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Abstract 

Rutherford backscattering spectrometry and related techniques have long been used to determine 
the elemental depth profiles in films a few nms to a few microns thick.  However, although 
obtaining spectra is very easy, solving the inverse problem of extracting the depth profiles from 
the spectra is not possible analytically except for special cases.  It is because these special cases 
include important classes of samples, and because skilled analysts are adept at extracting useful 
qualitative information from the data, that ion beam analysis is still an important technique. 

We have recently solved this inverse problem using the simulated annealing algorithm.  We have 
implemented the solution in the "IBA DataFurnace" code, which has been developed into a very 
versatile and general new tool that analysts can now use to rapidly extract quantitative accurate 
depth profiles from real samples on an industrial scale.  We review the features, applicability and 
validation of this new code together with other approaches to handling IBA (ion beam analysis) 
data,  with particular attention being given to determining both the absolute accuracy of the depth 
profiles and statistically accurate error estimates. 

We include a discussion of analyses using RBS, non-Rutherford elastic scattering, elastic recoil 
detection and non-resonant nuclear reactions.  (PIXE - particle induced X-ray emission - is not 
discussed since it is hard to use it for depth profiling, and it is not implemented in DataFurnace.)  
Examples are discussed using multiple techniques simultaneously,  high depth resolution,  and 
where there is systematic ambiguity in the collected data.  Analyses are shown:  of evaporated, 
sputtered, oxidised, ion implanted, ion beam mixed and annealed materials;  of semiconductors, 
optical and magnetic multilayers, superconductors, tribological films and metals;  and of oxides 
on Si, mixed metal silicides, boron nitride, GaN, SiC, mixed metal oxides, YBCO and polymers. 

 

Keywords:   Inverse problems, turnkey analysis, Markov chain Monte Carlo, 
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1-Overview 

We will review our recent developments in thin film depth profiling with Ion Beam Analysis 
(IBA) in the context of the work of the community, discussing the scientific implications of these 
developments, which are such as to effectively establish a new depth profiling tool.  We start 
with a simplified overview of IBA since we believe that our new tool will make IBA attractive to 
many users for the first time.   

The essence of this new tool is its solution of the “inverse problem” of automatically extracting 
depth profiles from Rutherford backscattering (RBS) data:  we therefore start with a description 
of this inverse problem and continue with an introduction to the Simulated Annealing algorithm 
on which the inverse problem's solution is built.  This algorithm was first applied to RBS in 1997 
by Barradas, Jeynes & Webb.  After some RBS examples exemplifying the scope of the tool we 
give details of the physics (the "forward model") and the algorithm used.  We describe and 
discuss the intrinsic ambiguity of IBA data and the systematic approaches to valid analysis in the 
presence of this ambiguity. We also show a number of examples using a variety of forward recoil 
techniques.   

It is one of the major benefits of this new tool that the determination of the confidence limits on 
the calculated depth profiles can be done as a natural extension of the algorithm.  We discuss the 
precision that is available in this way.    

We also discuss the use of accurate calculations of energy resolution as a function of depth to 
enable us to do very high depth resolution analysis.  Both of these features are used in the 
analysis of both SiGe multilayers analysed with RBS and deuterated polymer multilayers 
analysed with NRA (nuclear reaction analysis).   

The accuracy of an analysis is in the end the most important issue.  The establishment of a new 
tool depends first of all on being able to demonstrate that the answers are correct.  At last a 
routine analysis of non-trivial samples is available which is both complete and at state of the art 
accuracy.  Accuracy of analysis depends ultimately on the accuracy of the forward model:  we 
end with a subtle discussion of limitations of the current forward model in the context of an 
extraordinarily precise analysis of an optical multilayer sample.   

Finally we draw some conclusions and point out possible future developments.  We have 
illustrated the review with a number of striking examples showing the wide range of types of 
samples that can be analysed and the wide variety of techniques that are supported with this 
general purpose tool. 

2- Introduction to Ion Beam Analysis  

IBA is a cluster of techniques involving materials analysis by MeV ion beams. When an 
energetic ion strikes a target there are a variety of energy loss mechanisms,  any (or all) of which 
can be used (together or separately) to obtain information about the target. Table 1 summarises 
these techniques, and indicates those for which DataFurnace can be used to obtain elemental 
depth profiles. 
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Table 1:  Glossary of IBA Techniques 
Technique Explanation Data-

Furnace? 
RBS Rutherford 

backscattering 
Nuclear Coulomb scattering, incident ion is detected    (Q = 0) Yes 

EBS elastic (non-Ruther-
ford) backscattering 

Nuclear scattering as RBS, but where the Coulomb barrier is 
exceeded (Q = 0) 

Yes 

ERD elastic recoil detection Synonym for FRS  
(Q = 0) 

Yes 

FRS forward recoil 
spectrometry 

Synonym for ERD  
As RBS (or EBS) but where recoiled target atom is detected.  This 
has to be in a forward scattering direction for kinematical reasons.  

Yes 

NRA nuclear reaction 
analysis 

Non-elastic interaction (Q ≠ 0).  Resultant reaction product 
detected (usually proton, alpha or deuterium) 

Yes 

PIXE particle induced X-ray 
emission 

X-rays from inelastic collisions of the incident ion with inner core 
electrons are easy to detect:  similar spectra to EDAX 

No 

PIGE particle induced 
gamma ray emission 

Special case of NRA,  where a photon is detected No 

channelling  Used with any IBA technique for quantifying and profiling damage 
in single crystal samples 

No 

microbeam  the ion beam can be focussed and scanned and used as a scanning 
ion microscope.  RBS and other spectra can be collected from 
specific regions of the sample.  Usually used with PIXE. 

Yes 

IL ionoluminescence as PIXE,  but lower energy photons detected No 
IBIC ion beam induced 

current 
microbeam technique for investigating semiconductor devices, 
which respond to single ion impacts 

No 

STIM scanning transmission 
ion microscopy 

detects energy loss of single ions penetrating (relatively) thick 
targets.   

No 

 

IBA is now a mature scientific technique, very widely used in electronic materials research, and 
throughout thin film science: the most useful single volume overviews are in the Handbooks 
(Mayer & Rimini, 1977; Tesmer & Nastasi, 1995). It is a very large and diverse field which we 
do not intend to review here, only making a few general comments that may be useful for readers 
not analysts themselves. These readers should note that practitioners will probably quibble with 
almost all of our generalisations here which are intended only to allow newcomers to grasp IBA 
in a concrete way.  

The first of the international biennial Ion Beam Analysis Conference series was held in 1973 
(Mayer & Ziegler, 1973):  these are now very large meetings,  IBA-14 (Möller et al, 2000) had 
362 participants and is supplemented by several other international conference series:  both PIXE 
(see Malmqvist, 1999) and the microbeam (see Prozesky et al, 1999) have their own large 
conferences and there are many regional meetings. IBA is ubiquitous in the scientific thin film 
community:  for example, IBA was used in 38% of the papers published at a recent IBMM 
(conference on the ion beam modification of materials:  Vredenberg et al, 1999). And not only 
the materials community:  for example,  the Louvre Museum in Paris has its own dedicated 
accelerator (Amsel et al, 1990),  and there is extensive international application of IBA 
techniques to cultural and archaeological artefacts (see Respaldiza & Gómez-Camacho, 1997). 

IBA uses incident beam energies ranging perhaps from 100keV to 200MeV. At the low energy 
end the detectors become very expensive,  as do the accelerators at the high end:  we will not 
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attempt to summarise all the detectors and accelerators in use today.  IBA really started when 
nuclear physics groups looked for new uses for their obsolete little 2MV Van de Graaff 
accelerators in the 1960s and 1970s, and there are still some of these machines around. The 
typical machine being installed today is a 2MV tandem machine which can deliver multiply 
charged beams up to perhaps 10MeV. 

An ion beam striking a solid target has many types of interaction, any of which can be used for 
analysis. We should point out that nothing prevents the analyst installing multiple detectors in 
the target chamber to detect any or all of these interactions simultaneously.   

Ionoluminescence has the highest cross-section of all the interactions:  this is a very young field 
(see for example Bettiol et al, 1994,  and Yang et al, 1994).  PIXE (particle induced X-ray 
emission:  see Johanssen & Campbell, 1988) typically uses a 3MeV proton beam, although He is 
also used.  It is directly comparable with electron probe microanalysis (EPMA) with very similar 
spectra, except that there is negligible primary bremsstrahlung background due to the much 
higher particle mass. PIXE therefore has much higher sensitivity than EPMA.  Cross-sections 
can be hundreds of barns (1 barn = 10-24cm2).   

RBS (Rutherford backscattering, see Chu et al, 1978) typically uses a 2MeV He beam with 
typical cross-sections of a barn: but for a similar energy proton beam the Coulomb barrier of 
light target nuclei (up to P) is exceeded and the cross-sections are no longer Rutherford although 
the interactions may remain elastic. We call this EBS (elastic non-Rutherford backscattering).  
EBS cross-sections can exceed RBS ones by orders of magnitude. Of course, two body 
interactions between the incident ion and the target nucleus will both scatter the ion and recoil 
the target nucleus into forward directions. The recoils carry much information about the sample 
and can also be detected.  This is known variously as FRS (forward recoil spectroscopy) or ERD 
(elastic recoil  detection,  see Tirara et al, 1996).   

Where the interaction energy is sufficiently high the nuclear structure becomes involved,  the 
interaction may become inelastic, and nuclear reactions can occur: NRA (nuclear reaction 
analysis) is often very useful since it is isotope specific and there is often no background to the 
signal, but cross-sections typically fall by orders of magnitude (Vizkelethy, 1995;  Hirvonen, 
1995).   

Turning to beam and sample manipulation, microbeams as small as 50nm have been formed, and 
1 micron microbeams are in widespread routine use:  thus lateral maps of the major, minor and 
trace elements of the sample are readily available by PIXE (see Watt & Grime, 1987).  Note that 
for PIXE the excitation volume where the X-rays are generated is essentially determined by the 
beam spot size since protons are not deflected much by electrons. In contrast, the excitation 
volume for X-ray analysis in the SEM is determined by the electron beam energy, and is often 
larger than 5 microns across. Therefore PIXE X-ray maps are typically of much higher lateral 
resolution than EPMA ones. Of course,  secondary electron maps are of much lower resolution 
for PIXE than for the SEM.   

High energy ion beams can be very well collimated and aligned with symmetry directions in 
single crystal samples, making lattice site and damage information available.  Known as 
channelling, this is a very large field in its own right (see Feldman et al, 1982;  Götz & Gärtner, 
1988).  Other interesting emerging fields include in situ observation of the electrical behaviour of 
working semiconductor devices  by ion beam induced current (IBIC:  see for example Breese, 
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Amaku & Wilshaw, 1998),  and the characterisation of the defect structure of thick crystalline 
samples using a channelled beam in transmission (STIM:  scanning transmission ion microscopy,  
see for example Breese, King & de Kerckhove, 1998). 

We emphasise that the IBA DataFurnace we describe applies only to thin film composition depth 
profiling and not to the various microbeam imaging or channelling applications.  Also,  we have 
not yet implemented PIXE although this is often a very useful complementary technique (see for 
example Loh et al, 1993). 

3- The IBA Inverse Problem 

Rutherford scattering: In 1911 Ernest Rutherford explained the structure of the atom as a 
positively charged nucleus surrounded by electrons, where the nucleus was tiny with respect to 
the size of the atom (already known then to be around 1Å).  He used a simple Coulomb potential 
and contradicted J.J.Thompson's "pudding" model.  Rutherford based his model on Geiger and 
Marsden's (1909) data on the "diffuse scattering" (in backward directions) of alpha particles by 
metal foils, and Geiger's (1910) data on the most probable angle of scattering of transmitted 
particles. Although the most probable scattering angle is very low, indicating a distributed charge 
as in Thompson's model, backscattering events require a concentrated charge at the centre of the 
atom (requiring the concept of the nucleus). Geiger and Marsden (1913) subsequently verified 
Rutherford's calculation of the scattering probability, or cross-section.   

Elemental Depth Profiles: It turns out that simple silicon diodes very conveniently stop alphas 
of MeV energies, converting their energy into a cloud of electron-hole pairs which can be 
separated by the electric field if the diode is reverse biased. High quality electronics to determine 
the number of electrons arriving at the anode, and hence the energy of the particle,  have been 
available for over three decades. These detectors are effectively 100% efficient, detecting every 
particle that strikes them. Thus an alpha scattering experiment can determine the mass of the 
target nucleus (from the energy of the scattered alpha, using the kinematics:  conservation of 
energy and momentum), the depth of the target nucleus (also from the energy of the scattered 
alpha, this time using the energy loss as a function of depth in the target material), and the 
concentration of the target nucleus (from the absolute number of scattered alphas, using the 
cross-sections that Rutherford calculated). 

Mass-Depth Ambiguity: Rutherford backscattering spectrometry (RBS) can therefore, in 
principle, determine the complete elemental depth profile of a sample from the energy spectrum 
of the scattered particles. However, the reader will have noticed that the scattered particle energy 
is a function both of the mass of the target nucleus, and of the depth of the target nucleus in the 
sample. This ambiguity in the interpretation of the detected particle energy is the origin of the 
inverse problem that is at the heart of this paper.   

Brice (1973) has shown that the elastic backscattering spectrum has the form of a triple integral: 

 Ψe (E, E3) = A ∂/∂E3 ∫
0

∞
 dx' ∫

0

t
 Ne dx ∫

E’

E
 dE1 Pin Pout σ(E1)/S(E1)  (1) 

where Ψe is the number of incident particles energy E backscattered with energy E3 into the 
detector from element e in the target.  Ne(t) is the number of scattering centres of element e at 
depth t in the target.  For target atoms at the surface E3 is given by the kinematical factor ke: 
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E3=keE, and in general E’(E3) = E3/ke.  E1 is the beam energy before scattering for atom e at 
depth t in the sample.  σ is the differential cross-section and S=dE/dR where dR is the average 
distance travelled by an ion energy E while losing energy dE. The pathlength into the target 
before scattering is given by x and the pathlength after scattering by x’.  Pin and Pout are 
respectively the distributions in the projected range along the incoming and outgoing directions. 

Of course,  the measured spectrum is the sum of the Ψe for all the constituent elements of the 
target.  There is usually no way to measure individual partial spectra Ψe. 

