattens the curve and acts in the same way as reducing

the R0 number.

4 Endogenous Social Interaction

Up to now the degree of social interaction has been exogenous. We now introduce into

our SIHR epidemiology model a decentralized laissez-faire market equilibrium. Following
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Figure 3: No-Disease Steady State. a = 0.01/365; p = 0.2; γ1 = 0.05; γ2 = 0.025;
µ = 0.5/365; ρ = 0.75; Λ = a;
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Figure 4: Endemic Steady State. a = 0.01/365; p = 0.2; γ1 = 0.05; γ2 = 0.025;
µ = 0.5/365; ρ = 0.75; Λ = a;

Farboodi et al. (2020), social interaction is endogenously chosen by households in a ra-

tional expectations equilibrium where they know the model and can form beliefs of their
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Figure 5: No Disease Steady State: Dynamics following Lockdown. R0 = 1; a = 0.01/365;
p = 0.2; γ1 = 0.05; γ2 = 0.025; µ = 0.5/365; ρ = 0.75; Λ = a;

probabilities of being in each of the SIHR groups. We first assume a deterministic world

with no uncertainty and study a perfect foresight equilibrium.

Let Θst, Θit and Θht be the levels of social interaction chosen by the S, I and H groups

respectively. Then the epidemiology model aggregate dynamics (1)–(2) become

St = St−1 + Λ− βΘstSt−1(ΘitIt−1 + ΘhtHt−1)− aSt−1 (38)

It = It−1 + βΘstSt−1(ΘitIt−1 + ΘhtHt−1)− (a+ γ1)It−1 (39)

Ht = Ht−1 + pγ1It−1 − (a+ µ)Ht−1 − (1− µ)γ2Ht−1 (40)

Rt = Rt−1 + (1− p)γ1It−1 + (1− µ)γ2Ht−1 − aRt−1 (41)

Dt = Dt−1 + γ2µHt−1 (42)

Since we have now normalized the total population at unity and assumed zero popula-

tion growth we can interpret the proportions St, It, Ht, Rt as probabilities of susceptibility,

infection, hospitalization and recovery. Following Farboodi et al. (2020) we now assume a

common level of social interaction Θst = Θit = Θht = Θt across S, I and H groups. The

household discounts the future at a rate βh and a cure is found for the disease at a rate

βc. The cost of hospitalization and death are given by the functions κH(Ht) and κD(Dt)

respectively.

It is assumed that households in the S and H groups choose levels of social activity and
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enjoy utility U(Θ) where U is a single-peaked utility function with a maximium attained

at Θ∗ > 0. A normalization Θ∗ = 1 and U(Θ∗) = 0 means U is a measure of the utility

loss from social distancing.

Denote by lower case the beliefs facing the individual household. With rational beliefs,

the household solves

max
Θt

Σ∞t=0β̄
t((st + it)U(Θt)− κH(ht)ht − κD(dt)dt) (43)

where β̄ ≡ βhβc subject to the constraints of the model

st = st−1 + Λ− βΘ2
t st−1(It−1 +Ht−1)− ast−1

it = it−1 + βΘ2
t st−1(It−1 +Ht−1)− (a+ γ1)it−1

ht = ht−1 + pγ1it−1 − (a+ µ)ht−1 − (1− µ)γ2ht−1

rt = rt−1 + (1− p)γ1it−1 + (1− µ)γ2ht−1 − art−1

dt = dt−1 + γ2µht−1

taking the aggregate states It−1 and Ht−1 as given. This leads to the laissez-faire equilib-

rium.

By contrast, the social planner solves

max
Θt

Σ∞t=0β̄
t((St + It)U(Θt)− κH(Ht)Ht − κD(Dt)Dt)

subject to the aggregate model (38)–(42) with Θst = Θit = Θht = Θt. The difference

between the inter-temporal utilities arising from these two problems is a measure of the

potential benefits from lock-down.

