

Workshop on Sustainable Biorefineries

Theme 1: Biorefinery innovations and integrated configurations

Biorefinery ideas and concepts Advanced biorefinery configurations (multiple feedstocks, products, and platforms)

Theme 2: Hands-on problem solving: Sustainable biorefinery value chain creation

Unlocking the value of urban waste by the recovery of functional products for circular economy

Economic value and life cycle assessments for optimal and sustainable biorefinery systems

Theme 3: Resource and energy efficient multi-platform biorefinery systems

www.theibest.org

Dr Jhuma Sadhukhan Dr Elias Martinez Hernandez Dr Kok Siew Ng

Workshop on Sustainable Biorefineries

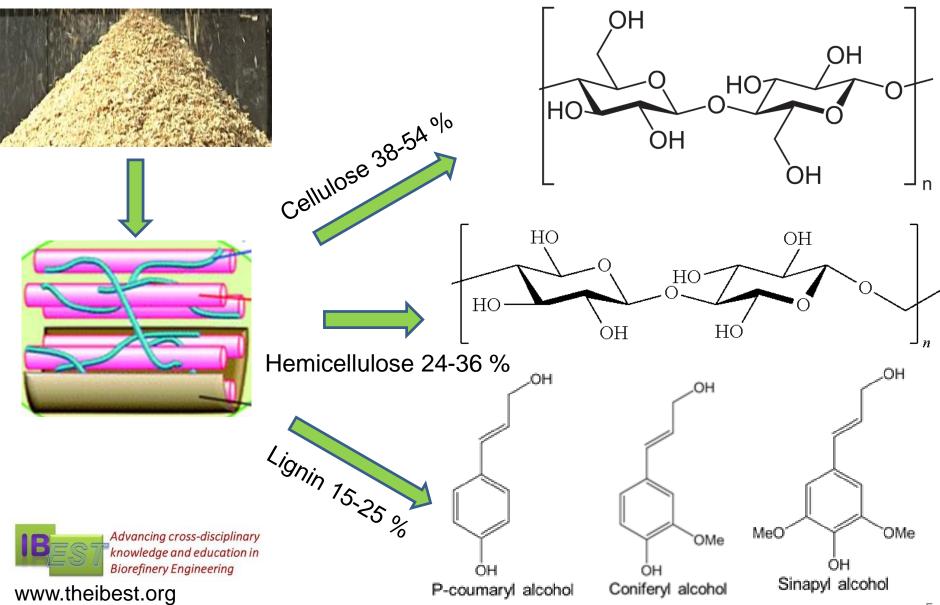
Lecture 1: Biorefinery ideas and concepts

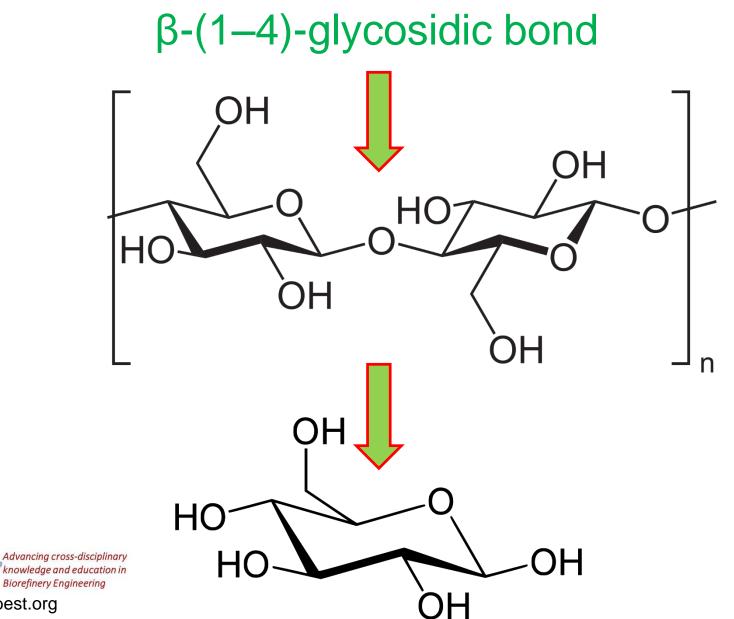
Dr Jhuma Sadhukhan Dr Elias Martinez Hernandez Dr Kok Siew Ng

Objectives

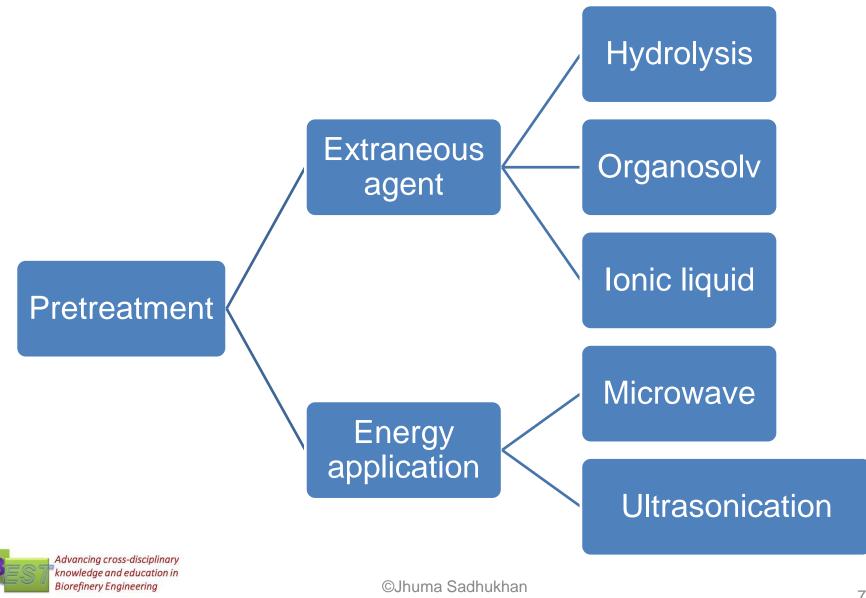
- Reduce fossil fuel consumption
- Meet energy and fuel demands using locally available biomass
- Create a dynamic and competitive chemical sector globally
- Explore process integration tools for biorefinery design
- Carry out techno-economic analysis and Life Cycle Assessment (LCA) for feasible design

Biomass

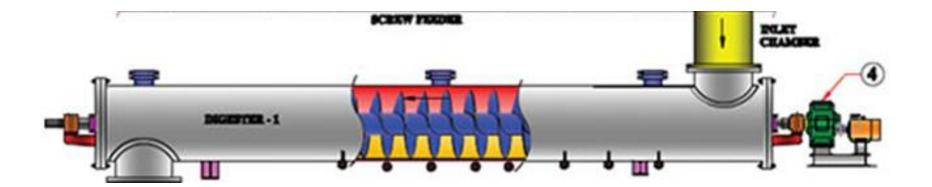

- Wood waste, saw mill dust, sago bark and sago fibre (Malaysia) and sugarcane and blue agave bagasse (Mexico)
- Grass silage, empty fruit bunch
- Oily wastes and residues
- Aquatic: algae and seaweed
- Organic residues: municipal waste, manure and sewage
- Wastewaters
- Energy crops: switchgrass and miscanthus


www.theibest.org

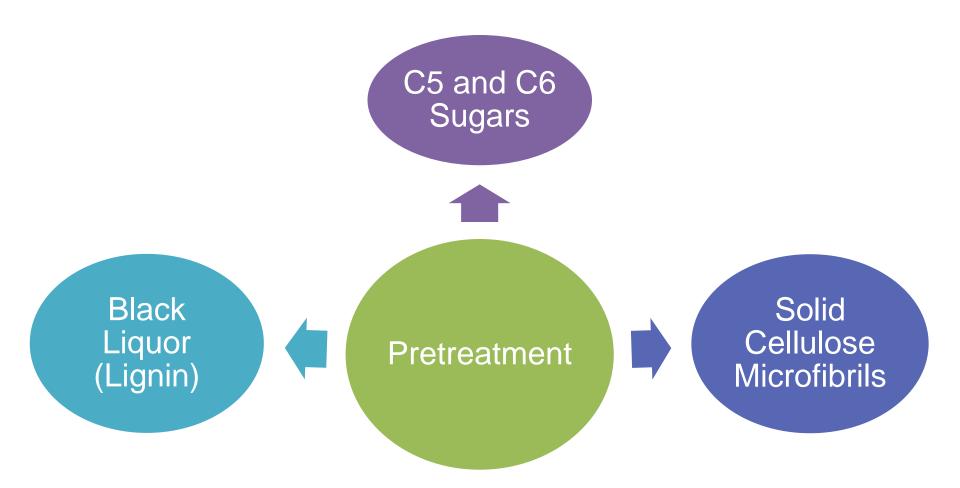
Biorefineries and Chemical Processes: Design, Integration and Sustainability Analysis, First Edition. Jhuma Sadhukhan, Kok Siew Ng and Elias Martinez Hernandez. © 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd. Companion Website: http://www.wiley.com/go/sadhukhan/biorefineries


Lignocellulose Structure

Cellulose Decomposition into Glucose

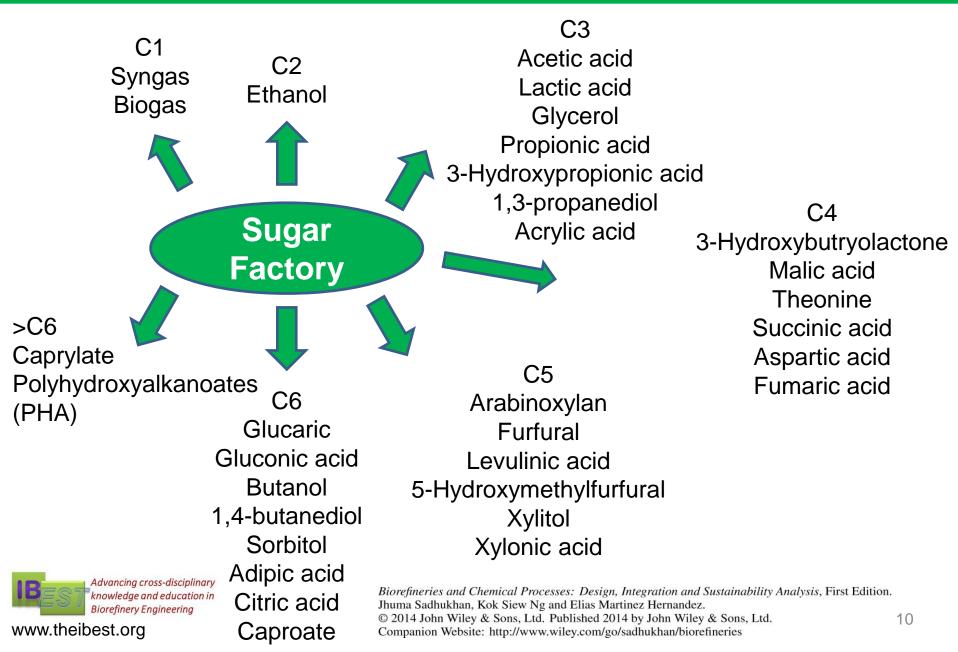

Lignocellulose Pretreatment

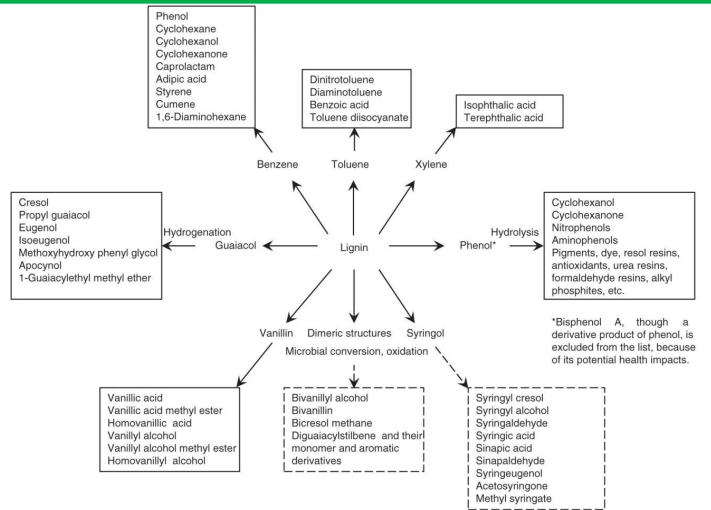
www.theibest.org

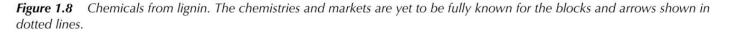

jhumasadhukhan@gmail.com

Mechanical, Steam and Chemical Pulping

Biorefinery Platforms




www.theibest.org


©Jhuma Sadhukhan, University of Surrey (jhumasadhukhan@gmail.com)