Fitting by Simulation: Clearly, to calculate the inverse N(Ψ) is not easy analytically and we 
describe a new approach to this inverse problem below. The most widespread approach currently 
is a pragmatic application of trial and error.  The standard treatment is to assume that the target 
has a certain structure, to calculate the spectrum that would be obtained from such a target, to 
compare with the collected spectrum and then to iterate until a reasonable match is obtained. The 
skilled analyst, from long experience and cunning, recognises certain features of the spectrum 
and will, usually quite quickly, converge to an acceptable solution.   

This approach has a number of major drawbacks. Firstly, it is entirely manual, requiring a skilled 
analyst to give each spectrum a treatment that can easily take hours. (It should be noted that 
many types of spectra can be treated faster, or require only limited data to be extracted.  And of 
course, analysts have become adept at this.)  Secondly, large numbers of samples cannot be 
handled where a full treatment is needed, since the analyst simply runs out of patience.  Thirdly, 
because of the difficulty of data analysis the temptation for the experimentalist is to make 
samples especially for the analysis, instead of analysing the samples that result from the 
experiment.  Fourthly, in cases where the experimenter has failed to keep the samples simple, the 
spectra can be complex so that the analyst has difficulty extracting definite depth profiles from 
the data:  in these cases the analyst may remain uncertain of the validity of the result.  Fifthly,  
training these skilled analysts is difficult:  they are almost invariably at least postgraduate student 
level.  Sixthly, we have developed the "rule of thumb" (rough estimate), over many years of 
analysis, that to analyse reasonably simple data collected over one day requires three further days 
subsequent concentrated work by the analyst.  Difficult data (or the inexperienced analyst) may 
take much longer!  Clearly, to fully staff an accelerator will be very expensive.  There are, 
currently, few labs offering a full commercial RBS service. 

Fitting by Simulated Annealing: We have taken a completely different approach.  At its 
heart is the simulated annealing algorithm, which is a global minimisation algorithm using 
combinatorial optimisation (see the next section).  We have applied this algorithm to ion beam 
analysis (IBA) data, yielding an algorithmic solution of the IBA inverse problem.  Note that the 
manual  procedure described above is not a true algorithm since it cannot be handled by a 
machine in the general case.  The function of the analyst is now different:  instead of trying to 
guess a rough structure that may be approximately consistent with the data, the analyst 
concentrates on specifying the machine calibrations, on specifying any prior knowledge of the 
sample, and on an appropriate metric for the validity of the result.  For any given set of priors 
(these include instrumental parameters) the algorithm, not the analyst, will determine the depth 
profile. We should point out that the algorithm itself, as we have implemented it, has a large 
number of parameters which could be chosen by the analyst: our implementation has value 
largely because we have shown that we have found values of general validity for most of these 
parameters, and we give the analyst clear rules for the choice of the remainder. 
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We believe that the advent of this new algorithm will completely revolutionise the applicability 
of IBA techniques to thin film analysis since it addresses each of the six drawbacks enumerated 
above at a fundamental level. The improvements are so dramatic that we effectively have a new 
tool for thin film composition analysis. 

4- Introduction to Simulated Annealing 

In this section we describe the various elements of the simulated annealing algorithm that lies at 
the heart of the IBA DataFurnace.  This discussion is central to this paper. 

The essential elements of the simulated annealing algorithm (SA) were invented nearly 50 years 
ago by Metropolis et al (1953) with a group including Edward Teller, in the context of the 
discussion of the use of "fast computing machines" and Monte Carlo methods to calculate the 
equilibrium value of any (thermodynamic) quantity using the canonical ensemble of statistical 
mechanics.  They successfully calculated the equation of state for a 2D ensemble with these 
methods using the Los Alamos MANIAC computer.   

The fundamental SA theorem establishes that provided certain formal criteria are observed,  the 
algorithm is guaranteed to find the absolute minimum of any piecewise continuous function.  
The implementation of the algorithm is always computationally relatively expensive, and a 
revival of interest in it followed the explosion of computing power in the 1980s.  We have found 
the summary of Aarts & Korst (1989) useful.  It has been used to solve previously intractable 
problems such as, for example, the NP-complete1 travelling salesman problem (see Press et al, 
1992), and the construction of automatic sentence parsers for natural language processing (see 
Wilks et al, 1996).  It was actually in the context of the last application, serendipitously, that we 
came across SA. In fact, the NP-complete class of problems has provided an important stimulus 
for the development of SA,  as Kirkpatrick et al (1983) point out in an interesting article that 
uses SA to solve the semiconductor chip layout design problem (as well as the travelling 
salesman problem). 

The Forward Model: We will represent the elemental depth profile of a thin film as a sequence 
of layers of specified thickness, each containing certain elements in a given proportion.  There 
are other ways of representing profiles, but this is quite general and is the natural representation 
for the calculation of the expected IBA energy spectra. Consider an arbitrary depth profile x 
which is a structure {li, λij}, where the vector l is the list of layer thicknesses, and the matrix λ is 
the list of relative proportions of the elements for each layer (and hence Σj λij = 1).  Then the 
forward model is encapsulated in the function F(x) which calculates the energy spectrum Y(E) 
(cf. eq.1) expected for the sample with depth profile x.   

 Y(E) = F(x)          (2a) 

F(x) = Σe  fe (x) 

where the forward model calculates a partial spectrum fe for each chemical element in the 
sample, and the total spectrum is just the sum of the partials. 

                                                 
1"non-deterministic polynomial time complete" - that is,  the computation time is not bounded by any 
power of the number of independent variables of the problem 
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This forward model, which is discussed in detail later (§8),  is the essence of the calculation:  
without a forward model the spectra cannot be interpreted.  All existing simulation programs are 
essentially simply implementations of the forward model.  We consider limitations of the 
existing forward model at the appropriate place.  

The Objective Function: We have to have a way of comparing some profile x with the 
measured spectrum Y.  There are many possibilities, some of which we will discuss later.  We 
could use the very simple and general χ2 function to compare the measured n-channel spectrum 
Y={y1,y2,...,yn} with the calculated one F(x) = {ψ1, ψ2, ... , ψn},  given by: 

 χ2(Y, x) = Σi (yi - ψi)
2.         (2b) 

It is not necessary to use the χ2 function, but some such function must be specified and this is 
known as the objective function O(Y, x).  To solve the inverse RBS problem the objective 
function has to be minimised.  When O(Y, x) is minimised an optimal solution xo has been 
found:  Omin = O(Y, xo).  Note that there may be many indistinguishable solutions xo. Normally 
we are content with any particular solution x that is near an optimal solution xo,  but we show 
later how to find both a most probable solution and also an estimate of the error of this solution.   

Markov chains: SA depends on the mathematics of Markov chains (see Gilks & Richardson, 
1996).  These are simply sequences Ms of states si selected from a state space S such that 
Ms={s1,s2,...si,...sm} where the si+1

th entry in the chain depends only on the si 
th entry and not on 

any previous ones.  More properly,  

P(si+1  |  s1,  s2,  ...  si)  =  P(si+1  |  si):        (2c) 

that is,  the probability of  si+1 given si is independent of all states before i.  

Then the Markov chain is constructed by the transition distribution T(si) = si+1.  This distribution 
is composed of a generation distribution from which a proposed new state is generated, and an 
acceptance criterion which determines whether or not to accept this proposed state as the next 
entry in the Markov chain.   

Barradas, Jeynes & Webb (1997) have pointed out that although S is extremely large, it is finite 
in principle because there are only 92 elements,  and both sensitivity and energy resolution are 
finite.  As an estimate, for any given beam and detection system  

log  |S| ≈ (Πi=1
e 1/φi ) log n         (2d) 

where |S| is the number of states s in the space S, there are e elements in the sample,  φi is the 
relative sensitivity for element i and n is the number of separable layers.  Note that typically no 
more than 50 layers can be distinguished (n < 50) and in each layer we can probably not 
determine the concentration of an element at better than 1% precision (1/φi < 100).  Therefore the 
problem may be treated either as a discrete or (since S is so large) as a continuous problem, 
depending what is mathematically more convenient. 

For SA the Markov chains are constructed in a particular way. The state space S is the space of 
all possible depth profiles x.  This is the same as the space of all conceivable samples2.  The 

                                                 
2In our previous literature we have called S the "solution space", confusingly since one usually thinks of a 
"solution" as being the result of the calculation,  rather than a step in it. 
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Markov chains are then sequences of profiles {x1, x2, . . . xm}.  The generation function for 
constructing xi+1 from xi can be any method of selecting a new profile x from state space.  It is 
the acceptance criterion that gives SA its remarkable properties. 

The Acceptance Criterion: A proposed state xp is accepted depending on how the objective 
function has changed from its value for the last element xi of the current Markov chain under 
construction.  We evaluate the change ∆ = O(Y, xp) - O(Y, xi) in the objective function implied 
by moving from state xi to xp, and if it is improving (∆ < 0) we accept the state: xi+1 = xp.   
However, if it is getting worse (∆ > 0) we may also accept it according to the probability P given 
by the Metropolis criterion:   

P ∝ exp -( ∆ / T)        (2e),   

where T is a control parameter characteristic of the Markov chain under construction.  It is not 
hard to recognise the similarity of this probability to the Boltzmann factor, with T analogous to 
temperature.  Thus, for the construction of the Markov chains used in SA the Metropolis 
criterion (or some generalisation of it) is used for the acceptance criterion:  this gives the Markov 
chains a natural thermodynamic interpretation.  If the Markov chains are long enough they will 
reach a "thermodynamic equilibrium", that is, the expectation value of certain statistics will 
stabilise.  The introduction of a probability into the transition function means that it can be 
viewed as a Monte Carlo process, and these Markov chain Monte Carlo (MCMC) techniques are 
currently of enormous mathematical interest (see for example Gilks & Richardson, 1996). 

The Cooling Schedule: The final component in SA is the cooling schedule.  A sequence of 
Markov chains is constructed with steadily reducing "temperature".  Then the SA theorem states 
that the objective function will be minimised provided that each Markov chain is long enough to 
have reached equilibrium, and provided that the cooling schedule is sufficiently slow.  

Summary:  SA is an algorithm for finding the global minimum of an objective function.  The 
entire state space of this function is explored.  A sequence of states (a Markov chain) is 
constructed in which succeeding states have an objective function that is either reducing or has a 
Boltzmann-like probability of increasing according to a parameter analogous to temperature.  
Hence the idea of "annealing".   A sequence of Markov chains is then constructed with reducing 
temperature; the end point being an optimal solution.  For IBA the objective function for a 
proposed depth profile is constructed from the difference between the spectrum being fitted and 
that calculated with a forward model (a standard simulation code) from the proposed depth 
profile.  Then the state space explored is the space of all possible depth profiles. 

5- Mixed Metal Silicides 

Our first set of examples is in the silicide system.  One form of iron disilicide is a semiconductor, 
and in principle it should be possible to fabricate a heterojunction laser in silicon (Leong et al, 
1997).  On the other hand, cobalt disilicide is a metal, and interesting 3D metallisation schemes 
seem feasible.  Clearly, success with either material is likely to prove revolutionary, but neither 
is easy to incorporate in the standard silicon process and the Surrey group has systematically 
explored synthesis by high dose ion implantation. 

Analytical Solutions:  Nearly ten years ago, in the course of work on ion beam synthesised iron 
disilicide, we came across a spectrum similar to Fig.1; a high dose, high energy Fe implant into 
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Si such that the Fe and Si signals overlapped.  After considerable effort we succeeded in 
extracting an unambiguous depth profile from the data using the analytical (matrix inversion) 
code of Børgesen, Behrisch & Scherzer ("SQUEAKIE", 1982).  This code reconstructs the depth 
profile by a closed calculation from the separated partial spectra.  Since in this case the partial 
spectra overlap we used the code iteratively, starting from the surface.  (Incidentally, Alkemade 
et al, 1990, use the same iterative procedure.) 

In about 1994 a student came to me (CJ) with the spectrum shown in Fig.2, asking for its 
interpretation.  I took some two hours to come to a qualitative solution,  but I gave up before I 
found a very good fit. The student played with the data for many hours, but remained uncertain 
about the results, subsequently deploying cross-sectional transmission electron microscopy, X-
ray photoelectron spectroscopy and other techniques to determine the depth profile (Harry et al 
1996).  The kinematical gap between Fe and Co for these conditions is 18keV, only slightly 
higher than the system energy resolution of about 15keV (equivalent to about 30nm of Si).  
Therefore one would not expect there to be much discrimination between Fe and Co.  However, 
as can be seen, there is actually very strong contrast in the spectrum due to the adjacent masses. 

Simulated Annealing Solution:  After a keen discussion we came to the conclusion that the 
Børgesen et al matrix inversion code could not be used to solve this type of mixed metal silicide 
problem, and that since in principle it could not be generalised we should look for a different 
algorithm.  To our surprise, it turned out that actually this very contrasty spectrum (lots of strong 
edges and peaks) is ideally suited to SA: even a rapidly prototyped SA code was able to find a 
solution very rapidly, taking only minutes on a 100MHz 486 PC.  It was clear that SA was a 
powerful algorithm for solving the inverse RBS problem, and this was the example used for the 
first report of the "Simulated Annealing of RBS data" (Barradas, Jeynes & Webb, 1997).   

Sensitivity to Collected Charge:  In Barradas, Jeynes & Harry (1998) the data of Harry et al 
(1996) are re-analysed by SA, this time each fit taking about 2 mins on a 200MHz Pentium PC.  
Here a PC left running over lunchtime with a batch file of  tens of spectra gives results better 
than those obtained from weeks of labour. The optimisation of the cooling schedule is discussed, 
together with a demonstration that in this case, with contrast from barely separated masses, the 
Fe:Co ratio is extremely sensitive to errors in the charge collection.  A 1% error in the charge 
gives a 20% error in the Fe content.  Doubtless a careful analytical procedure might increase the 
precision of this type of measurement, but no-one yet demonstrates charge collection better than 
1%.  We will return repeatedly to the issue of instrumental parameters and the determination of 
analytical errors, here we emphasise that the collected charge is a critical parameter in the 
interpretation of IBA data.  This is because for RBS spectra the cross-section is proportional to 
the square of the atomic number, so the absolute number of counts collected very strongly 
constrains the possible average Z (atomic number) of the sample.  The same applies to all the 
IBA techniques since they all have strongly Z-dependent cross-sections. 
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Figure 1: 1.5 MeV 3He RBS of 200keV 2.1017Fe/cm2 implanted into Si.  a) RBS spectrum with fit 
(line through data points) and the Fe, Si and O partial fitted spectra (other lines). b) fitted 
depth profile for Fe. (After Belsen et al, 1999).   
Probably the Fe does not penetrate so deeply into the target (there is still apparently 
"significant" Fe at 24.1017atoms/cm2):  this is an ambiguity due to uncertainty in the 
charge collection.  There is noticeable surface oxidation in this sample.  