So far the model is deterministic with a perfect foresight rational expectations equi-

librium. In a stochastic model we can allow exogenous parameters β, p, γ1, γ2, and µ

to be log-normal AR1 time-varying processes as well. Now informational frictions are

potentially important and we have a model where perceptions of risk under uncertainty

are important.4 In the epidemiology model there are five shocks for the household to re-

spond to in each period. If they have accurate data on infections It, those hospitalized Ht,

4See Angeletos and Lian (2016) for a survey of recent developments in this literature.
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recovered Rt and deceased Dt they can in principle estimate a finite VAR approximation

of the current values of four of the now time-varying parameters βt, pt, γ1,t, γ2,t, and µt.

This is the ABC and D of VARs in Fernandez-Villaverde et al. (2007) and the shocks

can be backed-out from data observed by agents. But there are five shocks and, more-

over, it is reasonable to assume that they are measured with error. It follows from Levine

et al. (2019) that the standard perfect information assumption in solving for the rational

expectations equilibrium, adopted in our solution, is no longer valid, and the imperfect

information solution of Pearlman et al. (1986) must be assumed.5 This is an important

area for future research on epidemiology-macroeconomic models.

5 The Economic Model

We use a simple RBC with fiscal policy model to assess the economic and welfare cost of

reducing the size of the susceptible working population by enforced ‘leisure’.

5.1 Households

In the absence of lockdown households freely choose between work and leisure and therefore

how much labour they supply. They also own the capital stock which is rented to firms

at a rental rate rKt and choose an optimal investment path. Let the total time available

for work (say 16 hours per day) be normalized at unity and consist of leisure time Lt and

Mt = 1− Lt, the proportion of this time spent at work. The single-period utility is

U = U(Ct, Lt) (44)

and we assume that6

UC > 0, UL > 0 UCC ≤ 0, ULL ≤ 0

In a stochastic environment, the value function of the representative household at time

t is given by

Ωt = Ωt(Bt−1) = Et

[ ∞∑
s=0

βshU(Ct+s, Lt+s)

]
(45)

5See for example Collard et al. (2009) and Levine et al. (2012) for applications of this imperfect infor-
mation solution which is now available as a Dynare option, as explained in Levine et al. (2020).

6Our notation is UC ≡ ∂U
∂C

, UCC ≡ ∂2U
∂C2 etc.
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The household’s problem at time t is to choose paths for consumption {Ct}, leisure, {Lt},

labour supply {Mt = 1−Lt}, capital stock {Kt}, investment {Invt} and bond holdings to

maximize Ωt in (45), given its nominal budget constraint in period t

PBt Bt = Bt−1 + Pt(1− τk)rKt Kt−1 + Pt(1− τw)WtMt − PtCt − PtInvt − PtTt (46)

where Bt is the number of 1-period bonds held by the household at the end of period t

with face value unity, PBt = 1
Rn,t

is the price of bonds where Rn,t is the nominal interest

rate, Bt−1 is the value of these bonds purchased at time t − 1 at maturity in period t,

rKt is the rental rate on capital received from firms, Wt is the real wage rate Invt is real

investment, τk and τw are capital and labour tax rates and Tt are real lump-sum taxes;

and given that capital stock accumulates according to

Kt = (1− δ)Kt−1 + (1−AC(Xt))Invt ; (47)

Xt ≡
Invt

Invt−1
; AC ′, AC ′′ ≥ 0 ; AC(1) = AC ′(1) = 0 (48)

In (48), AC(Xt) are investment adjustment costs, Invt units of output converts to (1 −

AC(Xt))Invt of new capital sold at a real price Qt (Tobin’s Q). All variables are expressed

in real terms relative to the price of output.

We can write the household budget constraint in terms of the nominal value of bond

holdings, Bn
t ≡ PBt Bt and the real value Br

t ≡
PBt Bt
Pt

as follows:

Bn
t =

1

PBt−1

PBt−1Bt−1 + Ptr
K
t Kt−1 + PtWtMt − PtCt − PtInvt − PtTt

= rn,t−1B
n
t−1 + Ptr

K
t Kt−1 + PtWtMt − PtCt − PtInvt − PtTt

Br
t ≡ Bn

t

Pt
=
Pt−1

Pt
rn,t−1

Bn
t−1

Pt−1
+ rKt Kt−1 +WtMt − Ct − Invt − Tt

=
rn,t−1

Πt
Br
t−1 + rKt Kt−1 +WtMt − Ct − Invt − Tt

= RBt−1B
r
t−1 + rKt Kt−1 +WtMt − Ct − Invt − Tt

where RBt−1 =
rn,t−1

Πt
is the ex post real interest rate on bonds set in period t−1 taking into

account inflation Π ≡ Pt
Pt−1

in the interval [t−1, t]. The standard first-order conditions for
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this optimization problem are