Biorefinery Products: Sugar Factory

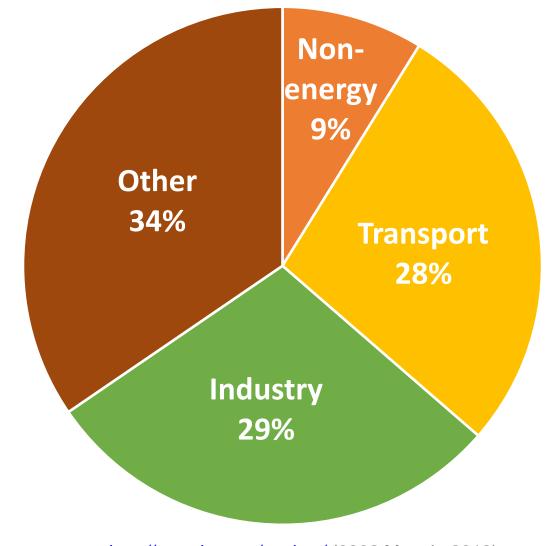
Biorefinery Products: Lignin Factory

Biorefineries and Chemical Processes: Design, Integration and Sustainability Analysis, First Edition. Jhuma Sadhukhan, Kok Siew Ng and Elias Martinez Hernandez. © 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd. Companion Website: http://www.wiley.com/go/sadhukhan/biorefineries

Biorefinery End Product Value & Volume

High Value Low Volume Product: Hard to find market

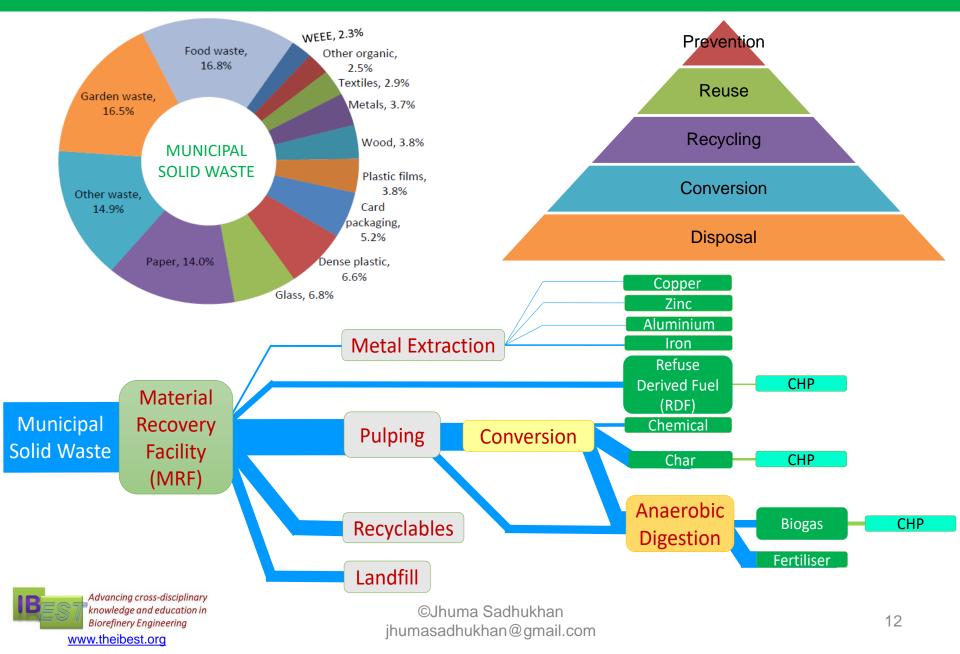
Biorefineries and Chemical Processes: Design, Integration and Sustainability Analysis, First Edition. Jhuma Sadhukhan, Kok Siew Ng and Elias Martinez Hernandez. © 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd. Companion Website: http://www.wiley.com/go/sadhukhan/biorefineries

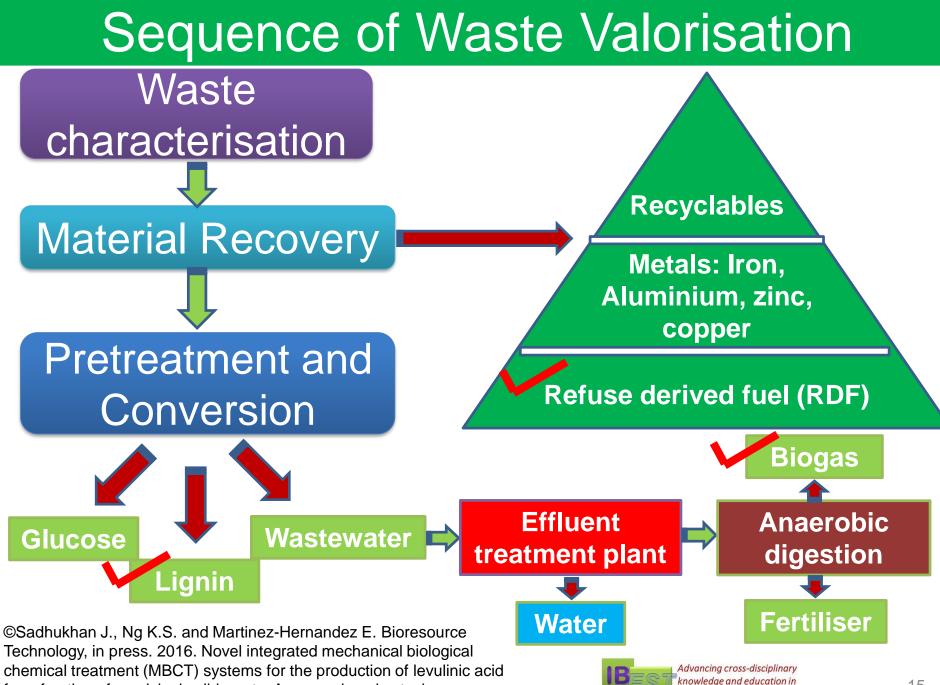

Biofuel

Energy

High Volume Low Value Product: Easy to find market

Total Mtoe Consumption





www.theibest.org

http://www.iea.org/sankey/ (9302 Mtoe in 2013)

Mass Transfer From Waste To Products

from fraction of municipal solid waste: A comprehensive technoeconomic analysis. http://dx.doi.org/10.1016/j.biortech.2016.04.030

Biorefinery Engineering

Technology Readiness Level

Mature

- Bioenergy
- Fermentation-Bioethanol
- Transesterification-Biodiesel
- Anaerobic digestion- Biogas

Developed

- Pyrolysis- Bio-oil
- Gasification-Syngas
- Hydrothermal liquefaction- Fuel
- Algae- Biofuel

Developing

- Catalytic (hydro)processing-Chemical and Fuel
- CO₂ reduction or reuse- Fuel and Chemical
- Resource recovery from waste-Functional products

Biomass Chemical Nature

We are able to evaluate a whole biorefinery value chain from

biomass characteristics

Characteristic	Physical	Thermochemical	Biochemical	Chemical
Chemical composition		×	×	×
Proximate and ultimate analyses		×		
Moisture content	×	×	×	×
Ash content	×	×	×	
Energy content	×	×		×
Density	×			
Particle size/size distribution	×	×	×	×
Digestibility/biodegradability			×	
Nutrient type and content			×	

Biorefineries and Chemical Processes: Design, Integration and Sustainability Analysis, First Edition. Jhuma Sadhukhan, Kok Siew Ng and Elias Martinez Hernandez. © 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd. Companion Website: http://www.wiley.com/go/sadhukhan/biorefineries

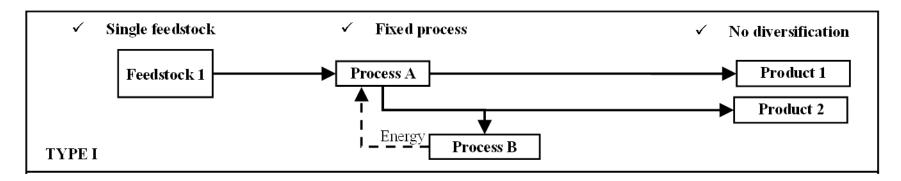
Summary

- Types and characteristics of biomass
- Biomass constituents and pretreatment
- Biorefinery platforms and products
- Waste valorisation and mass transfer into products
- Technology readiness levels
- Process design philosophy

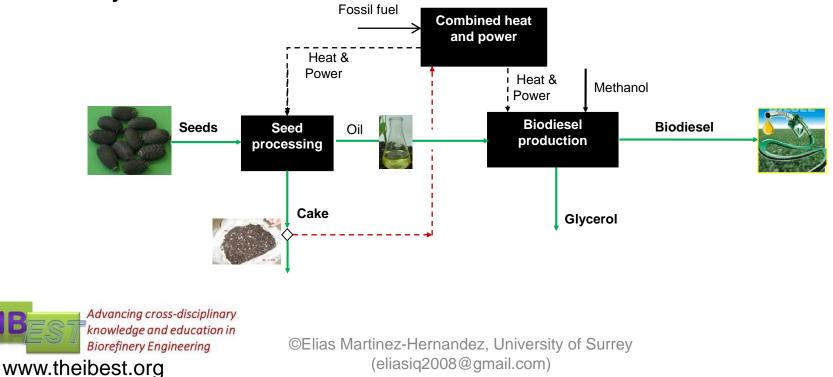
Workshop on Sustainable Biorefineries

Lecture 2: Advanced biorefinery configurations (multiple feedstocks, products, and platforms)