  Note on "Thin Film Units" (cf. §8, eq.3):  for silicon of density 2.32g/cc or 
5.1022atoms/cc,  one thin film unit (1015atoms/cm2) is 0.2nm. 
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Batch Analysis by SA:  ,Q�%DUUDGDV��-H\QHV��+RPHZRRG�	�0LORVDYOMHYLü��������H[DPSOHV�DUH�
shown of data from a set of over 50 samples investigating the kinematics of the ion beam mixing 
and annealing behaviour of sputtered metal films on silicon (Fig.3).  These spectra are also hard, 
especially since unwanted severe oxidation was experienced in the furnace annealing.  By using 
SA we could rapidly get reliable quantitative data from this large set of hard spectra, which 
actually allowed us to draw useful conclusions even in the presence of the oxidation (see also 
0LORVDYOMHYLü� et al, 2000, 2002).  With manual methods we would have had to repeat the 
experiment.   

Fig.3 shows a set of spectra (left hand side) with the corresponding extracted depth profiles (right 
hand side).  The spectral plots show the data and the calculated fits (which go through almost all 
of the data points),  and also the calculated partial spectra.  The profiles (right hand side) were 
obtained using a modified version of the matrix inversion code (SQUEAKIE) of Børgesen et al 
(1982) which can be applied directly since the partial spectra are available once the SA 
calculation is complete.  The layer structure determined by SA is shown by the histogram lines in 
the top depth profile (fig.3a, right hand side).   

Discontinuity of SA Solutions:  This raises the interesting question of which representation is 
more fundamental, the discontinuous layer structure determined by SA, or the continuous profile 
determined by subsequently inverting the partial spectra calculated by SA?  Clearly the real 
depth profile is continuous, so experimentalists may prefer to see the inversion rather than the 
raw layer structure.  However, the inversion has a number of problems.  Firstly, the partial 
spectra are completely dependent on SA.  Unavoidable statistical error in the estimation of the 
layer structure will cascade into the partial spectra and the inverted profiles calculated from 
them.  Moreover the energy loss variation with depth used by the inversion code is a function of 
the composition, where the layer structure is determined by SA.  Therefore the energy loss is an 
unavoidably discontinuous function of depth.  Secondly, an iterative process of using the inverted 
profiles as the basis for a new proposed layer structure is not simple (and maybe not possible) to 
implement since as the code stands the inverted profiles take no account of the variation of 
energy resolution with depth (energy straggling).  In fact,  Børgesen et al specifically point out 
that their algorithm will not handle energy straggling (or the surface signals) correctly.  Thirdly,  
the inversion necessarily assumes the accuracy of the forward model, but errors in the stopping 
power database (these can be at the 10% level as discussed in detail below) mean that the depths 
of interfaces may be inconsistently estimated between the different elements in the sample.  We 
have seen very large artefacts demonstrably due to this effect.   

We have therefore concluded that the layer structure determined by SA is the more fundamental, 
and for these and other reasons we no longer use the Børgesen inversion code.  The nominal 
advantage of the Børgesen code is that it imposes self consistency on the depth profiles obtained.  
Since we can demonstrate that these profiles are not internally consistent in general we are better 
off using a  simpler inversion algorithm that does not claim self-consistency.  In fact we now use 
the inversion algorithm common to other simple codes,  such as the "profile" command in 
RUMP (Doolittle, 1986).   
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Figure 2: 1.5 MeV 4He RBS of 200keV 25.1016/cm2 double implants of Co followed by Fe into 

Si.  Implantation temperature was about 350 0C.  a) RBS spectrum with fit (solid line) 
and Co and Fe partial fitted spectra (dashed lines).  b) fitted depth profile. (Fig.3 of 
Barradas, Jeynes & Webb, Appl.Phys.Lett. 71, 1997, 291)  The surface is significantly 
oxidised,   but the O profile and partial spectrum are omitted for clarity.  The depression 
in the Si concentration between about 10 and 15.1017/cm2 corresponds to a cubic silicide, 
while below about 10.1017/cm2 the layer has a stoichiometry similar to the Si-rich α-FeSi2 
phase. 
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Occam’s Razor:  We have up to now invoked the principle of Occam’s Razor ("minimise your 
assumptions"3) in stating that we choose the layer structure with the fewest layers to represent the 
sample.  Thus we make the layer structure as coarse as possible consistent with the data (the 
calculation method is described in Barradas,  Jeynes, Jenkin  & Marriott, 1998).  Note that the 
quality of fit obtained is outstandingly good even  with these very discontinuous solutions.  From 
an analytical point of view it serves to emphasise that we find an optimal solution;  the solution 
is consistent with the data, leaving open the question of what other different structures may also 
be consistent with the data, and how different they might be.  We return to these questions later, 
but we note here that it is clear that some sort of continuity condition ought to be applied to this 
type of data and we have not yet satisfactorily determined how such a condition could be 
specified.   

RBS by the Unskilled:  Finally, returning to Fig.1, this spectrum was from one of a set of twelve 
samples created in an experiment set up as an exercise for a group of school-leavers (18 year 
olds) as part of a national scheme to give this age group a taste for university research. These 
young people were with us for about ten days in total.  In the course of that time they had 
approximately four hours training in RBS data collection and data reduction techniques.  We 
collected the data for them and set up the analysis but then passed it over to them,  and they, 
essentially unaided, used the DataFurnace software to extract depth profiles from the whole data 
set, writing up the results (including a full presentation of the methods, aims and complementary 
optical results) in a single day.  This expresses exactly the benefits we believe exist for using this 
new tool for solving RBS spectra.  The data turned out to be very interesting and were 
subsequently published (Belson et al, 1999). 

6- Simulated Annealing:  Algorithmic Issues 

The simulated annealing theorem proves that in the general case a global minimum in the 
objective function is reached in logarithmic time,  that is, for Markov chain k the cooling 
schedule is given by a temperature sequence Tk = T0 / log (10+k), provided that the initial 
temperature T0 is sufficiently large (Geman & Geman, 1984). Unfortunately this implies 
ridiculously long computation times.  In practical cases geometrical cooling schedules are always 
used,  that is  Tk = akT0,  where typically in our case a ~ ½.  This implies that SA is efficient for 
some classes of problem, but may be very inefficient for others.   

An interesting paper by Sorkin (1991) has started to show in which circumstances SA can be 
expected to be efficient. He proves that for a state space with certain (rather artificial) fractal 
properties, a value of the objective function close to a global minimum can be found in 
geometrical time.  But he shows that it is likely that a more general theorem for realistic fractal 
state spaces is also true. In a preliminary analysis of the state space for a representative RBS 
spectrum we have found that, in the vicinity of the global minimum and in certain 
representations (not the χ2 one described above), the objective function has only one minimum  

                                                 
3William of Ockham, 1285-1347,  was known for his extensive use of the principle:  non sunt 
multiplicanda entia praeter necessitatem (entities are not to be multiplied except of necessity).  See Garrett 
(1991) for an interesting application of this principle to Bayesian probability.  Ockham is now a small 
village about 5 miles from Guildford. 
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Figure 3: RBS data with simulated annealing fits (left), and corresponding derived depth profiles 
(right), of sputter deposited 120nm Fe layers on Si ion beam mixed with either As or Xe 
and annealed at 9000C for 150mins.  In the left column the solid lines are the fitted 
spectra, and the partial O, Si and Fe spectra are shown as dashed lines.  In the right hand 
column the partial spectra extracted with DataFurnace are replotted as "depth profiles" 
using SQUEAKIE (Børgesen et al, 1982).  For clarity, only one fitted depth profile is 
shown as a histogram (top spectrum, right hand col.).  Notice the different depth scale in 
the right hand cROXPQ�RI�H���)LJ���RI�%DUUDGDV��0LORVDYOMHYLü�et al Nucl. Instr. Methods 
B139 (1998) 235-238. 
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(the global minimum). We therefore suspect that IBA spectra are likely to have quite well 
behaved objective functions which SA can solve easily.  We will report on this in another place. 

To demonstrate that our SA algorithm is well behaved we need to show that it converges 
properly. Barradas, Marriott et al (1998) have shown the variation of the average Si content of 
the last 50 elements (states x) of each Markov chain in the cooling schedule at various depths for 
an annealed and oxidised iron silicide (the sample shown in Fig.3e), plotted for the entire cooling 
schedule.  In the substrate the silicon content reaches its final value at a high temperature,  but 
near the surface, where there are many more possible states due to the presence of lots of oxygen 
(with its small signal and consequent small influence on the χ2),  the final value is not reached 
until the end of the cooling.  Marriott et al (1999) have also demonstrated that our MCMC 
algorithm is well behaved,  in particular that it converges and "mixes" properly. Mixing means 
that the sampling process explores all possible solutions in an efficient manner.   

7- The Forward Model   

In this section we explicitly state the forward model that we use,  and also describe the code 
structure of the IBA DataFurnace.  We also briefly review other simulation and fitting codes. 

Simulation: All IBA labs have simulation codes to calculate spectra to compare with collected 
data:  these are equivalent to what we have called the forward model and have long been 
available (Brice, 1973).  There are a number of codes,  with various useful user interface 
features, which have been well reviewed by Kótai (1994).  The DataFurnace is not a simulation 
code;  it is a fitting code, incorporating a simulation code in its core.  It replaces all existing 
single scattering simulation codes (we discuss multiple scattering codes below in §8).  Because 
the forward model is executed repeatedly for each fit it is optimised for speed.  However, some 
improvement of the algorithm may be obtainable using Serruys' retrograde method (1991). 

Fitting: Kótai does not mention Serruys et al's interesting "PERM" code (1993) which is a true 
fitting code based on a novel simulation algorithm (Serruys, 1991) and a novel and efficient 
spectrum smoothing algorithm (Serruys, 1990).  However, Serruys' code is not a true algorithm,  
relying as it does both on a reasonable initial guess by the user and also on some guidance by the 
user during execution.    

Børgesen et al's matrix inversion code ("SQUEAKIE", 1982) is a mathematical attempt to solve 
the inverse problem which we have already described (§5) and which has severe limitations. A 
similar but much more general approach has been taken by Kogan et al (1994) based on the 
reduction method for ill-posed problems developed by Pyt'ev (1983). Pyt'ev's method is for 
linear cases but Kogan et al have generalised their treatment for this non-linear problem. Kogan's 
"Beam Expert" does appear to be truly general purpose, that is, it is capable of inverting spectra 
where the partial spectra overlap or where there is no unique solution. However, it is also not 
clear how robust it is to problems of the forward model, in particular those due to errors in the 
energy loss database.  Nor is it clear whether or not it is robust in use, or whether it has 
instabilities similar to those exhibited by Serruys' code.  

Difficulties and shortcomings of this type of inversion code have been comprehensively and 
elegantly described by Cumpson (1995) for the (related) technique of angle-resolved XPS. 
Cumpson also compares the properties of inversion and Maximum Entropy algorithms (we 
describe the MaxEnt code of the Garching group below, §12), and he comments on the 
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usefulness of the MaxEnt approach, especially when uncertainty estimates are required. Our 
approach is mathematically closely related to the MaxEnt one.. 

The RBS Forward Model: The RBS forward model is straightforward to calculate 
numerically. The sample is divided into thin layers and the scattering of the incident beam (of 
energy E0) from each layer is considered.  Then the energy of the beam Eq before scattering after 
crossing layer q is given by an integration of the energy losses on the inward path to the layer: 

 Eq = E0 - sec θ1 Σ
i=0

q-1 ti ε(pi,Ei)      (3) 

where θ1 is the incident beam angle from normal,  ti is the thickness of the ith layer (in thin film 
units, that is, in µg/cm2 or equivalent units),  and E0 is the incident beam energy.  ε(pi,Ei) is the 
energy loss (per unit depth,  in thin film units) in the ith layer which has a composition given by 
pi = {p1,i, ... , pe,i} where Σj=1

e pj,i = 1 and there are e elements.  The number of scattering centres 
Ce,i of element e in layer i is then given by Ci = ti  pi.  Note that this structure {ti, pij} has the 
same chemical elements but a different (larger) number of layers from the depth profile x={li,eij} 
defined previously.  The layer thicknesses t must be chosen small enough that ε(Ei-1)  ≅  ε(Ei) 
otherwise the numerical integration will cumulate errors. 

The energy loss ε is calculated from a database of the energy loss of ions in matter (Ziegler, 
Biersack & Wittmark, 1985) that extends across the entire periodic table for both beam and 
target, and for all beam velocities above about that of 50keV H.  The energy loss in any target 
can be calculated by linear superposition of elemental energy losses.  Thus  

ε(pi,Ei) = Σ
j=1

e pij ε(j,Ei)       (4) 

where ε(j, E) is the energy loss of the beam energy E in element j.  This is known as "Bragg’s 
rule" (Bragg & Kleeman, 1905) and is usually accurate,  except near the stopping power 
maximum for compounds of light elements such as organics,  oxides and nitrides,  for which 
deviations as large as 20% have been observed (Rauhala, 1995).  The accuracy of the database is 
limited:  errors of 10% can be demonstrated (Niemann et al,  1996;  Lennard et al, 1999).  

The scattered beam has an energy D at the detector which depends on the scattering nucleus and 
the pathlength from the layer back to the surface,  and which is calculated with an integral 
analogous to that of eq.3,  but which we will write iteratively for clarity: 

 Ai-1 = Ai - ti ε( Ai ) / cosθ2       (5) 

 Aq ≡ KEq;   Dq ≡ A0 

where the calculation layers i are as before,  Dq = {D1,q, ... , De,q} is the list of energies at the 
detector from the qth layer for the e elements in the sample,  K = {K1, ... , Ke} is the 
corresponding list of kinematical factors and θ2 is the exit beam angle from normal.  Note that 
the kinematical factor is the fraction of energy that the incident particle keeps after an elastic 
collision (so that D0 = KE0),  and that this fraction is calculated from conservation of energy and 
momentum. A1 = KEq is the energy at the qth layer after backscattering and the Ai are the 
energies on the outward path at the ith layer. 