Euler Consumption : UC,t = βhR
B
t Et [UC,t+1] (49)

Labour Supply :
UN,t
UC,t

= −
UL,t
UC,t

= −Wt(1− τw) (50)

Leisure and Hours : Lt ≡ 1−Mt (51)

Investment FOC : Qt(1−AC(Xt)−XtAC
′(Xt))

+ Et
[
Λt,t+1Qt+1AC

′(Xt+1)X2
t+1

]
= 1 (52)

Capital Supply : Et
[
Λt,t+1R

K
t+1

]
= 1 (53)

where Λt,t+1 ≡ βh
UC,t+1

UC,t
is the real stochastic discount factor over the interval [t, t + 1],

Xt = Invt/Invt−1 is the rate of change of investment and RKt is the gross return on capital

net of tax is given by

RKt =

[
rKt (1− τk) + (1− δ)Qt

]
Qt−1

The Euler consumption equation, (49), where UC,t ≡ ∂Ut
∂Ct

is the marginal utility of

consumption and Et[·] denotes rational expectations based on agents observing all current

macroeconomic variables (i.e., ‘perfect information’), describes the optimal consumption-

savings decisions of the household. It equates the marginal utility from consuming one

unit of income in period t with the discounted marginal utility from consuming the gross

income acquired, RBt , by saving the income. For later use it is convenient to write the

Euler consumption equation as

1 = RBt Et [Λt,t+1] (54)

Equation (50) equates the real wage with the marginal rate of substitution between con-

sumption and leisure. Note that (49) and (54) imply that bonds are real and there is

therefore no inflation risk.

Equation (52) is the first-order condition for investment where Invt units of output

converts to (1−AC(Xt))Invt of new capital sold at a real price Qt. (53) and (54) equate

the expected discounted return on a riskless bond with that of capital over the period

[t, t+ 1].
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5.2 Firms

Output and the firm’s behaviour is summarized by:

Output : Yt = F (At,Mt,Kt−1) (55)

Labour Demand : FM,t = Wt (56)

Capital Demand : FK,t = rKt (57)

where (55) is a production function. Note here Kt is end-of-period t capital stock. Equa-

tion (56), where FM,t ≡ ∂Ft
∂Mt

, equates the marginal product of labour with the real wage.

(57), where FK,t ≡ ∂Ft
∂Kt

, equates the marginal product of capital with the rental rate rKt .

5.3 Output Equilibrium and the Government Budget Constraint

The model is completed with an output equilibrium and a government budget constraint.

The former is given by

Yt = Ct +Gt + Invt

Corresponding to (46) we have a Government Budget Constraint

PBt Bt = Bt−1 + PtGt − Pt(τwWtMt + τkr
K
t Kt−1 + Tt) (58)

where Bt are bonds issues by the government and we have excluded money creation by

the Central Bank. Corresponding to (49) we then have

Br
t = RBt−1B

r
t−1 +Gt − (τwWtMt + τkr

K
t Kt−1 + Tt) (59)

Combining (49) and (59) we arrive at the economy’s consolidated budget (resource) con-

straint:

rKt Kt−1 +WtMt − Ct − Invt − Tt = Gt − Tt (60)

Equating real output and real income we have Yt = rKt Kt−1 +WtMt. Hence (60) implies

Yt = Ct + Invt +Gt (61)
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Thus the resource constraint is the same as the output equilibrium. The reason for this is

that the household and government budget constraints determine the supply and demand

for government bonds respectively. Thus the consolidated budget constraint is the financial

market equilibrium. Our model imposes labour market equilibrium, the equality of the

supply of hours by households and demand by firms. We have three markets – financial,

labour and output. By Walras’ Law, equilibrium in the first two of these markets implies

equilibrium in the third.