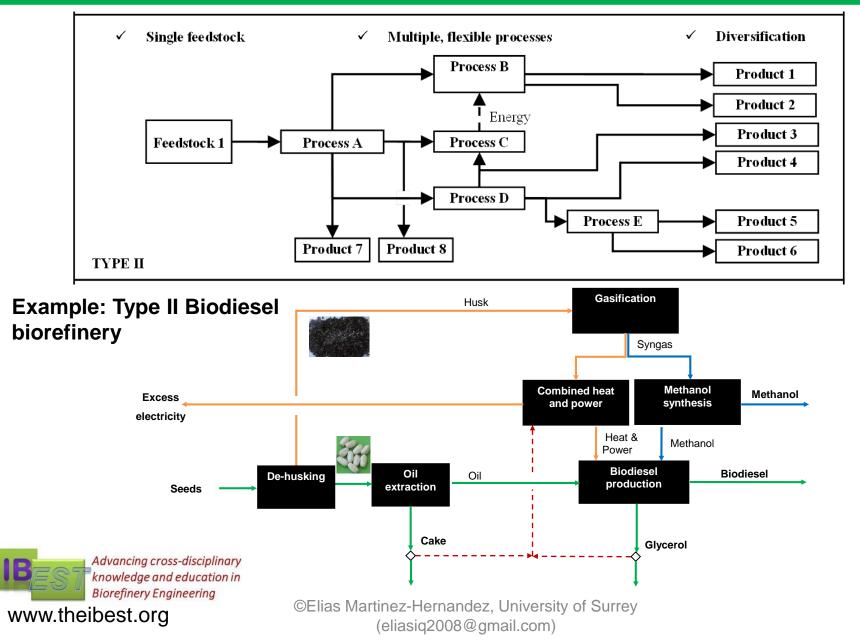
Dr Elias Martinez Hernandez Dr Jhuma Sadhukhan Dr Kok Siew Ng



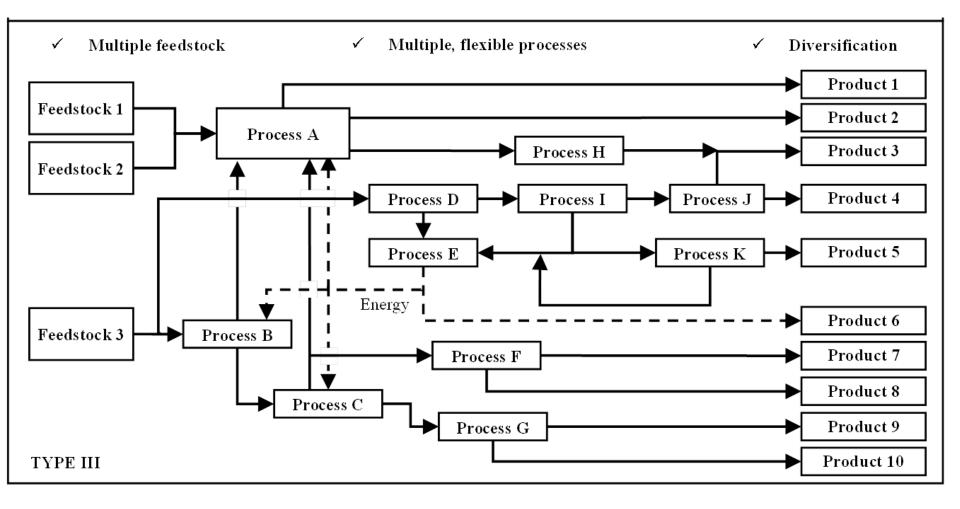
Objectives


- To comprehend how advanced and highly integrated biorefinery configurations can be generated by combining processes in a synergistic manner
- To study advanced biorefinery configurations to unlock the value of urban waste by the recovery of functional products
- To encourage integrative thinking when developing innovative biorefinery schematics

Biorefinery Configurations (1)



Example Type I biodiesel biorefinery


21

Biorefinery Configurations (2)

22

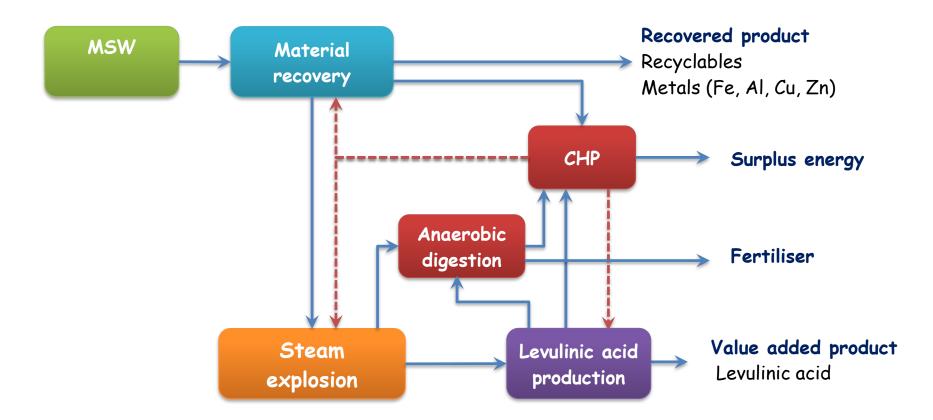
Biorefinery Configurations (3)

www.theibest.org

Biorefineries and Chemical Processes: Design, Integration and Sustainability Analysis, First Edition.
Jhuma Sadhukhan, Kok Siew Ng and Elias Martinez Hernandez.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
Companion Website: http://www.wiley.com/go/sadhukhan/biorefineries

Advanced Biorefinery Configurations

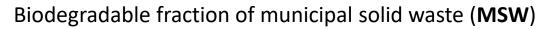
Network of interlinked biorefinery configurations

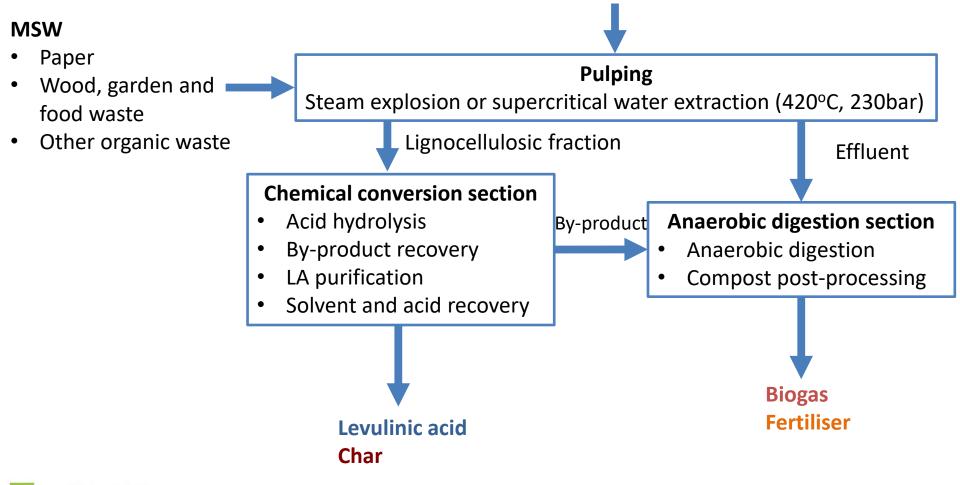


www.theibest.org

Biorefineries and Chemical Processes: Design, Integration and Sustainability Analysis, First Edition.
Jhuma Sadhukhan, Kok Siew Ng and Elias Martinez Hernandez.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
Companion Website: http://www.wiley.com/go/sadhukhan/biorefineries

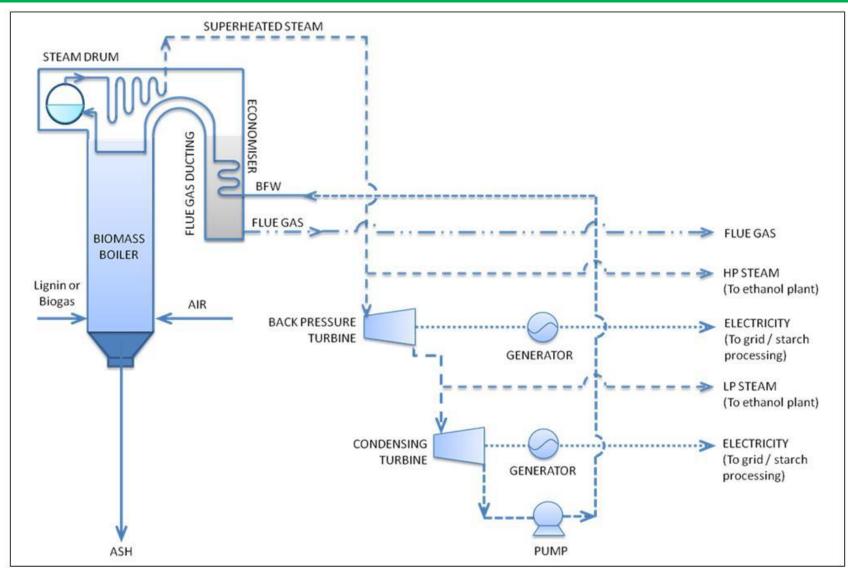
Unlocking the Value of Urban Waste by the Recovery of Functional Products for Circular Economy




Advancing cross-disciplinary knowledge and education in Biorefinery Engineering

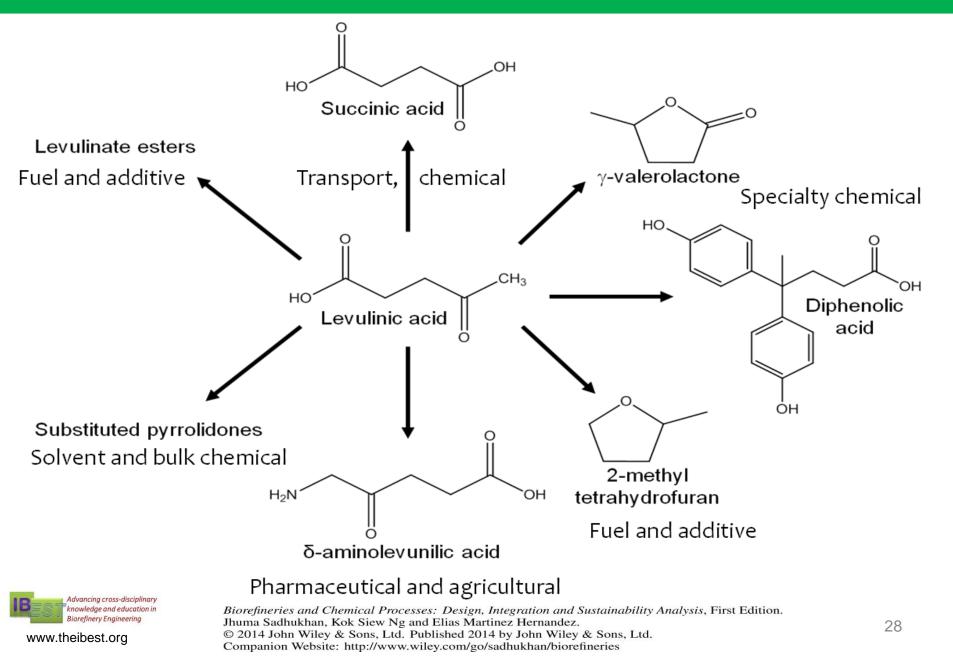
www.theibest.org

©Sadhukhan J, Ng KS, Martinez-Hernandez E, Novel integrated mechanical biological chemical treatment (MBCT) systems for the production of levulinic acid from fraction of MSW: A comprehensive techno-economic analysis. *Bioresource Technology* 2016. *In press.*