The pulse height spectrum is obtained by digitising each pulse from the detector with a multi-



19 

channel analyser (MCA).  This spectrum is then transformed to an energy scale by a linear 
relation (without loss of generality since non-linear electronics can be linearised, see Lennard et 
al, 1990): 

 Sc = γ c + o         (6) 

where Sc is the energy represented by the MCA channel number c of the spectrum,  γ is the 
electronic gain (in keV/channel) and o is the electronic offset (in keV) due to the detector pulse 
height defect.  The determination of γ is critical in the system calibration.  (Actually,  γ is a weak 
function of c,  but this dependence is usually unobservable for surface barrier detectors, see 
Lennard et al, 1990;  Jeynes  et al, 1998). 

We now have to transform the layer number of the sample used for the energy loss calculation 
into the channel number in the spectrum. Note that this transformation is neither linear with 
depth nor the same for different elements (see eqs.1&2). We calculate the layer number m 
corresponding to channel number c for e elements of the sample through the inequality 

D e,m+1 < Sc ≤ D e,m        (7) 

So that each channel corresponds to a layer at different depth for every element (e values of m 
for every channel c). Then the beam energy Be,c before scattering from element e in the layer 
corresponding to channel c is given by:  

Be,c = Em + r e,c (Em - Em+1)         

re,c ≡ (D e,m - Sc) / (D e,m - D e,m+1)      (8).   

Of course, for each element e there is a maximum channel number k (non-integral in general) 
such that Sk = KeE0 (where K is the kinematical factor mentioned above).  There is also a set of 
absolute minimum channel numbers z given by Dz = 0,  although the cutoff energy below which 
there is no useful information is usually much larger than zero.  

The number of scattering centres of element e in the layer m is given by  

Ne, c = C’e, c - C’e, c+1  

C’e, c ≡ re, c Cm + Σ
i=1

m-1 C i        (9).   

Note that Be = {Be,1, ..., Be,c, ... , Be,v}  is a list of the beam energies before scattering where the 
sample is divided into v layers with each layer corresponding to one channel of the spectrum, 
whereas E is a list of the beam energies before scattering where the sample is divided arbitrarily 
into equal thickness calculation layers.  

A partial spectrum for element e of the sample can then be calculated through: 

 fe = QΩ γ Ne σ’(Be) / ε(p,B)       (10) 

where σ’ is the differential Rutherford scattering cross-section and the vector notation 
fe={fe,1,...,fe,c,...,fe,v},  Ne = {Ne,1, ... , Ne,c, ... , Ne,v},  ε(p,B) = {ε(p1,E1), ... , ε(pc,Ec), ... , ε(pv,Ev)} 
are used as before, with v relevant channels in the spectrum for element e.  

The product of the collected charge and detector solid angle QΩ is another critical calibration 
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parameter.   

The complete spectrum is then given by the summation of all the constituent elemental spectra: 

 F =  Σe fe         (11) 

and the detector resolution is convoluted into F if required. Energy straggling (or, more 
generally, the depth dependent energy resolution) is convoluted into fe if required,  but this 
significantly increases the computation time, and therefore is only used where necessary. 

Forward Model changes for other IBA: For EBS we simply substitute a different (numerical 
rather than analytical) scattering cross-section function for σ.  The ERD forward model is almost 
exactly the same except that the recoil rather than the scattered particle is followed on the 
outward path.  Also we permit a range foil before the detector (for either RBS or ERD:  it only 
requires extra energy loss on the outward path).  Time of flight ERD (ToF-ERD) does not 
require any modification of the algorithm:  it requires only being able to handle multiple spectra:  
for this technique the 3D data set can be separated into a series of spectra,  generally one for each 
element.  Heavy ion ERD (HI-ERD) requires no modifications:  the interaction cross-sections are 
generally Rutherford and the stopping cross-sections are tabulated in the semi-empirical 
database.  HI-ERD is usually carried out at a recoil angle sufficiently large for the high intensity 
forward scattered primary beam to be kinematically prohibited.  Where this condition is not 
satisfied some other means must be found to exclude this beam:  ToF techniques can work for a 
low intensity or a pulsed primary beam, or a range foil can be used with a surface barrier 
detector.  In the latter case the different recoil ions may be superimposed in the same spectrum 
and cannot be separated by the detector.  In any case the DataFurnace can handle the data. 

For NRA the situation is somewhat different. The model outlined above for RBS assumes 
implicitly that there is a monotonic relationship between depth and channel number for any 
particular elemental signal. This is not always true for NRA, and DataFurnace (Barradas & 
Smith, 1999) use a different (more cumbersome) algorithm that takes this into account, unlike 
other NRA codes (Lennard et al, 1993 also gives a correct treatment). Otherwise, for NRA we 
only have to modify the kinematics formulae to allow for the non-zero Q values, introduce the 
appropriate interaction cross-section values (as for EBS), and specify and follow the appropriate 
detected particle (as for ERD). 

PIXE:   DataFurnace does not support PIXE.  The PIXE forward model is entirely different in 
structure from the particle scattering models, and it is not trivial to modularise existing codes, 
such as GeoPIXE (Ryan et al 2002) or GUPIX (see Blaauw, 2002) for use in SA. There is not 
much depth sensitivity in PIXE data,  just as there is often considerable ambiguity about mass in 
RBS,  so these two techniques are highly complementary.  Geoff Grime (1995) has provided a 
powerful user interface to give GUPIX users effective simultaneous access to RBS. 

The IBA DataFurnace:  Simulated annealing is a modular algorithm involving four modules: 
the forward model, the generation function, the acceptance criterion and the cooling schedule.  
Different functions can be substituted for any of these four modules without changing the 
fundamental operation of SA.  Therefore we can use different forward models with essentially no 
change in the code.   

The DataFurnace is a hybrid code, with a preparation algorithm that characterises the spectra and 
determines parameters for the SA cooling schedule, the simulated annealing algorithm itself,  
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and a final local minimisation routine that takes over at low temperatures.  This latter is because 
although SA is a very efficient global minimisation algorithm it is very inefficient at determining 
true local minima.   

The preparation algorithm uses an adaptive filter to very effectively smooth the spectrum without 
significantly changing the position or width of peaks and edges,  and then it counts peaks and 
edges.  The local minimisation routine is a grid search routine which is very stable (although 
rather slow) in high dimensional spaces (common in DataFurnace analyses). 

8- Forward Model limitations:  multiple scattering 

RBS of O Implants into SiC: We have recently been successful in making waveguides in SiC by 
implantation with the lowest reported losses so far (Vonsovici et al, 1999).  We used high dose 
high energy ion beam synthesis O implants to form a buried oxide layer.  Figure 4a shows an 
example of the RBS spectrum from one such sample.  This is very clearly a good example of a 
"hard" RBS spectrum since the C and O signals overlap and the profile shape is arbitrary - we 
know for example that the O profile is not the implanted "Gaussian" shape that can be calculated.  
The student who broke the ground in this project had dozens of these spectra to analyse, since 
there was a large matrix of implantation and annealing temperatures to explore (Jackson, 1998).  
Again, it turned out that SA readily solved these spectra, making RBS a useful tool for the 
project yielding extremely valuable quantitative results. For the sample illustrated in fig.4 a 
continuous buried SiO2 layer has not formed:  this occurs at higher implantation temperature. 

Low energy effects: The interesting thing here is that the signal comes from deep in the sample 
with the information being carried by very low energy backscattered particles.  In these 
conditions our RBS forward model is inaccurate, assuming only single collisions, where actually 
there is a significant low energy signal coming from multiple and plural scattering.  (Multiple 
scattering involves many small angle scattering events and plural scattering involves multiple 
large angle events.)  These effects are well understood:  Rutherford had already made reasonable 
estimates of multiple scattering in 1911, and accurate Monte Carlo calculations can now be made 
(Bauer, Steinbauer & Biersack, 1992 & 1993).   

However, the forward model is core code in SA, executed for each trial x from the state space, 
and therefore implementing a correction in MC code is out of the question, due to the 
computational time involved.  Mayer (1997) has given a partial solution to this problem with his 
SIMNRA code which implements a "dual scattering" calculation which is able to account for 
much of the low energy background observed. Eckstein & Mayer (1999) give an illuminating 
discussion of how good the SIMNRA approximation is (it is surprisingly good!).   The spectral 
broadening introduced by multiple scattering is calculated correctly in Szilágyi's DEPTH code 
(see below in "High Depth Resolution" §13). 

DataFurnace correction: We here describe our ad hoc solution to this problem (Barradas, 
Jeynes & Jackson, 1998), and discuss its effects. These multiple scattering effects cause the yield 
to increase at low energy.  Since the increase is expected to be quadratic in the forward model 
(since the RBS cross-section goes inversely as the square of the beam energy) we take a faster 
dependence than this to be cubic as a first order approximation.  We therefore compare a 
spectrum from unimplanted SiC with a simulated spectrum (the spectrum calculated with the 
forward model), and determine the cubic function that transforms one to the other.  We then 
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incorporate this function into the forward model for the Si signal, since it is a correction which 
applies deep in the sample, and the Si signal comes from the deepest regions.  It turns out that 
this correction is analytically very satisfactory since it applies equally well to the spectra from 
the implanted samples.   

Although we expect multiple scattering to modify the forward model, it should be emphasised 
that our correction is entirely ad hoc.  We have simply introduced several extra fitting parameters 
to get a better match with the low energy part of the spectrum.  Therefore we will refer to the 
"MS correction", and point out that it is a background subtraction device rather than a solid 
analytical calculation.   

Good fitting: Is such a device of any real value?  The answer is yes, for interesting reasons.  SA 
depends on the objective function being sensitive to moves in state space away from the optimal 
solution x0.  As mentioned in Barradas, Jeynes & Webb (1997), we normalise the objective 
function ∆(x) such that ∆(x0) ≈ 1.  So if an error in the forward model means that ∆(x0) > 1 we 
increase the size of the set of near-optimal solutions for any given value of ∆ >1.  In other words, 
to get a precise solution (one that discriminates reliably between similar structures) it is 
necessary to have a good fit.   

Therefore, for a reliable interpretation of the difference between similar complex spectra like that 
in Fig.4 we must introduce the MS correction.  The question then is, how accurate is the result?  
We explore this question in detail later, but in this case we note that the correction is applied to 
the deep part of the Si signal, is small at the depth of interest, and is analytically robust (it can be 
transferred from the unimplanted sample to the other implanted samples). 

There are a variety of artefacts that can give rise to extra (or reduced) low energy signal, 
including incorrect beam handling, error in the nominal backscattering angle and electronic 
faults. With the use of the MS correction these will affect the accuracy but not the precision of 
the SA calculation.   

9- Ambiguity in IBA data:  Multiple Spectra 

Previous Work:  Every analyst has tilted the sample and taken another spectrum to determine 
which features of the spectrum come from the surface:  the surface signal position does not vary 
with beam angle, although signals from below the surface will appear to move as the geometry 
changes.  An equivalent way of doing this is to use two detectors at different scattering angles.  
Of course,  this is not a new idea:  Williams and Möller were using two (or more) detectors in 
1978 (although with a rather different purpose) and Edge (1988) showed calculations 
emphasising the value of spectra from two detectors,  but using an iterative method of calculation 
not easy to extend to three or more spectra and that we rejected when we were considering 
incorporating the matrix inversion code (Børgesen et al, 1982) into a general algorithm.  Butler 
(1990) emphasises the value of multiple detectors and Alkemade et al (1990) have demonstrated 
that for a sample with n elements,  one needs to collect n-1 different spectra to eliminate 
ambiguity in principle.  However, with manual methods the analyst has to laboriously fit each 
spectrum in turn:  this is a very large disincentive to collecting multiple data, or, even if they are 
collected, to analyse them (although many simulation codes give assistance with this.) 
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Figure 4: a) RBS spectrum (dots) of SiC implanted with 200keV 14.1017O/cm2 at 1800C together 
with the simulated annealing fit to the data (line).  The partial Si, O and C spectra are also 
shown.  b) Depth profile determined by SA. Fig.2 of Barradas, Jeynes & Jackson, Nucl. 
Instr. Methods B136-138 (1998) 1168-1171 
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Simulated Annealing:  SA uses a different approach:  instead of asking for a spectral inversion 
procedure that finds the unique solution (assuming that there is sufficient information), it uses a 
procedure that finds any solution consistent with the data. Therefore, even if the data are 
ambiguous a solution can be found and the algorithm will not crash. We should emphasise that 
no machine methods for self-consistently inverting multiple spectra have been presented, apart 
from SA. 

Because SA is minimising an objective function, and since we can use a different objective 
function for each beam geometry, it is simple for SA to calculate a composite objective function 
for multiple spectra.  This composite function is described in Barradas, Jeynes, Webb, Kreissig 
& Grötzschel (1999):  briefly, we give each spectrum in the set equal weight irrespective of the 
integrated counts in the spectrum.  We emphasise that SA will do its best to find a solution 
consistent with all the data.  The computation time is affected for multiple data sets since as 
many simulations have to be calculated from different forward models as there are different 
spectra.  However, the calculation is highly modularised and optimised for speed, and having 
calculated one forward model the others are much less tedious.  Also the cooling schedule is 
faster for multiple spectra since we expect the minima in state space to be better defined.  For 
both of these reasons computation time increases less than linearly with the number of spectra. 

Although implementing SA of multiple data sets is nearly trivial, the resulting power made 
available to the analyst is enormous.  Multiple detectors, or geometries, or beams, or even 
techniques can be used, with no penalty to the analyst in data analysis time after the calibrations 
have been established.  We will  give examples of all of these.  In particular, a self-consistent 
analysis is very valuable in accurate work where demonstrably independent confirmation is a 
prime requirement to validate the measurement.  Instead of repeating the analysis we only have 
to collect double detector data and show self consistency 

Example - RBS of B in Si: As an example of this we have considered a nominally BCN film 
deposited on Si by magnetron sputtering (Barradas, Jeynes, Kusano et al, 1999). These films are 
of interest because of a predicted hardness, stiffness and conductivity comparable to diamond. 
The determination of composition is actually quite difficult:  it is hard (or impossible) to resolve 
the light elements by electron probe microanalysis (EPMA), even if a windowless X-ray detector 
is available, and e-beam induced X-ray measurements are troublesome to interpret for these very 
thin films.  RBS, on the other hand, is not very sensitive to low Z elements, especially on a high 
Z substrate.  However, we have shown that a self-consistent analysis of multiple spectra can be 
used to confidently extract and quantify very small signals.  For this sample two beam energies 
were used, with random and channelled spectra being collected for each.  The channelled spectra 
gave much better signal to noise ratios for the light elements:  the MS correction was used for all 
spectra to fit the Si background signals.  In this case the film composition was {B, C, N, O, F} = 
{15.6(2.1), 7.0(3.1), 30.9(0.9), 37.7(0.6), 8.8(0.4)} where the (1 sigma) statistical error is given 
in brackets.  The detection limit for B in this analysis was 7at% (99% confidence). 