5.4 Functional Forms

We now specify functional forms for production and utility and AR(1) processes for ex-

ogenous variables At and Gt. For production we assume a Cobb-Douglas function. The

utility function is non-separable and consistent with a balanced growth path when the

inter-temporal elasticity of substitution, 1/σ is not unitary. These functional forms, the

associated marginal utilities and marginal products, and exogenous processes are given by

F (At,Mt,Kt−1) = (AtMt)
αK1−α

t−1 (62)

FM (At,Mt,Kt−1) =
αYt
Mt

(63)

FK(At,Mt,Kt−1) =
(1− α)Yt
Kt−1

(64)

logAt − log Āt = ρA(logAt−1 − log Āt−1) + εA,t (65)

logGt − log Ḡt = ρG(logGt−1 − log Ḡt−1) + εG,t (66)

Ut =
(C

(1−%)
t (1−Mt)

%)1−σ − 1

1− σ

→ (1− %) logCt + % log(1−Mt) as σ → 1 (67)

UC,t = (1− %)C
(1−%)(1−σ)−1
t (1−Mt)

%(1−σ) (68)

UN,t = −%C(1−%)(1−σ)
t (1−Mt)

%(1−σ)−1 (69)

AC(Xt) = φX(Xt − 1)2 (70)

The equations (54)–(70) describe an equilibrium in Ut, Ct, Wt, Yt, Lt, Ht, Kt, Invt, R
B
t ,

Tt, given parameter values and exogenous processes, At and Gt, where for the latter we

assume AR1 processes about possibly trending steady states Āt, Ḡt driven by zero mean
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iid shocks εA,t and εG,t. The zero-growth deterministic steady state is set out in Appendix

A.

5.5 Calibration of the RBC Model

The deterministic steady state of the RBC model can be used to calibrate a number of

parameters. The idea is to assume an observed baseline steady state equilibrium. We

then use this observed equilibrium to solve for model parameters consistent with this

observation. In general terms, our baseline steady state can be described in terms of a

vector X = f(θ) of outcomes where θ is a vector of parameters. The calibration strategy

is to choose a subset X1 of n observed outcomes to calibrate a subset θ1 of n parameters.

Partition X = [X1, X2] and θ = [θ1, θ2]. Then θ1 is found by solving

[X1, X2] = f([θ1, θ2]) (71)

for X2 and θ1, given X1 and θ2. If such a solution exists for economically meaningful

parameter values for θ1 then a successful calibration has been achieved.

To apply this we use data for factor shares in the production sector, hours as a pro-

portion of the available leisure time (H), the real interest rate (R) and expenditure shares

cy ≡ C
Y , iy ≡ I

Y and gy ≡ G
Y . First we calibrate α to be the observed wage share in the

wholesale sector.

We can choose units of output and capital stock so that A = 1. Then using K/Y =

1−α
RB−1+δ

from the RBC steady state we can now write

iy ≡
I

Y
=

δK

Y
=
δK

Y
=

δ(1− α)

RB − 1 + δ

from which δ can be calibrated.

From the steady state equation %C
(1−%)(1−H) = W we have seen that

H =
α(1− %)

%C/Y + α(1− %)

21



from which the calibrated % is obtained as:

% =
(1−H)α

(1−H)α+ cyH
(72)

Finally from an observation of R we can calibrate βh from

RB =
1

βh

Observed Equilibrium Value

H 0.35

wage share = α 0.7

cy 0.6

iy 0.2

gy 0.2

RB 1.01

τw = τk 0.25

Calibrated Parameters Value

% 0.6842

δ 0.0202

βh 0.990

Table 2: Calibration of RBC Model

Some remaining parameters need to be set: φX is needed for investment adjustment

costs, and the persistence parameters, ρA and ρG are needed for the AR 1 shock processes,

as are the standard deviations of the shocks. These can be estimated by Bayesian methods;

but for the purposes of the simulations here we choose values σes = φX = 2.0 roughly

reflecting the empirical literature. For all exogenous processes in our models, persistence

parameters are set at 0.75, and shocks have a standard deviation of 1%. This completes

the calibration, and typical US observations and calibrated parameters are illustrated in

Table 2.
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6 Quantitative Analysis of Lock-Down Policy

We now use this RBC with fiscal policy model to assess the economic and welfare cost

of reducing the size of the susceptible working population by enforced “leisure”. In the

absence of lockdown households freely choose how much labour they supply.