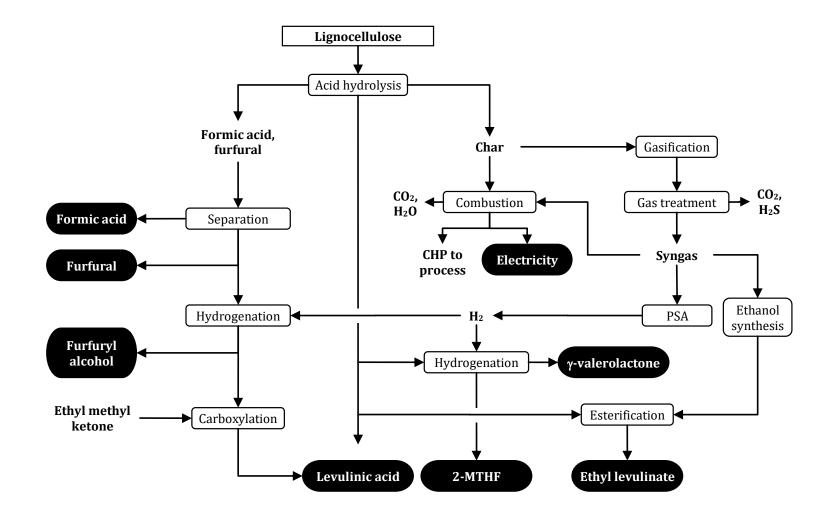

Unlocking the Value of Organic Waste by the Recovery of Functional Products for Circular Economy

Advancing cross-disciplinary knowledge and education in Biorefinery Engineering www.theibest.org ©Sadhukhan J, Ng KS, Martinez-Hernandez E, Novel integrated mechanical biological chemical treatment (MBCT) systems for the production of levulinic acid from fraction of MSW: A comprehensive techno-economic analysis. *Bioresource Technology* 2016. *In press.*

Combined Heat and Power (CHP) System


Advancing cross-disciplinary knowledge and education in Biorefinery Engineering

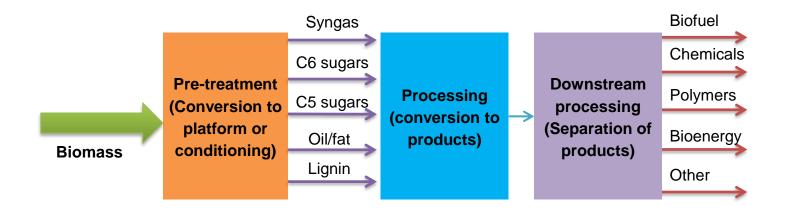
www.theibest.org


©Wan, Y.K., Sadhukhan, J., and Ng, D.K.S. (2016) **Techno-economic evaluations for feasibility of sago biorefineries, Part 2: Integrated bioethanol production and energy systems**. *Chemical Engineering Research & Design*, Special Issue on Biorefinery Value Chain Creation, 107, 102-116.

27

Levulinic Acid: An Important Building Block Chemical

Advanced Levulinic Acid Biorefinery



Advancing cross-disciplinary knowledge and education in Biorefinery Engineering

www.theibest.org

Biorefineries and Chemical Processes: Design, Integration and Sustainability Analysis, First Edition. Jhuma Sadhukhan, Kok Siew Ng and Elias Martinez Hernandez. © 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd. Companion Website: http://www.wiley.com/go/sadhukhan/biorefineries

General Biorefinery Scheme

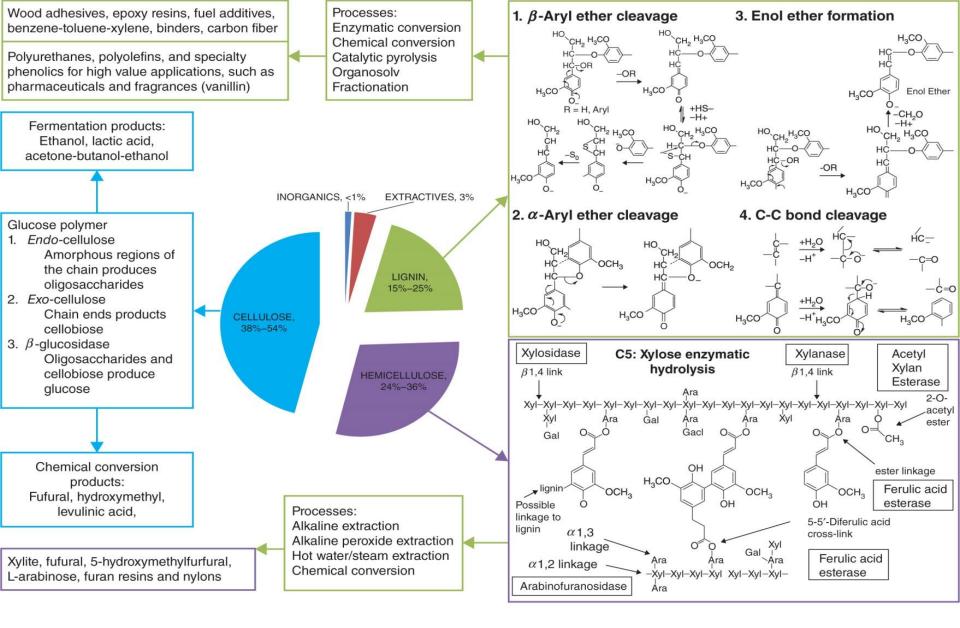
www.theibest.org

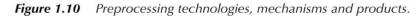
©Elias Martinez-Hernandez, University of Surrey (eliasiq2008@gmail.com)

Working Session 2.1

Pick a biomass feedstock, for example from where you live or your working place. With at least one product in mind, draw a biorefinery configuration by choosing and connecting appropriate processes and platforms.

Congratulations you now have your first conceptual biorefinery!


www.theibest.org


©Elias Martinez-Hernandez, University of Surrey (eliasiq2008@gmail.com)

Biorefinery Process Features

Biomass feedstock	Pretreatment	Platform	Conversion	Separation
Dedicated crops Lignocellulosic crops (wood, short rotation coppice (SRC) and poplar) Non-food oil crops (Jatropha, palm oil) Grasses (green plant material, switchgrass and miscanthus) Marine/aquatic biomass (algae, seaweed) Residues Lignocellulosic residues (crop residues, wood residues, bagasse) Oily residues (animal fat, used cooking oil) Organic residues & others (Organic fraction of Municipal Solid Waste, manure, green plant material)	Thermochemical Gasification Pyrolysis Hydrothermal liquefaction Biochemical Enzymatic hydrolysis Chemical Hydrolysis/pulping Physical Extraction Milling Pressing	C5 sugars C6 sugars Oils Biogas Syngas Hydrogen Organic juice Bio-oil Lignin Electricity and power	Thermochemical Combustion Water gas shift Fischer-Tropsch Hydrogenation Biochemical Fermentation Anaerobic Digestion Ezymatic processes Photofermentation Bioelectrochemical Chemical Esterification Transesterification Dehydration Steam reforming Electrochemical Chemical synthesis Other catalytic processes	Extraction Filtration Distillation / flashing Absorption Adsorption Crystallisation Ion Exchange Membrane based separation Electro-dialysis Centrifugation Sedimentation Flocculation-coagulation

Biorefineries and Chemical Processes: Design, Integration and Sustainability Analysis, First Edition.

www.theibest.org

© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.

Companion Website: http://www.wiley.com/go/sadhukhan/biorefineries

Jhuma Sadhukhan, Kok Siew Ng and Elias Martinez Hernandez.

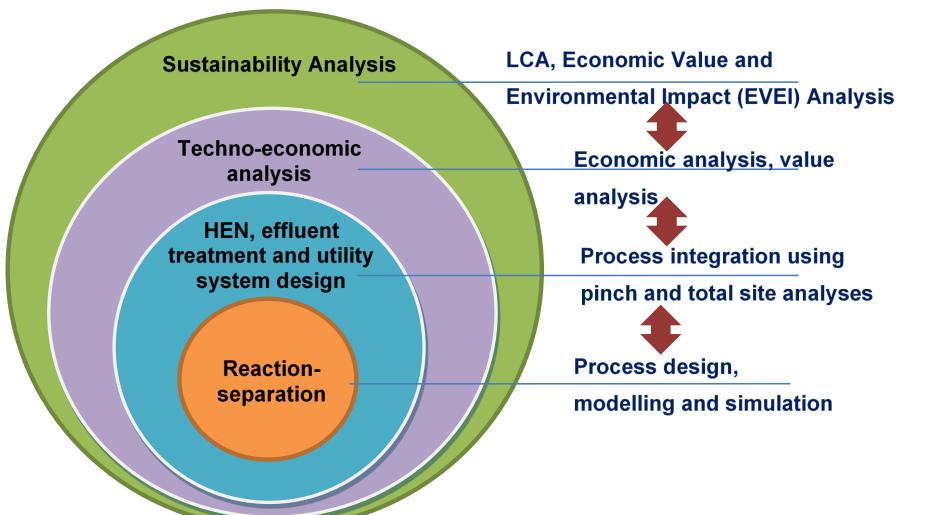
Summary

- Existing biorefineries can be evolved into more complex but flexible processes
- Advanced and highly integrated biorefinery configurations can be generated by combining process features in a synergistic manner for enhanced sustainability
- Resource efficiency can be enhanced by multi-platform biorefinery systems
- The value of urban waste can be unlocked by the recovery of functional products for circular economy
- The whole process design should involve an integrated design framework supported by tools and methods as shown in this workshop

Workshop on Sustainable Biorefineries

Lecture 3: Hands-on problem solving (Unlocking the value of urban waste by the recovery of functional products for circular economy: Levulinic acid production example)

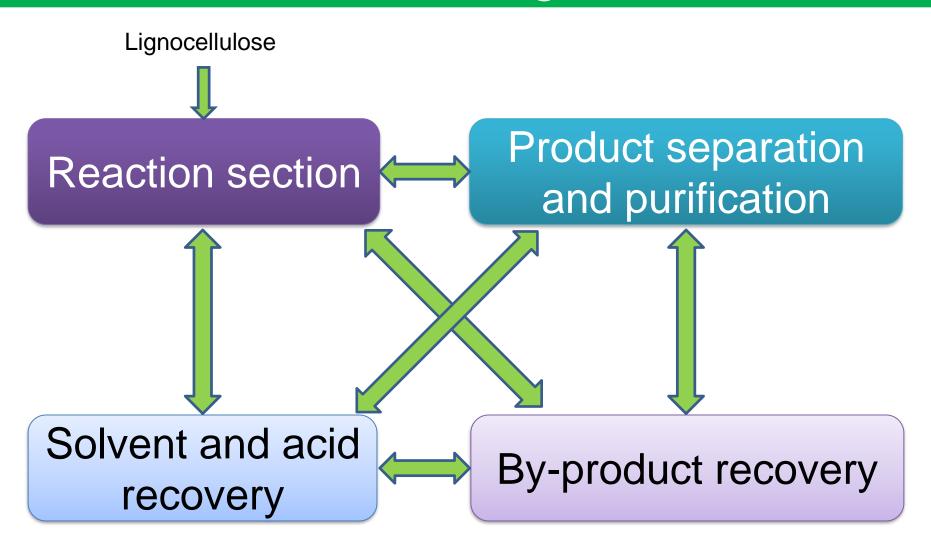
Dr Elias Martinez Hernandez Dr Jhuma Sadhukhan Dr Kok Siew Ng