Example - Spectra with large dynamic range:  This is a rather different example.  Often 
samples are analysed which have (relatively) heavy element minor constituents with a light 
element matrix.  Thus, Mallégol et al (2002) have analysed surface treatments of latex films 
where the interest is in the distribution near the surface of elements characteristic of surfactants.  
These spectra have to be displayed on a log scale,  and a simple use of DataFurnace results in the 



25 

minor elements being simply ignored since the number of counts are not sufficient to affect the 
χ2 sum by much.  In this case we can split the spectrum into two (or more) parts,  and combine 
the χ2 for the separate parts in the same way that we did for separate spectra.  Then a good fit is 
obtained for the whole spectrum.  The only problem to mention is that DataFurnace must not be 
allowed to change calibration constants (including charge) independently for these split spectra.  

10- Ambiguity in IBA data:  Restricting the State Space 

Mixed silicide example: It is very easy to demonstrate that RBS spectra are ambiguous:  the 
mixed silicide sample of Fig.2 could have metal deep in the sample for example, as discussed in 
Barradas, Jeynes, Jenkin & Marriott (1999) (BJJM99).  Butler (1990) has shown an example 
which is ambiguous in the sense that different depth profiles exist where different partial spectra 
add up to the same total spectrum: we discuss this interesting case below.  However, we have not 
(yet) found any examples where IBA data are systematically ambiguous in the sense that the 
system is "frustrated" in Kirkpatrick et al’s (1983) terminology; that is,  where a large number of 
optimal solutions exist between which are large potential barriers. 

When interpreting such data as the mixed silicides described above (Fig.2) analysts are used to 
ruling out the possibility of metal deep in the sample because they know that in this case the 
substrate is pure silicon.  However,  we have demonstrated that the most probable solution of this 
spectrum, assuming that there is no prior information, is that there is some 5at% metal in the 
substrate (BJJM99).  It is important to be objective about what we know about the sample a 
priori.  If we assume nothing about the sample then we have to give a range of possible 
solutions, consistent with the data.  We did this crudely using the MCMC code to simply specify 
an "error bar" on the calculated depth profile.  The median solution has substantial metal and 
over 50at% O for the substrate.  The MCMC code determines the most probable solution, and 
explores state space around it, effectively determining the density of states in state space.  
Because we only calculate the variance of this distribution of states we will clearly not recognise 
bimodal, skew or any other non-normal distributions.  Of course,  much more sophisticated 
statistics are available from an MCMC treatment. 

Interestingly, we also used this mixed silicide example to demonstrate that provided the state 
space is suitably restricted the RBS data are remarkably unambiguous with respect to collected 
charge (total number of counts).   It is common for analysts to collect large amounts of charge to 
get "smooth" data, but very small charges (we show 0.1µC with 2.5msr detector solid angle, 
BJJM99) can give objectively quite well-determined solutions even for this "hard" case, with the 
right number of layers and qualitatively the right stoichiometry in the layers.  Of course,  with 
less counts in the spectrum the statistical errors on the stoichiometry and layer thickness increase 
as expected. 

This example makes it very clear that the spectra are grossly ambiguous in principle, and we 
have to give the analyst tools for excluding regions of the state space which have a high density 
of false solutions.  The solution we want, with a pure silicon substrate,  is a perfectly good 
solution.  However, it is unique;  a singular solution, and to find it we have to explicitly exclude 
the "infinite" number of solutions involving impure substrate.  This is easily done in practice by 
specifying the depth and concentration range for one or more of the elements, and constructing 
the generation  function appropriately.  It is possible to overspecify the state space restrictions so 
that the code cannot find any solution:  in this case the code will give a warning,  and the 
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"solution" found will not fit the data!  Actually,  for Fig.2 the only restriction required is for the 
O to be limited to the near-surface region.   

Mixed oxide example: Butler (1990) takes a different approach with an example of an oxidised 
NiCrAl alloy that we show in Fig.5.  He points out that for this example the false solutions can 
be eliminated if prior chemical information is taken into account. Thus, he knows that the 
oxygen comes from the oxidising process, and therefore enters through the surface.  (Actually,  
most of his false solutions are eliminated simply by excluding O from the substrate.)  Moreover,  
the O binds with the metals in well known ways. In his simulation code he gives the analyst tools 
to manipulate molecular  (rather than atomic) depth profiles.   

We do the same thing by allowing the analyst to specify molecules rather than (or as well as) 
atoms. Fig.5a shows the elemental depth profile of Butler’s example with a spectrum calculated 
from it (Fig.5b). We then ask DataFurnace to invert this spectrum to retrieve the profile under a 
variety of assumptions. Fig.5c shows the closest DataFurnace could get to the original profile, 
and we discuss this result further below.  We point out here that the result is essentially identical 
to the original, except for some interface broadening (we have not deconvoluted the straggle).   

It turns out that the Cr profile is the most sensitive to the prior assumptions of the analysis, and 
Fig.5d shows the Cr profiles obtained by DataFurnace under four different assumptions. To 
retreive Butler’s initial profile unambiguously we need to specify not only the molecules present 
but also that only oxides are present near the surface and that oxygen is excluded from the 
substrate and that Al is excluded from the near surface region and that two independent spectra 
are taken (at different scattering angles in our example).  Butler did not point out this last 
condition for this example, although he noted that, in general, multiple spectra are always a help.  
These particular data are very ambiguous:  excellent fits can be obtained without any of the 
conditions mentioned, and they are all as good as that shown in Fig.5a.   

In this example we have only allowed the O to exist bound to metals,  and we have only allowed 
free Ni to exist.  The substrate is specified by a molecule representing the starting alloy 
composition.  Of course,  DataFurnace does not require the analyst to input anything else:  the fit 
proceeds automatically as soon as the initial assumptions are stated.  The interesting thing is that 
it is very easy to specify various assumptions about the chemistry to see whether they are 
consistent with the data.  If they are not consistent they can be ruled out.  Now the analyst has an 
effective tool not just for obtaining a solution to a spectrum,  but for testing a variety of 
assumptions about the sample against the data.   

We must emphasise that we can only extract information from a spectrum if the information is 
really there.  DataFurnace cannot extract more information than exists!  But DataFurnace can be 
used as a tool to explore the validity of various prior assumptions about the sample.  It can also 
be used as a tool to explore what further information would be useful to reduce ambiguity. 

Polymer Example:  Ross et al (2001) have used RBS in conjunction with XPS and other surface 
specific techniques to investigate the alkaline treatment of poly(vinylidene fluoride) samples in 
the presence of phase transfer catalysts.  This is a very difficult analysis since the spectra are 
relatively featureless and is thoroughly ambiguous in the absence of any chemical information in 
much the same way as Butler’s mixed metal oxide example above.  However, the analysis is 
successful when the chemical state of the various elements is specified.  The defluorination 
kinetics was shown to follow the Fickian diffusion law with a treatment depth of over a micron.   
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Figure 5: Re-analysis by DataFurnace of the data shown by Butler (1990) of an oxidised NiCrAl 
alloy.       a) the original profile from which the spectrum was calculated; b) spectrum (symbols) and fit 
(line);  c) atomic profile fitted to data assuming molecules and complete oxidation from the surface, using 
two spectra at different detector angles, and excluding alumina from the surface;  d) a comparison with 
the original profile of the Cr profile calculated under various assumptions.  Specifying only elements 
barely constrains the profile, and even with two detectors the profile is not recovered at intermediate 
depths.  Using only one detector with the assumption of molecules is also not sufficient. Molecules used 
are NiO, Cr2O3 and Al2O3. 
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Interestingly, to complete this work a large batch of several dozen samples had to be analysed. 

11- Examples of ERD 

DataFurnace can accept a wide variety of analytical conditions.  ERD is interesting since it is 
used in widely different ways in different labs.  Barradas, Jeynes, Webb, Kreissig & Grötzschel 
(1999) analysed a silicon oxyfluoride film using 35MeV Cl5+ with two separate beam 
geometries and three different detectors including a silicon surface barrier detector with a range 
foil specifically for recoiled H, a Bragg detector and a ToF (time of flight) detector.  The latter 
two detectors have similar signals but different surface sensitivities.  It is interesting that 
DataFurnace can easily cope with the signal overlaps that are so inconvenient for manual 
analysis in all of these detectors in the same way that it does for RBS spectra.  Of course, the 
practical difficulty with this sort of analysis is that one is often overwhelmed with information.  
In this example there are ten different spectra available, each carrying different information.  All 
ten were fitted simultaneously with the DataFurnace, which also weights them according to their 
sensitivities in a completely objective way.  This is also a good example of multiple analyses 
being done with a variety of techniques, detectors in this case.  The data is very easy to collect, 
and now, with the DataFurnace,  it has become very easy to analyse. 

It is also possible to do very satisfactory H determination using ERD with a 1.5MeV 4He+ beam 
and a 6µm mylar foil to range out the forward scattered 4He primary beam.  A good example is 
shown in Fig.6 (Barradas, Almeida et al, 1999), where we were trying to synthesise an 
amorphous GaN by implanting an amorphous hydrogenated silicon nitride with Ga.  Crystalline 
GaN is an exciting material for blue LEDs, for example, but it is believed that the amorphous 
material could also be very interesting, perhaps for applications like large area displays.   

However it is hard to make GaN,  and ion beam synthesis was an interesting possibility.  The 
question following the implantation is, does the Ga substitute for the Si or the N?  The RBS on 
its own is equivocal in the presence of so much hydrogen, but with the clear H signal obtained 
with the ERD (showing H loss near the surface due to the implant) an accurate profile calculation 
can be made using the right function of energy loss with depth.  This data suggests that in this 
case the Ga is substituting for Si, implying the presence of GaN.  We consider the precision of 
this result in the next section.  GaN bonding has been demonstrated by XPS (Almeida, Silva, 
Sealy & Watts, 1999).  It turns out that this only occurs where the a-SiNx has excess nitrogen. 

12- Precise IBA:  Quantifying the Error by Bayesian Techniques 

In the example of the ion beam synthesised GaN above (Fig.6) we extracted a depth profile that 
showed a negative correlation between the implanted Ga and the Si concentration.  As it stands 
the result is only suggestive because it is not clear,  and it certainly has not been demonstrated,  
that profiles for which this negative correlation does not exist are excluded by the data.  The 
given profile is demonstrably consistent with the data but other qualitatively different profiles 
have not been shown inconsistent with the data.  Clearly,  one could play with the profiles and a 
simulation code and convince oneself that a different conclusion is excluded,  but to convince a 
sceptical observer a more systematic approach is required.  In this section we will show that our 
MCMC methods can easily be applied to estimate the likelihood of a particular profile, given the  
data. 



29 

Figure 6: RBS/ERD of PECVD a-SiNx:H implanted with 75keV 75.1015Ga/cm2 and 
annealed in N2 for 30 mins at 2000C.  a) RBS, normal incidence.  b&c) RBS and ERD 
respectively, collected simultaneously with backscattering angle 1500, recoil angle 260,  beam 
incidence angle 750. The solid lines are the fits;  N partial spectra are shown.  d) Fitted depth 
profile. Fig.3 of Barradas, Almeida et al, Nucl. Instr. Methods B148 (1999) 463-467.  Also see 
Fig.8. 
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Previous Work: Various workers have addressed this problem in different ways.  Doolittle 
(1986) noted that the local minimisation technique in his popular program "RUMP" yielded a 
Hessian matrix whose covariance represents the uncertainty.  However,  the minimisation 
provided by RUMP is rather unstable and in any case depends on the user to get a solution which 
is nearly correct.  Børgesen et al's (1982) matrix inversion code also yield uncertainties naturally 
but these are not implemented in the distributed ("SQUEAKIE") code,  which in any case 
requires the user to separate the elemental signals,  as we have noted above. 

MaxEnt: Fischer and co-workers (1997, 1998) have approached the problem from a 
completely different angle. They have used Bayesian statistics,  with a maximum entropy prior,  
to deconvolute the detector resolution from RBS spectra of a Co thin film,  improving the real 
depth resolution by nearly an order of magnitude,  and resolving the signals from the isotopes of 
Co. 

Unfortunately this astonishing feat involves not only heavy computation but also detailed 
knowledge of the detector transfer function (the detector resolution,  which is a function of both 
time and detected energy).  The group (following our work) used the same methods to extract 
depth profiles from RBS spectra of thicker films (Prozesky et al, 1999),  and they have also 
demonstrated reliable background subtraction for PIXE spectra (Padayachee et al,  1999) and 
even extracted some depth information from PIXE data (Prozesky et al, 1997).  Of course,  the 
precision of a result is yielded intrinsically by this method.   

Maximum likelihood techniques have been used by Liew et al (1994) to extract depth profiles 
from PIXE spectra. Rokita et al (1997) have also used maximum entropy to improve the spacial 
resolution of microbeam PIXE maps. 

Simulated Annealing: We can understand Fischer et al's maximum entropy calculation to 
be analogous to a Fourier transform of state space:  it is carried out in reciprocal space,  to use an 
analogy from crystallography.  This is because it is natural to work in Fourier space when a 
convolution function (the detector resolution function) is central to the problem.  Our simulated 
annealing calculation, on the other hand, is carried out in real space:  state space is explored with 
a series of real depth profiles xi.  Because we do not work in reciprocal space we have at least an 
order of magnitude less computation.  However,  uncertainty information is yielded equally 
naturally by our SA formalism.   

We wish to quantitatively evaluate the precision of the determination of any given profile.  
Looked at another way,  we wish to determine the size of the set of near-optimal solutions, which 
we can denote by {x0+δ}, with objective function O(x0+δ) = O(x0) + δ for any given value of δ.  
How much can we perturb the solution we have obtained,  and still get an acceptable result?  Of 
course, from a Bayesian point of view all states x are assigned a probability, with the states x0 
having the highest probability.  In SA we construct a sequence of Markov chains with reducing 
"temperature",  but we choose the cooling schedule such that as soon as each Markov chain is 
long enough to be near to equilibrium we reduce the temperature and start constructing the next 
Markov chain.  If, instead of doing this,  we construct a long Markov chain and ignore the initial 
non-equilibrium part,  what we have is a set of states selected randomly from state space 
according to the probability given by the density of states.   