6.1 Modelling Lockdown

Consider the utility of a representative household, U(Ct, 1 −M s
t ), where M s

t is the pro-

portion of hours available chosen for work. As we have seen, M s
t satisfies the condition

UNs,t
UC,t

= −Wt(1 − τw) where Wt is the wage and τw is the income tax rate. Without

lockdown, the labour market clears so Md
t = M s

t . Under lockdown firms can only employ

Mt = λtM
d
t where the lockdown variable has been described in Section 3.2.

6.2 The Fiscal Aftermath of Lockdown
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Figure 6: Macroeconomic Impulse Responses Following Lockdown. ρλ = 0.1;
λ0 = 0.2, 0.3, 0.5.

Figure 6 compares the fiscal consequences of different degrees of lockdown as captured

by the proportions of the workforce (λ0) instructed to leave employment. Workers affected
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are compensated with lost wages paid by the government. Distortionary taxes adjust to

stabilize and then reduce the debt-income ratio. A drawn-out recession occurs with output,

consumption, investment and hours sharply falling before gradually returning to the steady

state.

6.3 Welfare Costs of Lockdown

Utility is measured at actual consumption but keeping hours at the non-lockdown

value. Then no ‘leisure’ with Mt < M s
t brings no utility gains and

Ut =
(C

(1−%)
t (1−M s

t )%)1−σ − 1

1− σ

In a non-stochastic environment, the value function of the representative household at

time t is given by

Ωt = (1− βh)

[ ∞∑
τ=0

βτhU(Ct+τ , 1−M s
t+τ )

]

This can be computed from

Ωt = (1− βh)Ut + βhΩt+1

Thus Ω = U in the steady state.

The consumption equivalent (CEQ) measure is given by CEQ ≡ (Ωno lockdown
0 −

Ωlockdown
0 )/CE, where CE is the the steady state of

CEt ≡ ((1.01C
(1−%)
t (1−M s

t )%)(1−σ) − 1)/(1− σ)− Ut

That is, CE is the per period utility gain from a permanent 1% increase in consumption

with fixed hours worked. Since Ω = U , it is the permanent inter-temporal welfare increase

as well in CEQ units.

Table 3 shows the economic costs of lockdown in consumption equivalent units. Now

recall from (37) that λ0 is a measure of the scope of lockdown and ρλ is a measure of

its persistence. A lockdown with the largest scope and slowest exit brings a cost that

is equivalent to a 0.21% permanent reduction in consumption. Our epidemiology model
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λ0 ρλ Days Ω0 CEQ (%)

0.2 0.95 100 5× 10−4 0.0175

0.3 0.95 100 7× 10−4 0.0246

0.5 0.95 100 1.3× 10−3 0.0456

0.2 0.99 400 5× 2.4−3 0.0842

0.3 0.99 400 5× 3.5−3 0.1228

0.5 0.99 400 5× 6.0−3 0.2105

Table 3: Consumption Equivalent Costs with CE = 0.0286 in Steady State.

enables us in principle to link this to lives saved and the cost implied by this policy,7 but

both the economic and empirical models need stronger empirical foundations to come to

conclusions.

7 Conclusions

Both the SIR model of virus proliferation, and the RBC model of macroeconomic activity,

are ‘workhorse’ models in their fields. They have been developed in many directions and,

in the current Covid-19 pandemic, have been brought closer by the need to understand

the interactions between the virus’s health and social effects, and the economic cost of the

measures that have necessarily sought to limit its spread by curtailing social and economic

activity. An appreciable body of work has developed in this direction, and an important

objective of the current paper has been to provide a framework for understanding and

developing this work by integrating the SIR and RBC models. Such a framework allows

a coherent presentation of the existing literature, as well as access to developments in

epidemiology and macroeconomics that can enhance current (and future) work in this

area.