Objectives

- To analyse and understand the impact of biomass chemical nature on biorefinery performance (yield)
- To have an understanding of process simulation for mass and energy balances
- To apply integrated framework for designing a sustainable biorefinery

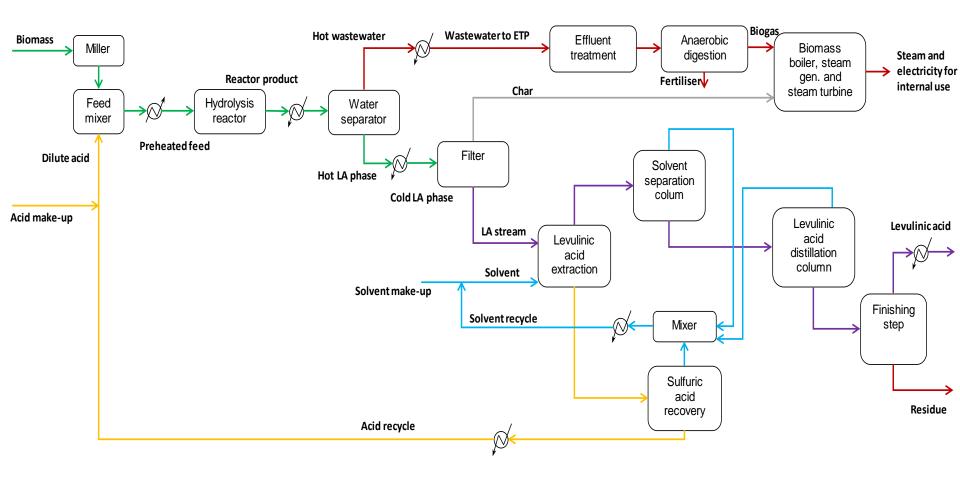
Process Engineering: Onion diagram



www.theibest.org

©Elias Martinez-Hernandez and Jhuma Sadhukhan, University of Surrey (eliasiq2008@gmail.com; jhumasadhukhan@gmail.com)

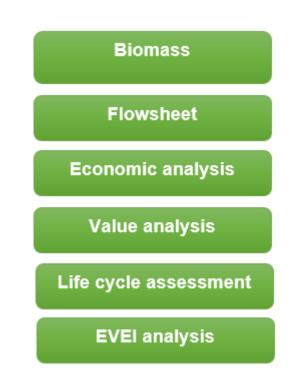
Process Integration



www.theibest.org

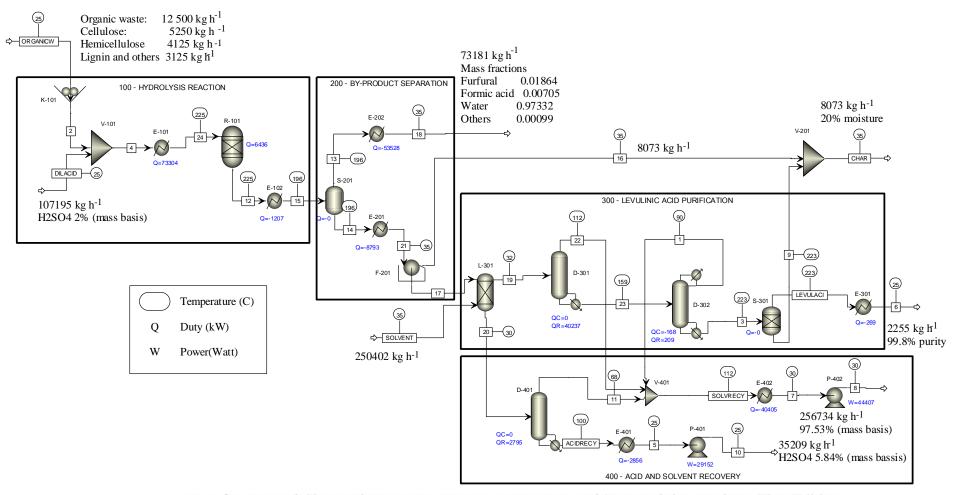
©Jhuma Sadhukhan jhumasadhukhan@gmail.com

Process Design, Modelling and Simulation



©Elias Martinez-Hernandez and Jhuma Sadhukhan (eliasiq2008@gmail.com; jhumasadhukhan@gmail.com)

Software


- Input: biomass wet analysis
- Comprehensive flowsheet
- Output:
 - Mass and energy balances
 - Energy recovery
 - CHP system
 - Inventories
 - Techno-economic performance
 - Value Analysis
 - LCA
 - EVEI Analysis

LA Biorefinery Simulation

Simulation flowsheet in Aspen Plus® process simulator

Advancing cross-disciplinary knowledge and education in Biorefinery Engineering

www.theibest.org

Biorefineries and Chemical Processes: Design, Integration and Sustainability Analysis, First Edition.
Jhuma Sadhukhan, Kok Siew Ng and Elias Martinez Hernandez.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
Companion Website: http://www.wiley.com/go/sadhukhan/biorefineries

LA Biorefinery Simulation

Specify biomass chemical composition

Problem: Components are not in database Solution: approximate with a model compound

- Cellulose modelled as C₆H₁₀O₅
- Hemicellulose modelled as C₅H₈O₄
- Lignin modelled as C_{7.3}H_{13.9}O_{1.3}
- Char modelled as C

Select model for estimation of components' physical properties: NRTL-RK (non-random two liquids – Redlich Kwong) used due to the presence of polar components.

Reactor Models

Data available	Aspen Plus® Model	When it is useful?
Product yields	RYield model	Chemical reactions unknown or not well defined but expected yields are known (e.g. pre-treatment of lignocellulosic biomass)
Reaction stoichiometry and conversion	RStoich model	Chemical reactions and expected conversions are known (e.g. hydroprocessing)
Only possible reaction products are known and approximation to equilibrium	RGibbs model	Thermochemical process (e.g. gasification), especially involving gas phase
Reaction stoichiometry	REquil model	Thermochemical processes, neutralisation reactions, reversible reactions
Reaction kinetics in Aspen plus® format	RPlug or CSTR	Well defined chemical reactions and kinetics Tubular (RPlug) or tank reactor (CSTR) (e.g. pyrolysis)
Reaction kinetics and batch size	RBatch	Batch processes such as fermentation if kinetics is known

LA Biorefinery Simulation

RYield model is used for LA simulation shown here. Product yields can be obtained based on individual biomass components, for example:

						Product
	LA	Formic acid (FA)	Furfural	Char	Water	
Cellulose	46%	18%	-	36%	-	
Hemicellulose	-	-	40%	35%	25%	
Lignin	-	-	-	100%	-	

This captures variation in yield with biomass composition. However, RYield model in Aspen Plus® needs the overall reactor yield.

Advancing cross-disciplinary knowledge and education in Biorefinery Engineering

Biomass component

LA Biorefinery Simulation

RYield model in Aspen Plus® needs the overall reactor yield factors for mass balance.

The various reactions of cellulose, hemicellulose, lignin, char can be lumped into an overall reaction such as:

Lignocellulosic Biomass + water + H_2SO_4 \longrightarrow LA + FA + Furfural + Char + water + H_2SO_4

Yield factors can then be calculated as the ratio of mass of component *i* in reactor outlet to reactor inlet mass.

Yield of
$$i = \frac{mass \ of \ i \ in \ reactor \ outlet}{mass \ of \ i \ in \ reactor \ outlet}$$

reactor mass inlet

Therefore, mass of each component in reactor outlet is

Mass of *i* = reactor mass inlet × Yield of *i*

Advancing cross-disciplinary knowledge and education in Biorefinery Engineering

Practice Calculation

Calculate the reactor outlet composition as mass percentage by using the following yield data if total slurry input to reactor is 125,052 kg/h and contains 2143 kg/h of H_2SO_4 .

Product	Yield (fraction)	Outlet mass (kg/h)	Composition (% mass)
Levulinic acid	0.0196		
Formic acid	0.0077		
Furfural	0.0134		
Water	0.9067		
Char	0.0525		

What about H_2SO_4 ? Is this the final attainable LA yield?

Solution

 H_2SO_4 is just a catalyst and its mass does not change through the reactor. Therefore, the basis for calculating the yield in this case is: 125,052 - 2143 = 122,909 kg/h

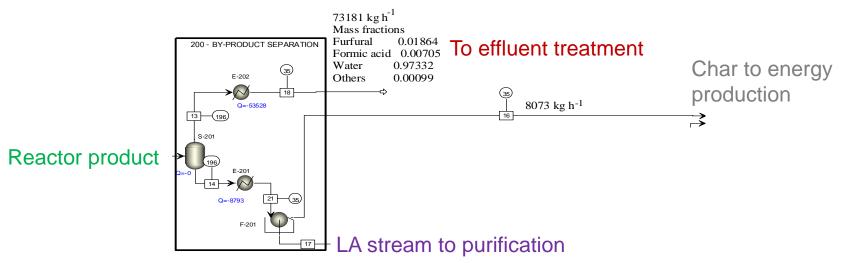
Product	Yield	Outlet mass (kg/h)	Composition (% mass)
Levulinic acid	0.0196	2415	2
Formic acid	0.0077	945	1
Furfural	0.0134	1650	1
Water	0.9067	111440	89
Char	0.0525	6459	5
H_2SO_4	-	2143	2
Total		125,052	100

Final attainable yield depends on the overall process, including downstream separations

Separation Processes

Driving force	Application example
Relative volatilities	Ethanol, biodiesel separation
Solubility in liquid solvent	Levulinic acid extraction, CO_2 absorption
Solubility in solid sorbent	CO_2 adsorption
·	- ·
Pressure gradient	Yeast cell separation
<u> </u>	Bacteria cell separation
~	Proteins, enzymes, sugars, amino acids, colorants
<u> </u>	Organic acid concentration
<u> </u>	Non-charged particles
Electrical field	Organic acid separation
Electrical field	Organic acid separation
Pressure gradient	Ethanol dehydration
	Relative volatilitiesSolubility in liquid solventSolubility in solid sorbentPressure gradientPressure gradientPressure gradientPressure gradientConcentration gradientElectrical fieldElectrical field

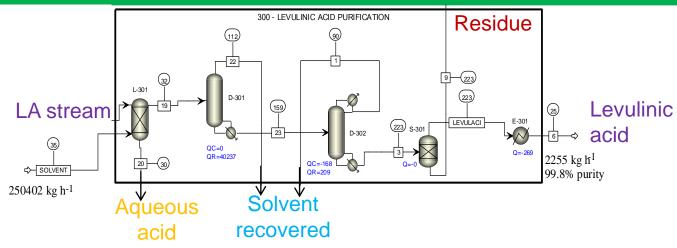
Biorefineries and Chemical Processes: Design, Integration and Sustainability Analysis, First Edition. ^{Thy} Jhuma Sadhukhan, Kok Siew Ng and Elias Martinez Hernandez. © 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd. Companion Website: http://www.wiley.com/go/sadhukhan/biorefineries


Separation Processes

Separation process	Driving force	Application example
Crystallisation	Difference in solubility and supersaturation	Succinic acid production
lon exchange	Electrostatic attraction	Organic acids separation
Centrifugation	Centrifugal force	Algae harvesting, solids separation
Sedimentation	Difference in density between solids and liquid	Algae harvesting
Coagulation-flocculation	Electrostatic attraction	Algae harvesting
Precipitation	Solubility	Organic acids separation

Biorefineries and Chemical Processes: Design, Integration and Sustainability Analysis, First Edition.
Jhuma Sadhukhan, Kok Siew Ng and Elias Martinez Hernandez.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
Companion Website: http://www.wiley.com/go/sadhukhan/biorefineries

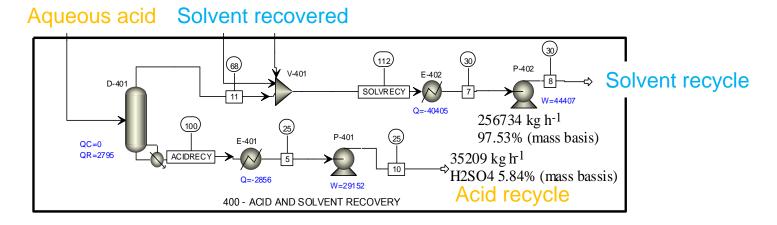
LA Biorefinery Simulation



By-product separation section. Simulate processes as follows:

- Water and volatile by-products separation from LA rich phase in two-phase separator <u>Flash2</u> model. Conditions correspond to the second reactor (196°C and 14 bar). At these conditions, furfural, formic acid and water are flashed into the vapour phase. LA remains in liquid phase.
- Char (solid) is then separated from the liquid phase rich in LA using a <u>Filter</u> model. The cake obtained contains the char, tar and remaining solids.