Bayes Theorem: This can be treated formally with Bayesian methods (cf.  Barradas, Jeynes, 
Jenkin & Marriott, 1999).  Because of the existence of measurement error (including statistical 
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noise and uncertainty in the experimental parameters),  the observed spectrum Y can be treated 
as a probability density function p(Y|x) ("the probability of Y given x"),  which can be calculated 
simply by using the forward model together with Poisson statistics (although we are not 
restricted to a Poisson distribution).  Then if we can sample from p(x|Y), the probability density 
function for the depth profile x given the observed spectrum Y,  we can also calculate the mean  
solution <x> and the standard deviation σ(x).  But Bayes’ theorem (1763;  for an introduction to 
Bayesian methods see Lee, 1997) states: 

 p(x|Y) = p(Y|x)p(x)/p(Y)       (8) 

where the prior distribution,  p(x),  represents any knowledge we have of the sample before we 
do the analysis.  p(Y) is independent of x and is treated as a constant of proportionality.  Then 
the general theory of Markov chains (see for example Gilks & Richardson, 1996) tells us that the 
posterior distribution,  p(x|Y),  is given by the equilibrium distribution of a Markov chain 
constructed with a Metropolis criterion.   

Error Calculation: In order to calculate the confidence interval of any particular solution,  and 
hence find all the plausible solutions, we run a Markov chain based on sampling from p(x|Y) and 
use this sample to calculate the simple statistics <x> and σ(x).  In practice it is sensible to start 
this chain at a solution xSA obtained from simulated annealing,  and let it run long enough to get 
reliable estimates of the moments.  There are very strong links between the Markov chain Monte 
Carlo (MCMC) algorithms required by the Bayesian approach and SA, the main difference being 
that the MCMC algorithm stores a large set of plausible solutions calculated during a run rather 
than simply the final state stored by SA. This is an extra overhead with a penalty in the 
computation time, but the advantage is that both the average solution <x> and the most probable 
solution xmp are determined, together with a reliability estimate σ(x).  Note that in general  
xSA  ≠ <x> (and also xSA  ≠ xmp) and therefore the Markov chain is run for a "burn-in" period of a 
few thousand proposals before calculating moments.   

From the set {x0+δ} of possible solutions it is possible to calculate confidence intervals for the 
structure of the sample.  The information in these confidence intervals can be insightful for the 
analyst as is shown by the following simple example of the mixed metal silicides discussed with 
Fig.2 above.   

Consider estimating the total amount of each element up to a given depth in the sample. Both 
algorithms will give estimates of such a quantity, with the MCMC algorithm being able to also 
calculate the standard error of these estimates. Such standard errors can tell the analyst much 
about the quality of the information in a spectrum.   

Fig.7 shows data from an MCMC analysis of a mixed metal (Fe and Co) silicide spectrum (these 
data were actually derived from the spectrum shown in Fig.2 of Barradas, Jeynes & Webb, 1997;  
this is similar to our Fig.2 above).    Fig.7a shows a plot of the set of estimates of the total 
amount of Fe compared to the corresponding estimate of the total amount of Si. This set of 
solutions clusters around the SA solution (showed by the solid lines).  The spread of the set 
shows the degree of uncertainty in the solution. For example the SA estimate for the amount of 
Fe is 262.1015 atoms/cm2, while the MCMC calculates the standard error of this as being 1.7%.  

This analysis can do more than simply calculate standard errors, useful as that is.   Fig.7b show 
the result for Fe and Co. Note the much higher negative correlation in this plot compared to the 
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left hand plot.  What this is showing the analyst is that the information in the spectrum about the 
amount of Si is reasonably independent of the information on the amount of Fe (since the con-
tours are nearly circular in Fig.7a):  however there is very strong dependence in the information 
about  the two metals in the sample.  This analysis shows clearly that the spectrum gives a very 
precise estimate about the total amount of metal but is much less informative about the exact 
proportions of each. Such ambiguity could be resolved by adding molecular assumptions to the 
analysis.  We will report elsewhere on the further development of general mathematical tools 
based on MCMC for investigating intrinsic spectral ambiguity (Marriott et al, 2002). 

We have applied a simple MCMC implementation to the GaN:H data of Fig.6 and obtained the 
result shown in Fig.8.  For each element the lines show ± one standard deviation from the 
expectation value of the depth profile.  This is a direct representation of the analysis precision.  
The conclusion that was suggested by the SA result is confirmed by the MCMC calculation. 

13- High Resolution RBS:  A Proper Treatment of SiGe Multilayers 

Energy Resolution at Glancing Incidence: Analysts have long looked for optimum depth 
resolution from RBS by using glancing beam incident or exit geometries to geometrically 
enhance the path lengths and hence the energy loss in thin surface layers.  Williams & Möller 
(1978) gave a detailed analysis of the individual contributions to the energy resolution as a 
function of depth two decades ago.  We show here how the more accurate calculations carried 
out by the DEPTH code of Szilágyi, Pászti & Amsel  (1995),  can be incorporated into high 
resolution RBS (HR-RBS) measurements on SiGe multilayers.  DEPTH has been validated at the 
10% level for many systems including pure Si (Szilágyi & Pászti,  1994),  Co/Re multilayers 
(Barradas, Soares et al,  1994),  and Si/Ge multilayers (Barradas, Jeynes,  Mironov et al,  1998). 

SiGe Multilayers: Integrated optoelectronics on silicon using a process compatible with 
current silicon technology would revolutionise the industry.  There is consequently intense 
interest in possible materials and technologies for this.  We have already mentioned β−FeSi2:  
another possibility is the use of SiGex alloys, which can be grown coherently on a Si substrate for 
a variety of heterojunction devices. Because of the mismatch of the Si and Ge lattices these 
layers are heavily strained and must be very thin to be defect-free.  Now the growers need to 
know not only the thickness and stoichiometry of their layers, but also the interface quality.  It 
would be very desirable to do this by RBS if possible, since RBS is non-destructive for this type 
of sample, the measurements are rather rapid, and it is valuable to have an independent  
technique to compare with TEM and SIMS (both destructive techniques, with TEM being very 
time consuming as well).   

Barradas, Knights et al (1999) have investigated a nominally (Si 30nm / Si0.78Ge0.22 5nm)*5 
multilayer using HR-RBS.  Our co-authors also used HR-SIMS and other techniques to 
characterise these samples.  When the beam is incident normally on the sample the typical depth 
resolution for this system with RBS using, say, 1.5MeV He+, is about 40nm near the surface.  
But if a glancing angle of incidence is used the resolution (near the surface) can be improved to 
sub-10nm.  The depth dependent energy resolution was calculated using the DEPTH code of 
Szilágyi et al (1995). We were able to obtain the probable Ge profile at sufficient precision to 
show that the probable mean layer thicknesses (characterising the interface roughness) change 
with growth temperature.  Fig.9 shows the data for a multilayer grown at 5500C, and the 
solutions compared for this sample and another grown at 8100C.   
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Figure 7: Plots of the Fe/Si and Fe/Co ratios from an MCMC analysis of the mixed silicide 
spectrum in Fig.2 of Barradas, Jeynes & Webb, Appl.Phys.Lett. 71, 1997, 291 (similar to Fig.2 in the 
present work).  The solid  contour lines marked "5", "6", "9" represent the 90, 95 and 99% confidence 
intervals respectively, calculated by MCMC.  The axes are in thin film units (1015atoms/cm2) and 
represent the total number of atoms of each species in the film 
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Figure 8: Confidence intervals of the Ga implanted samples of Fig.6 calculated by MCMC. a) Ga 
implanted into Si-rich SiNx does not substitute preferentially for Si (shown in Fig.6);  b) Ga implanted 
into Si-poor SiNx (not shown in Fig.6) does substitute preferentially for Si (forming GaN, as shown by 
XPS);  Fig.2 of Barradas, Almeida et al, Nucl. Instr. Methods B148 (1999) 463-467. 
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The solution in Fig.9e showing the probable layer thicknesses indicates that there is a systematic 
increase in the layer  thicknesses for the low temperature film.  Fig.10 shows the error on the 
profile calculated with the MCMC method (similarly to the example of GaN:H shown in Fig.8 
and described above):  again,  the indication given by SA is confirmed by MCMC. 

High Depth Resolution by RBS? This very remarkable example deserves detailed discussion.  
The first general question is, how can useful information about the interfaces of films 5nm thick 
be obtained with a system whose declared depth resolution at the film surface is 7.5nm?  The 
first answer to this is that while a depth profile will be broadened by the system resolution, and 
fine details will be smeared out, information about moments of distributions are available at 
much greater precision than the  system resolution.  For example, IBA analysts use this all the 
time to determine the electronics gain:  we routinely acheive a precision in the determination of 
the position of surface signals a factor of 20 better than the nominal energy resolution of the 
system (cf. Seah et al 1988,  Jeynes et al, 1998).   The second answer is that in principle the 
system resolution function can be deconvoluted out of the data.  This can be done indirectly as 
we do in this example,  by including the depth dependent energy resolution in the forward model.  
As we have already pointed out, it can also be done directly using maximum entropy (Bayesian) 
techniques (Fischer et al; 1997, 1999) with astonishingly good results but at the cost of 
considerable computational difficulty. 

Accuracy: The second general question is, how confident can we be of the accuracy of the 
result?  We are, after all, putting considerable weight on the interpretation of very small features 
of the data.  There are two aspects to accuracy:  the relative accuracy (that is, the precision) of 
two profiles, and the absolute accuracy of a profile.  The relative accuracy reflects the 
confidence with which we can discriminate differences between samples and which we have 
discussed in detail in the section on Bayesian techniques and which has been calculated for Fig.9 
in Fig.10.   To estimate the absolute accuracy implies a full error analysis as described below in 
the sections on accuracy and on the forward model limitations. 

Use of the DEPTH code: The DEPTH code of Szilágyi et al is central to including accurate 
energy resolution values into the forward model.  If this is not done correctly it is not possible to 
fit the data properly, and the objective function starts to become meaningless since it merely 
reflects forward model shortcomings.  DEPTH calculates the energy resolution as a function of 
depth due to instrumental factors such as the beam energy width and the detection system 
resolution,  the geometrical broadening in the detector due to finite detector solid angle, finite 
beam spot size and angular spread;  and the energy straggling and multiple scattering which are 
the factors dependent on the sample.  Although the simulation code RBX of Kótai (1994) 
effectively incorporates DEPTH internally, other simulation codes use Bohr straggling as an 
approximation to the energy straggling function, with a user-supplied factor to correct the values.  
This is quite unsatisfactory, especially as the functional form is not necessarily accurate.  
Multiple scattering is the excess energy straggling due to multiple low angle collisions.  The 
DEPTH code does not calculate the low energy tails and other effects due to plural scattering,  
that is,  multiple large angle collisions.  Of course, plural scattering effects cannot be represented 
as a depth dependent energy resolution effect:  plural scattering gives the specific spectral 
distortion of low energy tailing.  This is outside the scope of this review,  except to say that our 
MS correction will in many cases (including that of Fig.4) also adequately correct for plural 
scattering in an ad hoc way. 

DEPTH directly calculates the energy resolution as a function of depth, assuming a particular 
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sample structure.  Therefore in principle the calculation is implicit, relying on iteration to 
complete it.  The sample depth profile must first be extracted from the spectrum without the 
depth resolution function, then the DEPTH calculation is done using this approximate profile, 
and then the SA is done again using the energy resolution function calculated by DEPTH.  In 
fact, it was not necessary to iterate since there is very little difference between the energy 
resolution function calculated with and without the correct profile.  However, including the depth 
dependent energy resolution function in the forward model considerably increases the forward 
model computation time, and therefore also the DataFurnace calculation time (which can be 
hours) since the forward model is at the core of SA. 

Information from Multiple Spectra:  In Fig.9,  the multilayer cannot be resolved with the beam 
at normal incidence (Fig.9a).  Even with a glancing incidence angle of 260 (Fig.9b) the layers are 
only partially resolved.  However, as the glancing angle is decreased the Ge starts to overlap with 
the Si signal and the signal to noise ratio for the deepest layers decreases.  Thus, for a glancing 
angle of 160 (Fig.9c) there is most information about the top three (or four) layers, whereas for 
110 (Fig.9d) there is most information about the top two layers. DataFurnace handles all these 
spectra together self-consistently,  with the highest resolution information being available about 
the top two layers.  Notice that the overlap of the Si and Ge signals in Fig.9d causes a complex 
spectrum.  Notice too that the spectrum is dramatically broadened for the deeper layers, and that 
the DEPTH calculation accounts for this correctly.  This work is therefore a validation of 
DEPTH since unless the depth dependent energy resolution function is correctly calculated a 
good fit to the spectra at all angles of incidence will not be available simultaneously.  

The result is shown in Fig.9e, which also shows a profile from a second sample grown at the 
higher temperature.  These profiles are consistent with the data.  As discussed above, the solution 
is given in terms of the minimum numbers of layers and compositions consistent with the data. 
What we fit is an estimate of mean layer thickness, equivalent to a second moment of the 
distribution.  The energy resolution is convoluted into the spectrum calculated from the profile:  
the worse the energy resolution is, the less sensitive to small changes in the profile the data will 
be.   

Error Estimate by MCMC: Thus, the suggestion in Fig.9e that the fourth and fifth layers 
merge into each other must be tempered with the knowledge that we do not have much 
information about these layers:  many other profiles may also be consistent with the data.  Again, 
we apply a Bayesian analysis of the expected error in these profiles and obtain Fig.10.  Now the 
likelihood that the profiles from the two samples are really different can be evaluated more 
quantitatively.  The samples grown at the lower temperature do have rather thicker layers at 
lower average Ge content, consistent with the interface broadening inferred from Raman 
spectroscopy.  What is not included in this plot is estimates of the probable number of Ge atoms 
in each layer together with layer thicknesses and estimates of the error on these estimates.  This 
information is also available to the user from the Markov chain calculation. 