A natural example of where such a framework can be helpful is in studying the

lockdown-mortality gain and the value of life implied by how this is approached. Pre-

senting this as a social planning problem, nested within a full macroeconomic model,

permits investigation of the basis and effects of such policies. In turn, this opens a further

set of topics: for instance, incorporating models of social and voter preferences can explic-

itly capture tastes for equality, or public choice influences on such decisions. Of course,

7See Miles et al. (2020) and Bayraktar et al. (2020).
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decisions about how to finance the significant deficits arising from Covid-19 also need care-

ful economic analysis, and if these are taken against a background of Covid variants (and

possible future waves – as seems likely), integrated macroeconomic and epidemiological

models can offer important insights here. The framework can also be applied to a much

richer economic model with New Keynesian features, while possible regional (or national)

variations in lockdown policy can be studied using trade and factor mobility adaptations.

Incorporating an R&D sector (alluded to in the introduction) would allow incorporation

of vaccine production, while questions vaccine distribution and roll-out could be studied

by including features from trade and aid literature. The epidemiology model can also

be developed; for example, to allow for only temporary immunity and the possibility of

bifurcation and periodic solutions such as the ‘waves’ currently observed with Covid-19,

as in Murray (2002). Section 2.4 illustrates possible research in this direction. Another

path for research is the need to develop models of endogenous social interaction that take

into account perceptions of risk reflected in inferences of key parameters such as the risk

of infection and the mortality rate if infected. Section 4 illustrates this, along the lines of

Farboodi et al. (2020), and suggests possible routes for solving such models.

A striking feature of Covid-19 is its huge differential health impact on individuals across

different ages and social classes; an issue that will also be central to global vaccination

initiatives. We believe that a multi-faceted approach across many disciplines is necessary

to address the questions posed for countries, governments and individuals over the past

year and into the future, and the current paper argues that there is a need to bridge the

gap between the two disciplines of economics and epidemiology as part of this approach

(see Yates (2020)), drawing in particular on mathematical models of epidemiology (see, for

example, Funk et al. (2010) and Metcalf et al. (2015)) and the macroeconomy. This can

enhance the recognition, and empirically-based study, of the policy choices and trade-offs

involved. It seems highly likely, for example, that an optimal lockdown policy that takes

full account of the immediate and long-term intergenerational aspects in an integrated

macro-epidemiology framework would look quite different from the blanket Covid-19 lock-

downs pursued in most countries at various points in the last year; an issue that will be

relevant as countries seek to open up externally as well as internally in the future.
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A The Zero-Growth Steady State of the RBC Model

We assume a zero-growth steady state with Āt = Āt−1 = A say and Ḡt = Ḡt−1 = G.

Kt = Kt−1 = K, etc. Then the full steady state of the standard RBC model is given by:

Q = 1

X = 1

AC = 0

RB =
1

βh

RK = RB = rK(1− τk) + 1− δ

rK =
(1− α)Y

K

Y = (AM)αK1−α

%C

(1− %)(1−M)
= W (1− τw)

αY

M
= W

K

Y
=

1− α
RB − 1 + δ

Inv = δK

Y = C + Inv +G

G = T

U =
(C(1−%)(1−M)%)1−σ − 1

1− σ
→ (1− %) logCt + % log(1−M) as σ → 1

UC = (1− %)C(1−%)(1−σ)−1((1−M)%(1−σ))

UM = −%C(1−%)(1−σ)(1−M)%(1−σ)−1

Given A and G, the steady state above gives 8 equations in 8 stationary variables RB, C,

Y, W, M , Inv, K , T . This describes the zero-growth steady-state equilibrium.

In recursive form this steady state can be written

RB =
1

βh

RK = RB
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rK = RK(1− τk)− 1 + δ

K

Y
=

1− α
rK

=
(1− α)

RB − 1 + δ
I

Y
=

δK

Y
=

(1− α)δ

RB − 1 + δ
C

Y
= 1− I

Y
− G

Y
= 1− I

Y
− gy

M%

(1−M)(1− %)
=

WM

C
=
WM/Y

C/Y
=

α

C/Y

⇒ M =
α(1− %)

%C/Y + α(1− %)

Y = (AM)αK1−α = (AM)α
(
K

Y

)1−α
(Y )1−α ⇒ Y = AM(K/Y )

1−α
α

G = gyY

W = α
Y

M

I =
I

Y
Y

C =
C

Y
Y

K =
K

Y
Y
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