LA biorefinery simulation



LA purification section. Simulate processes as follows:

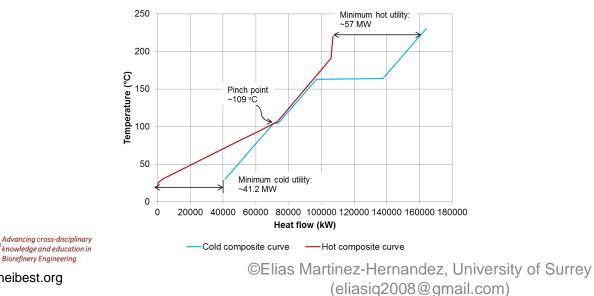
- Solvent extraction of LA using <u>Extract</u> model. LA is extracted from the filtrate liquid using MIBK (Methyl isobutyl ketone) in an extraction column. Due to solubility difference, LA is transferred to the solvent forming a mixture easier to separate by distillation.
- Solvent separation from LA using Distillation <u>RadFrac</u> model. Due to volatility difference, MIBK easily separates from LA.
- Levulinic acid purification by distillation using <u>Radfrac</u> model. Then, finishing separator <u>Sep</u> model, to remove remaining impurities, if any.

LA biorefinery simulation

Acid and solvent recovery section. Simulate processes as follows:

- Sulfuric acid recovery using Distillation <u>RadFrac</u> model
- Acid is cooled down and pumped back to slurry mixer
- Solvent streams are recovered from distillation columns using <u>Mixer</u> model, then cooled down and pumped back to extraction column

LA biorefinery – Utility targeting


Data extraction

Cold streams	Duty (kW)	T _{supply}	T _{target}	СР	Hot streams	Duty	T _{supply}	T _{target}	СР
		(°C)	(°C)	(kJ °C⁻¹)	not streams	(kW)	(°C)	(°C)	(kJ °C⁻¹)
Acid recovery column reboiler	2795	99	100	2795	Reactor effluent	1207	225	196	41.6
Solvent recovery column reboiler	40237	158	159	40233	Hot LA phase	8793	196	35	54.6
Levulinic acid recovery column reboiler	209	222	223	209.0	Levulinic acid	269	223	25	1.4
Reactor feed	73304	25	225	366.5	Hot wastewater	53528	196	35	332.5
Total hot utility	116545				Recycled solvent	40405	112	30	492.7
					Recycled acid	2856	100	25	38.1
					Levulinic acid recovery condenser	168	91	90	168.0

Total cold utility

107226

Pinch analysis

Working Session 3.1 Questions

Calculate the following using sugarcane bagasse as the feedstock in the spreadsheet based simulator.

- 1. Levulinic acid (LA) yield in wt% of biomass input.
- 2. Utility demands (heating, cooling, electricity).

Working Session 3.1 - Solutions

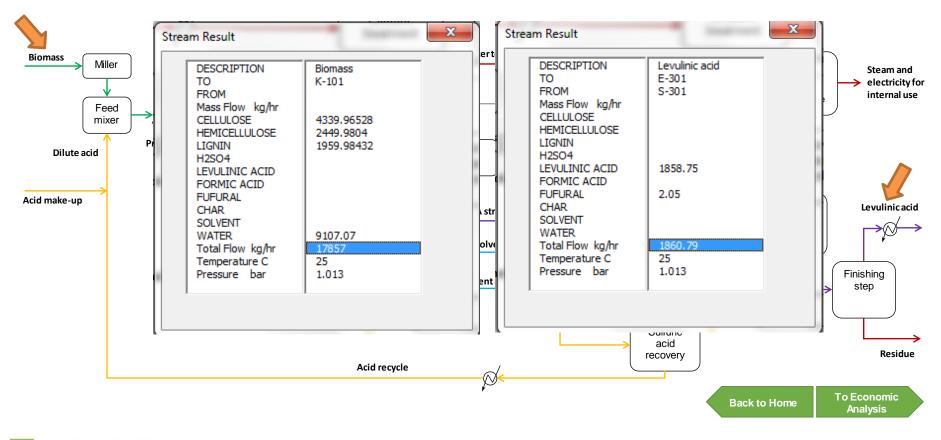

- Open the simulation spreadsheet "LA simulation.xlsm". In the Home tab, click the Biomass button.
- Select sugarcane bagasse from the options in the drop list button.
- Change flow rate if needed and click Done!
- Click Flowsheet

Image: Second	Biomass specification	x	Biomass specification	×
$\begin{array}{c c} & \downarrow & Cut \\ \hline & \bigcirc & Copy \\ \hline Paste \\ \hline & \not \\ Clipboard \\ \hline A1 \\ \hline & C \\ \hline \hline & C \\ \hline \hline & C \\ \hline \hline & C \\ \hline & C \\ \hline \hline & C \\ \hline \hline & C \\ \hline \hline \hline & C \\ \hline \hline \hline \\ \hline \hline \hline \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \hline$	Select biomass	Sugarcane bagasse	Select biomass	Sugarcane bagasse 💌
A C D E F 1 1 Biomass 3 Flowsheet 6 Economic analysis 8 Life cycle assessment 10 11 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 5	Cellulose (%) Hemicellulose (%) Lignin (%)	Blue agave bagasse Sago bark Sago fibre My own biomass	Cellulose (%) Hemicellulose (%) Lignin (%)	24.304 13.72 10.976 51
12 13 14 15	Moisture (%) Total (%)	0	Moisture (%) Total (%)	100
15 16 17 18 19 20 21 22 23 24 25	Total flow rate	Done!	Total flow rate	17857 kg/h Done!
Ready 2				

©Elias Martinez-Hernandez, University of Surrey (eliasig2008@gmail.com)

- To calculate overall yield we need the flow of biomass input and flow of purified LA. For dry mass basis, we need water flow as well.
- Click on the *Biomass* stream label and note the Total Flow.
- Click on the *Levulinic acid* stream label and get the Total Flow.

©Elias Martinez-Hernandez, University of Surrey (eliasig2008@gmail.com) 1. The overall LA yield from sugarcane bagasse is $Overall LA yield = \frac{1861}{17857} = 10.4\%$

On dry biomass basis:

$$Overall \ LA \ yield = \frac{1861}{17857 - 9107} = 21.3\%$$

We have a higher value product: Ethanol 0.3 – 0.5 \$/kg vs LA: 5 – 8 \$/kg

www.theibest.org

©Elias Martinez-Hernandez, University of Surrey (eliasiq2008@gmail.com)

2. The utility demands can be found on the Flowsheet tab.

Hot Utility	42.1	MV
Cooling water	32.2	MV
Electricity	51.5	kW

www.theibest.org

©Elias Martinez-Hernandez, University of Surrey (eliasiq2008@gmail.com)

Working Session 3.2 (Effect of biomass composition on LA yield) Questions

Compare LA yield results between sugarcane bagasse, blue agave bagasse and sago bark. Discuss the effects of moisture and lignin contents in biomass, on LA yield.

It may be useful to set up a table like this

Biomass	Sugarcane bagasse	Blue agave bagasse	Sago bark
Cellulose			
Hemicellulose			
Lignin			
Moisture			
Total flow			
Dry biomass flow			
LA flow			

Working Session 3.2 - Solutions

Results' table looks like this

Biomass	Sugarcane bagasse	Blue agave bagasse	Sago bark
Cellullose	24.304	32.34	23.1
Hemicellulose	13.72	9.31	17.31
Lignin	10.976	7.35	56.83
Moisture	51	51	2.76
Total flow	17857	17857	17857
Dry flow	8750	8750	17364
LA flow	1861	2476.06	1774
Yield	10.4%	13.9%	9.9%
Yield (dry biomass basis)	21.3%	28.3%	10.2%

Summary

- Process simulation
- Unit operation specifications
- Process modelling and stream analysis
- Mass and energy balance
- Biomass wet analysis to technical performance evaluations

Workshop on Sustainable Biorefineries

Lecture 4: Economic value and life cycle assessment (LCA) for optimal and sustainable biorefinery systems

Dr Jhuma Sadhukhan Dr Kok Siew Ng Dr Elias Martinez Hernandez

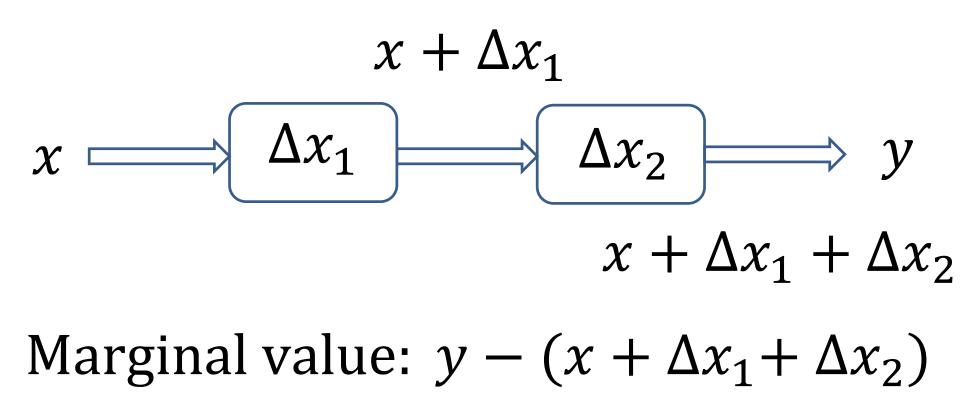
Objectives

- Concepts and methods including graphical visualisation tools.
- Cost components, especially in the context of waste management and treatment sector, such as gate fees.
- Utility system design.
- Discounted cash flow analysis.
- Life cycle assessment.