14- Non-resonant NRA 

Workers at Surrey (Payne et al, 1989) were the first to use deuteration and the D(3He,p)4He 
reaction to follow the intermixing of polymers, although Lennard et al (1993) have thoroughly 
described the profiling of D using a 3He beam in various Zr-based alloys. Barradas & Smith 
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Figure 9: above: Normal incidence and HR-RBS data of a nominally (Si 30nm / Si0.78Ge0.22 5nm)×5 
multilayer grown by MBE at 5500C.  The solid lines are the fits and the dotted lines are the Si and Ge 
partial spectra.  1.5MeV 4He and detector in Cornell geometry with scattering angle of 1600.  below: 
Fitted Ge depth profiles for the data shown (5500C, dashed line) and for 8100C (solid line).  The depth 
resolution function is calculated with the DEPTH code (Szilágyi, Pászti & Amsel, 1995). Figs.2&4 of 
Barradas, Parker et al, Phys.Rev. B59 (1999) 5097-5105 
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Figure 10: MCMC error calculation for the two samples of Fig.9e. Multilayers 
grown at a) 5500C and b) 8100C.  Fig.6 of Barradas, Parker et al, Phys.Rev. B59 (1999) 
5097-5105  
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(1999) describe the analysis with DataFurnace of a multilayer of (hydrogenated) polystyrene 
(PS) and deuterated polystyrene (DPS) with a very high depth resolution of <6nm. DEPTH 
(Szilágyi et al, 1994, 1995) was essential for this work.  The calculation of confidence intervals 
with MCMC confirms the multilayer structure.   

Functionalised polystyrene blends have been analysed by Wendler et al (1999) using a very 
complete analysis first by simultaneous NRA/RBS with a 3He beam and then by ERD/RBS. 4He 
ERD of deuterated polymers using a detector with a range foil yields recoil spectra where the D 
and H recoil signals overlap. As mentioned above, the DataFurnace code handles this case too.  
All glancing incidence work, including ERD and high resolution analysis, depends on a very 
good knowledge of the geometry of the analysis.  This geometry can be determined as one of the 
parameters of the data analysis if multiple spectra are collected at different beam incidence 
angles (since relative incidence angles are known more accurately than absolute ones).  This 
approach is powerful in determining the accuracy of the analysis (that is, yielding a result which 
can be certified by reference to international standards) since the data themselves imply the 
instrumental parameters.  However, a large number of spectra are collected:  in this case we have 
analysed at least 13 per sample. 

Barradas, Parascandola et al (1999) show an analysis of a nitrided steel by NRA/RBS with a 
1.4MeV D beam and ERD with a 35MeV Cl beam.  Two separate analyses  were made by ERD,  
one using a standard ToF detector and the other an angle-resolving ionisation chamber.  The 
NRA reaction was the 14N(d,α1)

12C with Q=9.146MeV. This looks deepest into the sample but 
with a poorer depth resolution than the ERD.  Three different N profiles were thus obtained with 
different depths of analysis:  these are handled together self-consistently by the DataFurnace 
which automatically weights the data from each spectrum according to its individual sensitivity. 

15- Accurate IBA  

The precision of an analysis,  that is where similar samples are compared,  has been considered 
above.  However,  the ultimate consideration of all analysis is the accuracy available.  We use 
accuracy here in the critical sense,  that is where a measurement can be traced back to 
international standards of mass, length and time with a specifiable uncertainty.  Because the 
Rutherford cross-section is analytical the accuracy of RBS is potentially unlimited - except for 
the major problem in all IBA,  the limited knowledge of the energy loss of ions in matter that we 
consider in detail in the next section.  However, there are certain sorts of analysis where the 
energy loss enters only in second order: one of these cases has been treated in detail by Jeynes, 
Jafri et al (1997) with the conclusion that even in this ideal case there are several small effects 
that have to be considered (at the ¼% level) that will cumulatively make an accuracy better than 
1% hard to acheive.  (We quote all errors here at the 1σ confidence level.) 

The only query about the potential accuracy of RBS to our knowledge is the interpretation of the 
low energy tails in backscattering spectra.  Tails are certainly caused by multiple and plural 
scattering effects and have been calculated successfully with Monte Carlo techniques by Bauer et 
al (1992, 1993), and most recently by Eckstein & Mayer (1999) for low energy beams where the 
effects are large.  They could also be caused both by slit scattering and any low energy 
component there may be in the beam.  However, a careful experiment by Gurbich (1995) used 
time of flight techniques with a high energy pulsed beam (2MeV protons) and very thin foils 
(self-supporting gold at about 10keV thick for this beam), with the result that he found large 
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unexplained tails, at about 10% of the size of the expected backscattering from the thin foil. 

We point out, parenthetically, that we believe that it is harder than generally supposed to 
establish the energy calibration with an accuracy better than 1%.  Although the machine energy 
can be established readily at about 0.1%,  the electronics calibration depends on an accurate 
knowledge of the pulse height defect of the detector.  This has been comprehensively described 
recently by Lennard, Tong et al (1990),  and we have presented a full analysis in a particular case 
where the best demonstrable accuracy was only 0.5% (Jeynes, Barradas, Blewett & Webb, 
1998).  Lennard et al (1999) do not make a comparable accuracy estimate explicitly,  but their 
work is consistent with an accuracy of about  0.5%.  We are not aware of any other work that 
establishes the energy calibration accuracy. 

Apart from issues of energy calibration,  accuracy in RBS turns on knowledge of the product of 
the detector solid angle and the collected charge,  the so-called charge.solid-angle product,  since 
very careful work from two decades ago established the validity of the analytical RBS cross-
section when the electron screening effect was taken into account.  The accuracy of the corrected 
RBS cross-section is usually better than the ½% cited by Wätjen et al (1992) for the worst case 
of Bi,  which is of course very heavy.  Solid angle is troublesome to measure accurately at the 
1% level, as is routine charge collection in RBS systems,  and analysts have used standard 
(certified) samples for a decade to avoid routine use of absolute values of charge and solid angle. 

The existing standard samples are Bi implants into Si, the Bi contents of which are now certified 
at 1.3% (Wätjen et al, 1994; Wätjen, 2000).  A new set of Sb implanted samples are now 
available from IRMM, Geel and BAM, Berlin, and are certified at 0.6% (Ecker et al 2002). 

Implanted silicon standards:  Very recently there has been useful work on new standard 
samples,  where the measurand is the surface yield of an implanted (amorphised) silicon sample 
(Lennard et al, 1999;  Bianconi et al, 2000)  This is equivalent to an absolute measurement of the 
energy loss of Si (see Konac et al, 1998, and the discussion in Barradas, Jeynes, Webb & 
Wendler, 2002).  In Bianconi et al's work two labs made absolute measurements of the 
charge.solid-angle product,  at nominally 1% accuracy,  and got agreement within the stated 
error.  The traceability of Lennard et al's work is not so easy to establish,  but they obtain the 
same values.  Niemann et al (1996) have also made measurements of energy loss in Si at an 
accuracy approaching 1%.  The point here is that Bi or Sb implant samples are specific artefacts,  
but every lab can make their own amorphised Si samples on demand.  Secondary standards must 
be used systematically with the Bi certified standards,  with the associated error and complexity;  
not so for the amorphised Si.  The difficulty with certifying the Bi implants has been in 
establishing the real variation across the implant batch,  but the uniformity and purity of modern 
production silicon ingots has been established at extraordinary sensitivity and accuracy:  modern 
standard RBS samples can now take advantage of this.   

It should not surprise the reader,  bearing in mind the preceding discussion,  that much current 
routine RBS has difficulty establishing an accuracy better than 10%.  Critical work is usually 
done relative to internal standards in the sample set:  the accuracy of such work is usually very 
difficult to trace. 

Boudreault et al (2002) have now demonstrated an RBS analysis at an accuracy certifiable near 
the 1% level, traceable through the new IRMM/BAM standard samples, and which could be 
implemented as a routine tool. Heavy ion implants into silicon can be chosen to leave the surface 
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implanted layer fully amorphised.  Standard implants like these are important in implantation 
labs for validating the implanter performance.  Therefore a routine certifiable analysis is of 
considerable value.   

Two detectors at different scattering angles are used.  The DataFurnace is used to calculate the 
depth profile as described above:  this calculation is done self-consistently using correct stopping 
powers (we remind the reader that most widely used codes do not do a proper self-consistent 
calculation,  giving an error that increases with As concentration).  The pileup correction of 
Jeynes, Jafri et al (1997) is used.  The integration of the As profile gives the As atom density 
directly.  Clearly,  such an analysis is traceable not only to the value of the stopping powers at 
the energy of analysis but also to the shape of the energy loss as a function of energy (although 
for low energy implants a single correction value is adequately accurate).  The new accurate 
values of the energy loss function in silicon are easily included explicitly in the DataFurnace 
energy loss database,  making a fully traceable routine analysis straightforward.   

The interesting thing about this approach is that the spectra from both detectors are handled 
together self-consistently:  this is equivalent to two essentially independent measurements of the 
same quantity (given the accelerator parameters of course).  Not only this but also the data 
reduction is automatic.  Thus we demonstrate a rapid routine automatic analysis of certifiable 
accuracy where a single measurement contains its own validation with information from two 
independent data channels.  In the case shown the two detectors give respectively 
861.1012As/cm2 and 855.1012As/cm2 with a difference of about 0.8% consistent with the 
counting statistics.  The values are about 1% lower if infinite As dilution is assumed, 
emphasising the importance of a correct calculation. The accuracy of the electronic energy 
calibration (independently determined for each detector) is important, since it is comparable to 
the counting statistics only if carefully done.  The charge.solid-angle product is determined 
absolutely (again, independently for each detector) from the standard value used for the energy 
loss. 

Elastic (non-Rutherford) scattering:  We have recently demonstrated a very good precision of 
2% and quite a good accuracy of 10% in a determination of the C content of Ni-Ta-C magnetron-
sputtered films on a silicon substrate using a mixed EBS/RBS analysis and a 1.75MeV H beam 
(Jeynes, Barradas & Wilde, 2000).  These films were very uniform and reproducible, and it was 
possible, assuming their uniformity,  to use a transparent (and hence traceable) manual method 
for data reduction to obtain the stoichiometry.  The difficulty with EBS is the very strongly non-
Rutherford cross-section for both the C and the Si signals.  Not only can the cross-section 
enhancement be very large (peaking at a factor of about 60 for C for a proton beam of 
1.737MeV) but the variation with energy can be equally large.  The paper includes a discussion 
of the cross-sections,  which are outside our present scope.  The successful use of EBS for 
accurate analysis clearly depends on accurate cross-sections.  However, it also depends on codes 
that can effectively implement these cross-sections.  H EBS is hard to use with traditional data 
reduction methods since there is usually considerable elemental overlap even with simple 
samples. DataFurnace is therefore particularly valuable for extracting depth profiles from H 
spectra.  In this case we were able to demonstrate the validity of the assumption of uniformity of 
the films that was made for the manual analysis.  The DataFurnace and the manual analysis 
agreed at the analysis precision.  This is not necessary:  the data reduction algorithms for the two 
methods are independent (although of course the same energy loss values and instrumental 
parameters are used for both analyses).  This work is an important validation of the DataFurnace 
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code. 

It is worth remarking that these data have also been successfully analysed by an artificial neural 
network (ANN) code (Vieira & Barradas, 2001),  relying on the accuracy of the DataFurnace 
analysis to validate the ANN methods. 

Microbeam RBS:  An interesting example of an accurate analysis is the recent microbeam 
analysis of copper containing deposits printed with an inkjet (Jeynes et al, 2002;  Rozenberg et 
al, 2002):  the inkspots were about 300 microns across and very non-uniform needing a beam 
spot size of 10 microns.  Again the RBS spectra were ambiguous,  with the added problem that 
the true collected charge had to be determined from the spectra themselves (a standard problem 
with the microbeam).   We were able to demonstrate from the objective goodness of fit (the χ2 
function) for a range of possible inkspot compositions that the inkspots were at least 90% copper 
by weight. 

Conclusion:  Analytical accuracy depends in all cases on being able to objectively estimate the 
confidence interval for the results.  DataFurnace is the only code that can do this reliably for the 
general IBA data we have been describing, using the MCMC methods we have described above 
(Fischer et al’s MaxEnt code appears to be too cumbersome for general purpose use).  The 
simple statistics we currently use on the MCMC data are very well suited for this purpose. 
However, more mathematical work is required to fully validate the cooling schedule and other 
details of both the MCMC and the SA algorithms. 

16- Forward Model Extension:  Roughness 

Another effect is surface topography.   This introduces marked spectral distortions which cannot 
be evaluated without a model,   introducing many more parameters in the description of the 
sample.  These effects have been long known:  a notable example is Edge’s (1983) elegant use of 
them to characterise optical fibres and optical gratings. 

Roughness problems are attracting increasing attention now that computers are so much faster,  
for example:  Marin et al (1996) have extracted information about the distribution of the droplet 
sizes of lead on glass and copper in kapton and Niwa et al (1998) have done similarly for an 
island growth problem;   Simon et al (1998) have analysed patterned and porous samples with 
the microbeam;  and Slotte et al (2000) have shown how spectra from rough samples can be 
solved using IBA, AFM and SEM methods in a complementary way.   

Systematic approaches have been made to the accurate calculation of spectra from general rough 
surfaces for RBS by Shorin & Sosnin (1992) using a Monte Carlo code and for ERD by Yesil et 
al (1998) with the SURF code.   

Clearly these sorts of codes are too slow to incorporate into DataFurnace and Barradas (2001) 
has implemented a simple and generally useful parameterisation scheme for rough surfaces 
which is valid for moderate roughness,  that is, provided the beam does not enter and leave the 
sample more than once.  This approach is appropriate for thin films and multilayers with 
roughness values up to a few tens or hundreds of nm. By calculating the broadening due to 
roughness, and assigning it as an extra contribution to the energy straggling, an apparent energy 
resolution is obtained. This is then convoluted with the theoretical spectrum in the normal way. 
The effect of roughness can thus be included in NDF with little effort, paying only a small price 
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Figure 11: 2MeV 4He+ RBS data (dots) and DataFurnace fit (line) of the structure shown in 
Table 2.  This is a 21 layer antireflection coating of silica and zirconia on glass.  
The DataFurnace fit assumes molecules (no free oxygen), where the zirconia has a 
Hf contamination.  The energy resolution as a function of depth is calculated with 
the DEPTH code of Szilágyi, Pászti & Amsel, 1995. Two angles of beam 
incidence are used sequentially with the data fitted simultaneously. Partial spectra 
for Hf, Si and O are also shown.  From Fig.2 of Jeynes et al, Surf.Interface Anal. 
30, 2000, 237 
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in terms of calculation time. 

The broadening depends on the exact type of roughness. Three different models were 
implemented into DataFurnace: inhomogeneous layer thickness, corrugated sample and rough 
substrate surface (refer to Figure 4 of Barradas, Soares et al, 1994, for a visualisation of the 
models:  this example has been reanalysed with the modified NDF code in Barradas,  2002).  
Interfacial mixing in multilayers can also be analysed with the method developed - see Barradas, 
Sequeira et al (2002) for an example in the SiGe system and Tavares, Rebouta et al (2002) for 
one in the TiAlN/Mo system.  DataFurnace can perform automatic fits to several spectra 
collected from the same sample, ensuring all the information in the data is used self-consistently 
to obtain the final depth profile and roughness parameters. The code is also valid for ERD.  

17- Forward Model Limitations:  Stopping Powers (Optical Multilayers)  

The analysis of samples like optical filters make a dramatic demonstration of the power of these 
new techniques.  Jeynes, Barradas, Rafla-Yuan et al (2000) have described the analysis of a 21 
layer anti-reflection coating consisting of a silica/zirconia stack on a glass substrate using 
2.2MeV 4He RBS (Fig.11).  Using the proper depth dependent energy resolution function we 
could demonstrate a perfect self-consistent fit to double detector data (actually this data was 
single detector, but with two incident angles of the beam). An MCMC analysis was carried out,  
and  deep in the stack, at a depth of a micron,  we find that,  for example,  the 17th layer 
(zirconia) is 30.0 ± 2.6 nm thick,  where the error has a confidence of 95%.   

We should note that the MCMC information is now being treated in a different way from the 
simple display as in Figs.8 & 10 for example.  The fit was carried out allowing the zirconia and 
silica to mix (no solution is available if mixing is not allowed).  The errors calculated by MCMC 
are available as a function of depth.  Equivalent pure layer thicknesses are calculated, with their 
errors,  by splitting the "mixed" regions equally between their pure neighbours. 

This analysis was carried out using the information that only zirconia and silica are present in the 
stack:  we used three molecules, ZrO2 (with a Hf contamination), SiO2 and the five element float 
glass substrate including 0.2 at% Sn which significantly complicates the spectra.  Thus although 
7 different elements are significant in the sample only three molecular fitting parameters are 
used,  and the light element O is always correlated with heavier elements with larger signals.  We 
shall see that in fact this correlation of the low and high energy parts of the spectrum is also 
essential to obtain a correct solution for another reason.  Clearly with such a complicated sample 
it is very desirable to restrict the state space with as much prior information as is available.   

It is astonishing that such a precision (better than 3nm) is available so deep in such a complicated 
sample.  For comparison,  the detector energy resolution at around 12keV  is equivalent to a 
depth in silicon of about 30nm.  Energy straggling should rapidly degrade this with depth.  Of 
course, the precision of the layer thickness calculation is not the same as an objective evaluation 
of the true depth resolution.  We have already noted that many quantities can be determined at a 
precision much better than the nominal depth resolution.  In this case we have imposed the 
assumption of sharp interfaces onto the sample, and we are effectively counting atoms per layer, 
something RBS is extremely good at. 

The question then arises:  what is the accuracy of the determination of the layer thicknesses?   
For thin films the answer is simple:  counting atoms simply depends on the accuracy of the 
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system calibration.  However,  for thick films we have to consider the effects of the enhanced 
backgrounds and the spectral distortions caused by multiple and plural scattering effects.  Some 
of these effects can be largely eliminated with standard analytical methods as described above,  
but complex spectra like these will be very sensitive to them.  This is as yet an open problem 
since what is needed is well founded analytical approximations for these effects that can be 
incorporated into SA. 

If on the other hand we ask what is the confidence we have in the interface information (recall 
that the fit insisted on mixed interface regions) the answer is very different.  We tried initially to 
fit these spectra with an old code that did not permit molecules.  We found that solutions were 
very easy to find,  but that they always involved no correlation between the oxygen and the 
metals.  The elemental solutions did not give the right stoichiometries.  It turns out that where 
there are strong interface signals SA is extremely sensitive to the system calibration.  Moreover,  
the position of the interface signals is determined by energy loss.  Therefore any error in the 
energy loss function of one element that is not exactly matched by corresponding errors in all the 
other relevant elements will make the code want to put the interface signals for the different 
elements in different places.  Where the elemental signals are not correlated by the use of 
molecular parameters the real correlation between elements will be obscured by the errors in the 
energy loss database.  Similarly, where molecular parameters are used,  interface information 
will also be obscured.  Therefore we suspect that the insistence of the DataFurnace that the 
interfaces are mixed is probably an artefact due to errors in the stopping power database. 

18- Other Examples 

DataFurnace has been used for a variety of materials analyses.  It is worth giving a list here. 

The Lisbon group have used high resolution RBS to monitor the fabrication of MnIr spin valves 
with nano-oxide layers formed from plasma oxidation of CoFe layers (Veloso et al,  2000).  This 
process is to enhance the magnetoresistance for magnetic memory application.  Zhang et al 
(2001) have investigated processing problems with magnetic tunnel junctions (used for magnetic 
random access memory applications) fabricated with sophisticated metallic (and semi-metallic) 
multilayers and analysed with high resolution RBS. 

The group at Surrey has also: measured lateral stress in implanted gold films using a three crystal 
quartz resonator method and a detailed self-consistent RBS analysis (Way et al, 1999); 
investigated surfactant behaviour in the formation of latex films (Tzitzinou et al, 1999); 
characterised sol-gel deposited Ta2O5 and TiO2 dielectric films on silicon (Cappellani et al, 
1999); used complementary RBS and XPS to investigate tribological coatings (TiN, TiAlN and 
MoS2:Ti) on steel (Baker et al, 2000);  investigated low temperature growth of GaN (Young et 
al, 2000); and measured H and N content of a-C by Hi-ERD (at Rossendorf citing Barradas, 
Khan et al, 2000: Carey et al, 2000, 2001) 

The Göttingen group has followed ion beam mixing of Si/C multilayers (Harbsmeier et al, 2000) 
and Ta/Si bilayers (Bibic et al, 2000) with RBS and other methods.  The Darmstadt group has 
investigated heavy ion induced metal-ceramic interface diffusion with RBS (Nagel et al, 1999, 
1999). 
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The Cambridge group has characterised silicon anodically oxidised using a wave resonance 
plasma (WARP) source by RBS (Uchikoga et al 1999),  and also characterised WARP deposited 
a-C:N:H films by He ERD/RBS (Rodil et al, 2000).  Other British RBS applications include the 
characterisation of gate oxides on SiGe MOSFETs (Riley et al, 1999:  Liverpool / London / 
Southampton) and the profiling of silver nanoparticles formed in glass by high dose implantation 
(Stepanov et al, 1999: Sussex). 

19- Future Developments:  Turnkey IBA  

Historically the use of IBA has been largely restricted to university research groups.   There has 
been an explosion in the development of a large variety of beautiful techniques and there is no 
doubt of its utility in research.  However,  the impact on industry of IBA methods has been 
marginal,  and we believe that this is largely due to the time and skill required to properly 
interpret even RBS data, the simplest of the IBA techniques.  The new data reduction methods 
that we have described here are powerful enough to revolutionise IBA.  In the future, turnkey 
benchtop accelerators will be operated by technical or graduate level staff (rather than research 
staff) and profiles will be generated automatically and on-line from the spectra.  Staff training 
should take no longer than two or three days,  and there will be well defined quality assurance 
procedures both for calibrating the instrument and presenting and validating data.  Such 
instruments will still be limited by the skill of the operators,  and research staff would be able to 
push the instruments much further.  However,  routine analysis will be available for a wide range 
of sample types at an accuracy certifiable at or near the 1% level,  and at a fraction of the current 
cost.  Immediately a wide range of analyses relevant to process development,  production control 
and quality control become feasible and such simplified instruments will find widespread use. 

EBS:  We anticipate that the progress made recently in understanding the functional form of the 
EBS cross-sections (Gurbich, 1997, 1998, 1999) should allow a comprehensive database for 
these cross-sections to be loaded, and for the distinction between RBS and EBS to be transparent 
to the user.  At present the use of EBS is badly hampered because the analyst must make sure 
that the scattering angles used conform to the angle for which the cross-sections were measured,  
but Gurbich’s formalism will allow the interpolations from the database to any angle.  Moreover,  
the Handbook (Tesmer & Nastasi, 1995) can be misleading and is not suitable for accurate work:  
a more reliable cross-section database is very desirable. 

PIXE, VASE, NDP:  So far we have not attempted to implement SA for PIXE data. PIXE and 
RBS are complementary:  RBS frequently does not have unequivocal elemental identification 
and PIXE is rather insensitive to inhomogeneity in depth.  The two together should be very 
powerful indeed.  In principle the PIXE forward model should not be too hard to implement,  we 
have not done this up to now since it is completely different physics from particle scattering.  We 
should mention that just as PIXE could be implemented with a new forward model,  so could 
other techniques.  We have already explored the use of SA annealing with variable angle 
spectroscopic ellipsometry (VASE) (Barradas, Keddie & Sackin, 1999):  this is a widespread and 
powerful technique to which IBA is complementary.  We believe that a DataFurnace extension 
that allowed simultaneous self-consistent fitting of IBA and ellipsometric data would be 
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tremendously powerful.  An extension to neutron depth profiling (NDP) has recently been 
implemented. 

High depth resolution is of great current interest,  with many important technologies dependent 
on the manipulation of very thin films.  We have demonstrated that when combined with an 
accurate function of energy resolution with depth a DataFurnace analysis can yield an 
astonishing depth resolution for the most complex sample.  We believe that SA could be used as 
a preprocessor for a maximum entropy code,  since the computation time for such a code is 
dramatically reduced if the position of the solution in state space is approximately known.  The 
drawback of this approach is that the detector transfer function must be accurately known,  but 
the benefit would be a greatly enhanced depth resolution for a reasonable computation time.  A 
sub-atomic depth resolution should be available if high resolution detectors (eg: Lanford  et al, 
1998) are used. 

Neural Networks:  A very interesting recent development,  completely unrelated to simulated 
annealing,  is in the demonstration that artificial neural networks (ANNs) can be effective and 
surprisingly accurate in interpreting RBS spectra (Vieira & Barradas, 2000, 2001;  Barradas & 
Vieira, 2000; Barradas, Vieira & Alves, 2001).  It has become clear that ANNs can only be used 
to interpolate, not extrapolate, the training set (Vieira, Barradas & Jeynes, 2001).  The interesting 
thing about ANNs is that in operation they are entirely model-free - the ANN is a "black box" 
with a spectrum as input and the required parameters as output and there is no  physics 
calculation in the box.  The physics is all implicit in the set of spectra and their solutions used to 
train the ANN.  Note that the calculation of the ANN is effectively instantaneous:  there is no 
computation time to extract the programmed parameters from the spectrum.  The prospect has 
been raised of "RBS without humans" (Barradas, Patricio & Vieira, 2002),  but more realistically 
we can consider using ANNs in special situations where large numbers of similar spectra are to 
be analysed. 

20- Future Developments:  The Algorithm and the Forward Model 

MCMC:  Because of the pressure to have on-line analysis with multiple techniques,  and because 
of the highly computationally intensive nature of both SA  and the forward models (especially 
when the full depth dependent energy resolution function is incorporated),  algorithmic issues 
will remain important.  We expect significant increases in speed with a more efficient generation 
function,  and although we currently use an adaptive cooling schedule we do not believe it is 
anywhere near optimal.  Also the currently used local minimisation is slow.   MCMC methods 
could be used for characterising the state space of spectra more systematically:  looking for the 
set of near-optimal solutions,  which may be effectively discontinuous as in our silicides 
example.  This may enable priors to be specified more robustly.  Of course, the MCMC 
calculation makes vast amounts of information available, from which we only extract a variance 
at present.  This data could be treated in a more sophisticated way. 

These ideas are explored by Marriott et al (2002),  who have found a far more efficient algorithm 
than the one we currently use.  They look at a different MCMC algorithm which is based on 
ideas from the Gibbs sampling formulation of MCMC rather than the Metropolis-Hastings 
method (simulated annealing) described here. This new method more fully exploits the 
information available in the forward model calculation (the elemental sub-spectra) to efficiently 
generate possible new states. The better the generation function the more efficient the MCMC. 
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Parallel Processing:  MCMC (and therefore also SA) is easy to implement on parallel processor 
machines,  and we expect that any serious increase in the industrial use of IBA techniques will 
also lead to very high specification hardware being used.  After all,  a £2K PC is only 0.2% of 
the cost of a £1M accelerator system. 

Unresolved algorithmic issues include some ad hoc parameters such as the 1.5 exponent used 
for normalising the chisquared (Barradas, Jeynes, Webb, Kreissig, & Grötzschel,  1999),  this 
means that we cannot yet demonstrate that we weight multiple spectra correctly.  More important 
is the outstanding problem of continuity which represents important prior information about the 
sample that is rather hard to specify objectively.  Has the sample got implant or diffusion 
profiles?  How many layers does it have (we already estimate this from the derivative of the 
spectrum,  but we are not convinced that an unequivocal algorithm exists)?  What is the 
difference between a diffused interface and a diffusion profile?  Progress in systematising these 
questions will greatly help the implementation of turnkey IBA. 

Unresolved forward model problems:  There are two major areas where the IBA forward model 
is unsatisfactory and progress in these will improve its accuracy.  Multiple & plural scattering 
are well simulated with Monte Carlo methods.  These effects become important for thick 
samples and for glancing angle IBA.  The contribution to straggling of multiple straggling effects 
is estimated well by Szilágyi's DEPTH code,  but its low energy background and the spectral 
distortion of plural scattering cannot yet be estimated simply.  Some systematic analytical 
approximation will be very valuable.  The energy loss database represents a huge amount of 
experimental and theoretical work,  but its accuracy is still rather poor in general.  We believe 
that with accurate data analysis for IBA now being available it may be possible to find much 
more rapid ways to obtain high quality energy loss data.  In any case,  accurate knowledge of 
energy loss is essential for accurate IBA.    

21- Summary 

Since the analysis of RBS spectra using simulated annealing methods was first published in April 
1997 we have generalised the method to all the depth profiling (particle scattering) IBA 
techniques,  and also supplied a highly usable interface for the analyst.  We have called this the 
IBA DataFurnace.  We have here reviewed the literature both on these developments and their 
context.  

There are a very wide range of powerful IBA techniques in use in the scientific community,  
including (to mention just a few) ion channelling for the analysis of crystalline defects,  ion beam 
induced current for in situ analysis of working integrated circuits,  and microbeam analysis for 
lateral resolution.  Extremely high lateral resolution is available from transmission ion 
channelling.  "Simple" depth profiling may be the least interesting of these techniques,  but it is 
very widely applicable by thin film technologists and materials scientists,  and we have produced 
a code which takes the drudgery out of it. 

The IBA DataFurnace amounts to a new and very powerful tool for depth profiling thin film 
samples.   
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