Revenues (e.g. million \$ / year)

+ Product values

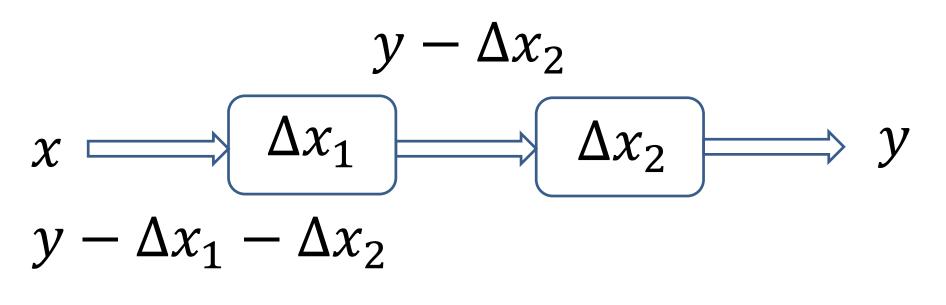
- Feedstock costs
- + (Credits)
- (Taxations)
- (Landfill costs)
- (Emission costs)
- Etc.



The Three Most Important Economic Terms for Economic Comparisons Between Systems

- Economic Margin = Revenues Total OPEX – Annual capital cost
- Value on processing (VOP) = Revenues w/o feedstock costs – Total OPEX – Annual capital cost
- Cost of production (COP) = Revenues w/o product values + Total OPEX + Annual capital cost
- Apply the above terms to all the life cycle stages for life cycle costing of systems

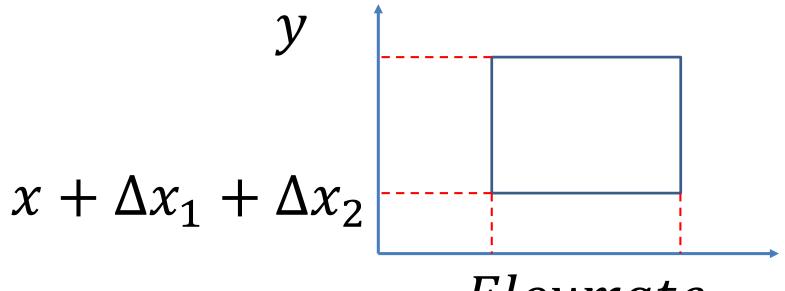
Concept of Value Analysis



www.theibest.org

©Jhuma Sadhukhan, University of Surrey (jhumasadhukhan@gmail.com)

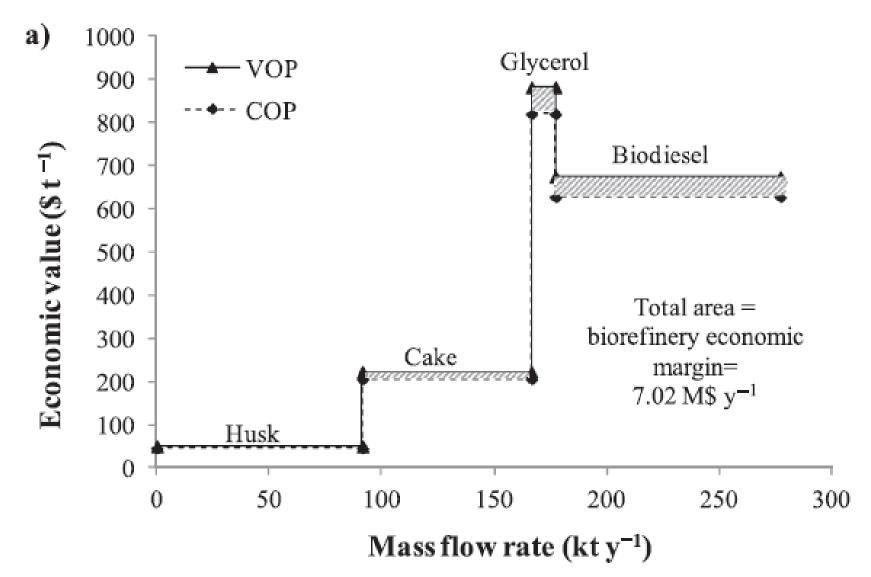
Concept of Value Analysis


Marginal value: $y - (x + \Delta x_1 + \Delta x_2)$

www.theibest.org

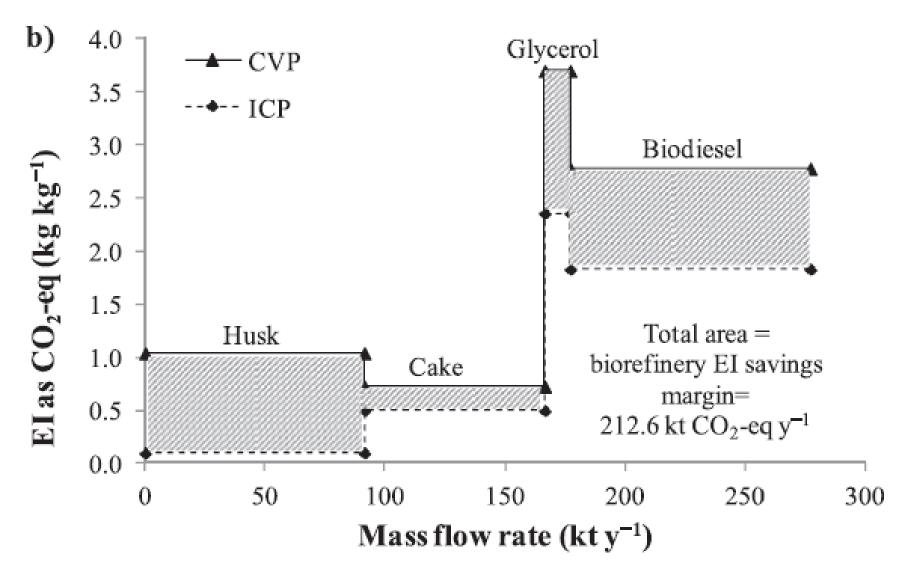
©Jhuma Sadhukhan, University of Surrey (jhumasadhukhan@gmail.com)

Concept of Value Analysis



Flowrate

www.theibest.org


©Jhuma Sadhukhan, University of Surrey (jhumasadhukhan@gmail.com)

©Martinez-Hernandez, E., Campbell, G. M., & Sadhukhan, J. (2014). Economic and environmental impact marginal analysis of biorefinery products for policy targets. *Journal of Cleaner Production*, 74, 74-85.

EST knowledge and education in Biorefinery Engineering

ancina cross-disciplinar

©Martinez-Hernandez, E., Campbell, G. M., & Sadhukhan, J. (2014). Economic and environmental impact marginal analysis of biorefinery products for policy targets. *Journal of Cleaner Production*, *74*, 74-85.

Advancing cross-disciplinary knowledge and education in Biorefinery Engineering

Literature

- 1. Sadhukhan J., Ng K.S. and Martinez-Hernandez E. 2016. Novel integrated mechanical biological chemical treatment (MBCT) systems for the production of levulinic acid from fraction of municipal solid waste: A comprehensive techno-economic analysis. *Bioresource Technology*, In press. http://dx.doi.org/10.1016/j.biortech.2016.04.030
- 2. Elias Martinez-Hernandez, Jhuma Sadhukhan. 2016. Process integration and design philosophy for competitive waste biorefineries. *Waste Biorefinery*. Elsevier. In press.
- 3. Ng K.S., Head, I., Premier, G.C., Scott, K., Yu, E., Lloyd, J., and Sadhukhan J. 2016. A multilevel sustainability analysis of zinc recovery from wastes. *Resources, Conservation & Recycling*. In press.
- 4. Martinez-Hernandez, E., Campbell, G.M., Sadhukhan, J., 2014. Economic and environmental impact marginal analysis of biorefinery products for policy targets. *J. Clean. Prod.* 74, 74-85.
- 5. Sadhukhan, J., Ng, K.S., Hernandez, E.M., 2014. *Biorefineries and Chemical Processes: Design, Integration and Sustainability Analysis*. Wiley, Chichester, UK.
- 6. E Martinez-Hernandez, GM Campbell, J Sadhukhan. 2013. Economic Value and Environmental Impact (EVEI) analysis of biorefinery systems. *Chemical Engineering Research Design*. 8(91), 1418-1426.
- 7. Sadhukhan, J., Mustafa, M.A., Misailidis, N., Mateos-Salvador, F., Du, C., Campbell, G.M., 2008. Value analysis tool for feasibility studies of biorefineries integrated with value added production. *Chem. Eng. Sci.* 63(2), 503-519.
- 8. Sadhukhan, J., Zhang, N., Zhu, X.X., 2004. Analytical optimisation of industrial systems and applications to refineries, petrochemicals. *Chem. Eng. Sci.* 59(20), 4169-4192.
- 9. Sadhukhan, J., Zhang, N., Zhu, X.X., 2003. Value analysis of complex systems and industrial application to refineries. *Ind. Eng. Chem. Res.* 42(21), 5165-5181.

Working Session 4.1 (Value Analysis) Questions

Report Value Analysis results of lignocellulose from MSW.

Working Session 4.1 - Solutions

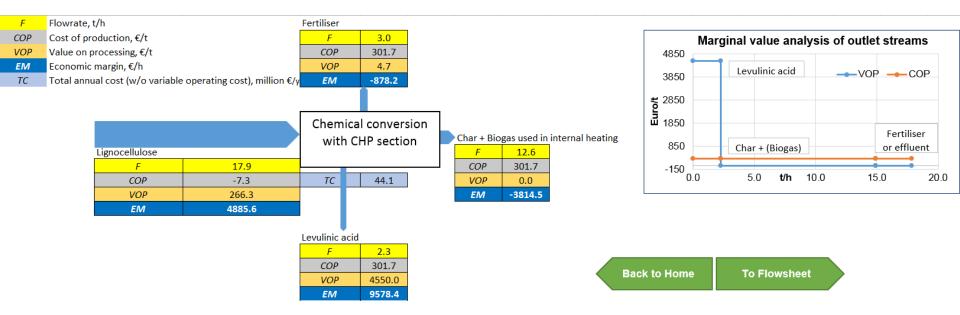
COP of Products (Euro/T)

$$\frac{Flowrate \ of \ Lignocellulose \ \left(\frac{t}{h}\right) \times COP \ of \ Lignocellulose \ \left(\frac{Euro}{t}\right) \times 8000 \ \left(\frac{h}{year}\right) + Total \ Annual \ Cost \ (million \frac{Euro}{year}) \times 10^6}{Flowrate \ of \ Lignocellulose \ \left(\frac{t}{h}\right) \times 8000 \ \left(\frac{h}{year}\right)}$$

www.theibest.org

©Jhuma Sadhukhan, University of Surrey (jhumasadhukhan@gmail.com)

VOP of Lignocellulose (Euro/t)


$$\frac{\sum Flowrate of Product \left(\frac{t}{h}\right) \times VOP of Product \left(\frac{Euro}{t}\right) \times 8000 \left(\frac{h}{year}\right) - Total Annual Cost (million \frac{Euro}{year}) \times 10^{6}}{Flowrate of Lignocellulose \left(\frac{t}{h}\right) \times 8000 \left(\frac{h}{year}\right)}$$

www.theibest.org

©Jhuma Sadhukhan, University of Surrey (jhumasadhukhan@gmail.com)

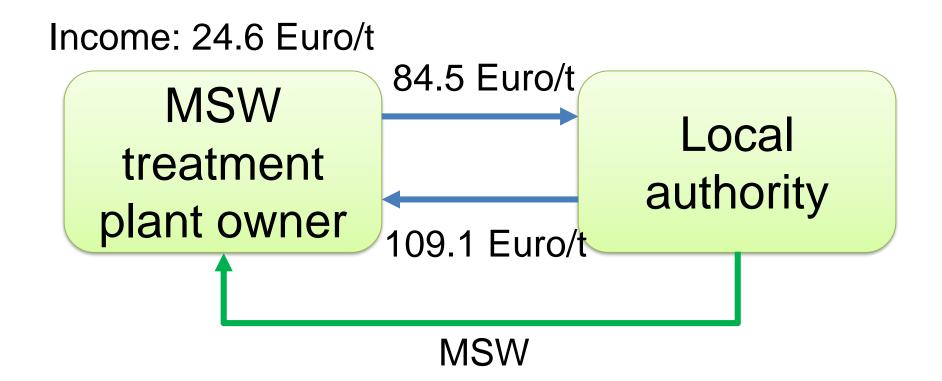
Value Analysis (Lignocellulose from MSW)

Cost Components

- Capital cost
 - Delivered cost of equipment
 - Direct capital cost
 - Indirect capital cost
 - Working capital
 - Total capital investment or total CAPEX
 - Annualised capital charge (for annualised capital cost)
- Operating cost
 - Fixed
 - Variable
 - Miscellaneous
 - Total OPEX

www.theibest.org

Biorefineries and Chemical Processes: Design, Integration and Sustainability Analysis, First Edition. Jhuma Sadhukhan, Kok Siew Ng and Elias Martinez Hernandez. © 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd. Companion Website: http://www.wiley.com/go/sadhukhan/biorefineries


Gate Fee

- An average waste collection fee of 84.5 Euro/t MSW is paid by the treatment plant owner to the local authority
- The treatment plant owner is eligible to receive a gate fee from the local authority, for treating MSW
- This rate is 109.12 Euro/t MSW (WRAP, 2015)
- Therefore, the cost of production (COP) of MSW is estimated (84.5 - 109.1) = -24.6 Euro/t
- This implies that the current business model allows 24.6 Euro/t revenue guaranteed for the MSW treatment plant owner
- This is a strong economic incentive for waste valorisation and thereby mitigation of environmental impacts of wastes and landfilling

©Sadhukhan J, Ng KS, Martinez-Hernandez E, Novel integrated mechanical biological chemical treatment (MBCT) systems for the production of levulinic acid from fraction of MSW: A comprehensive techno-economic analysis. *Bioresource Technology* 2016. *In press*.

COP of MSW

www.theibest.org

©Sadhukhan J, Ng KS, Martinez-Hernandez E, Novel integrated mechanical biological chemical treatment (MBCT) systems for the production of levulinic acid from fraction of MSW: A comprehensive techno-economic analysis. *Bioresource Technology* 2016. *In press*.

COP Of Lignocellulose Fraction of MSW

COP of MSW (Euro/t) + 17.3 Euro/t (Operating cost of MSW treatment)

When income from gate fees is considered:

$$= -24.6 + 17.3 = -7.3$$
 Euro/t

When income from gate fees is not considered and MSW priced at 50 Euro/t:

= 50 + 17.3 = 67.3Euro/t

knowledge and education in Biorefinery Engineering

www.theibest.org

Advancina cross-discip

©Sadhukhan J, Ng KS, Martinez-Hernandez E, Novel integrated mechanical biological chemical treatment (MBCT) systems for the production of levulinic acid from fraction of MSW: A comprehensive techno-economic analysis. *Bioresource Technology* 2016. *In press.*

Working Session 4.2 (Effect of biomass composition on economic performance) Questions

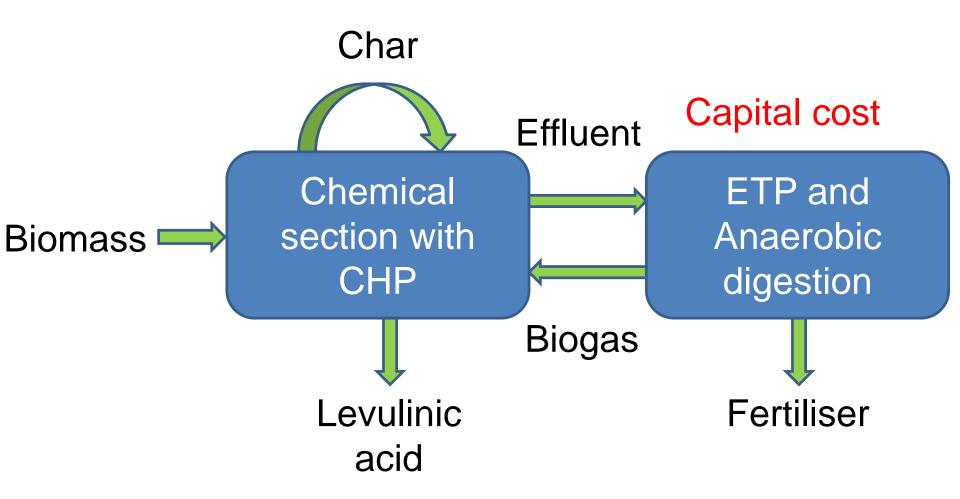
Compare payback times, annual capital costs and cash flows between lignocellulose from MSW, sugarcane bagasse and blue agave bagasse using the default economic basis.

It may be useful to set up a table like this

	Lignocellulose from MSW	Sugarcane bagasse	Blue agave bagasse
Payback time, years			
Annual capital cost, million Euro/y			
Cash flow, million			
Euro/y			

Working Session 4.2 - Solutions

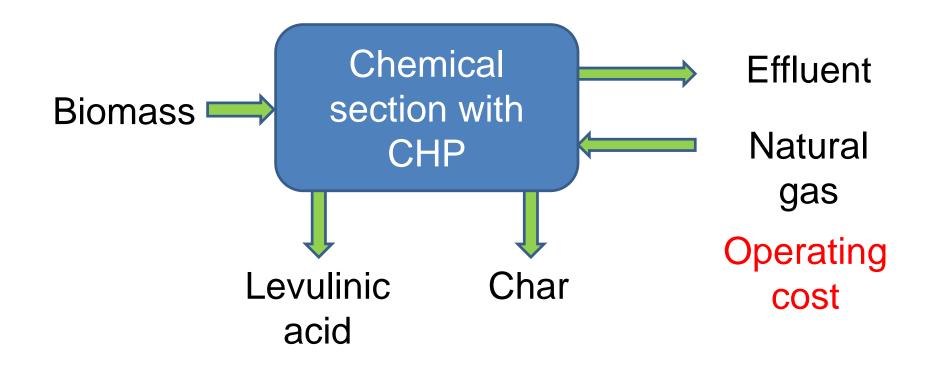
Results' table looks like this


	Lignocellulose from MSW	Sugarcane bagasse	Blue agave bagasse
Payback time, years	3.9	5	3.7
Annual capital cost, million Euro/y	39.9	42	41.8
Cash flow, million Euro/y	39.1	22.6	45.2

www.theibest.org

©Jhuma Sadhukhan, Elias Martinez-Hernandez, Kok Siew Ng, University of Surrey

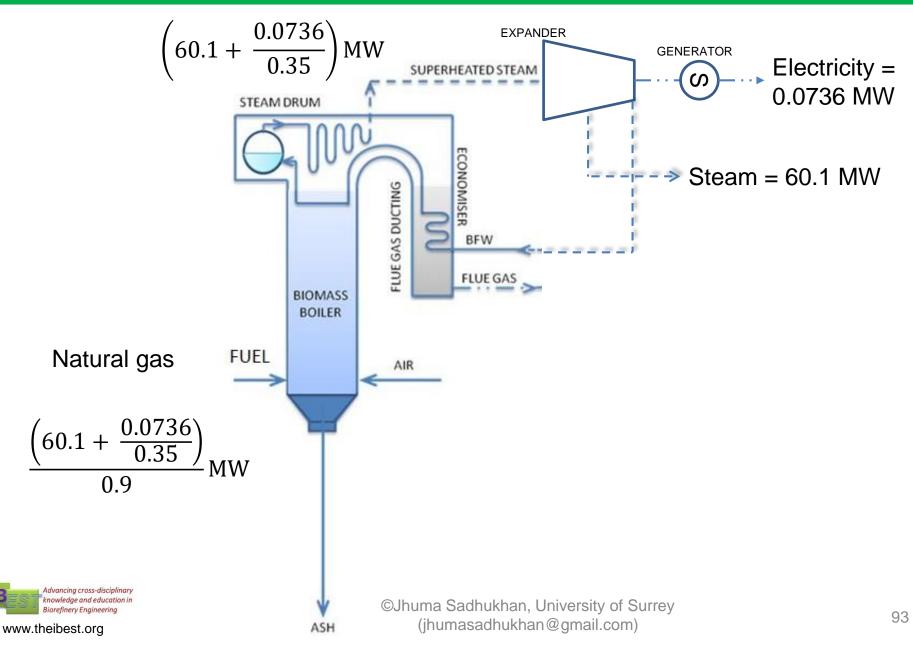
Case 1. CHP Supply from On-site Generation



www.theibest.org

©Jhuma Sadhukhan, University of Surrey (jhumasadhukhan@gmail.com)

Case 2. CHP Supply from Natural Gas

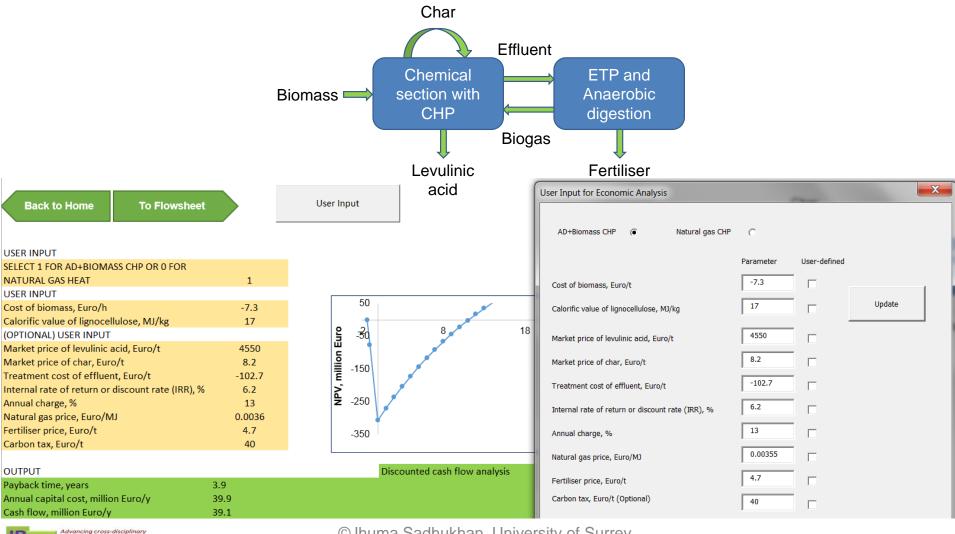


www.theibest.org

©Jhuma Sadhukhan, University of Surrey (jhumasadhukhan@gmail.com)

CHP System

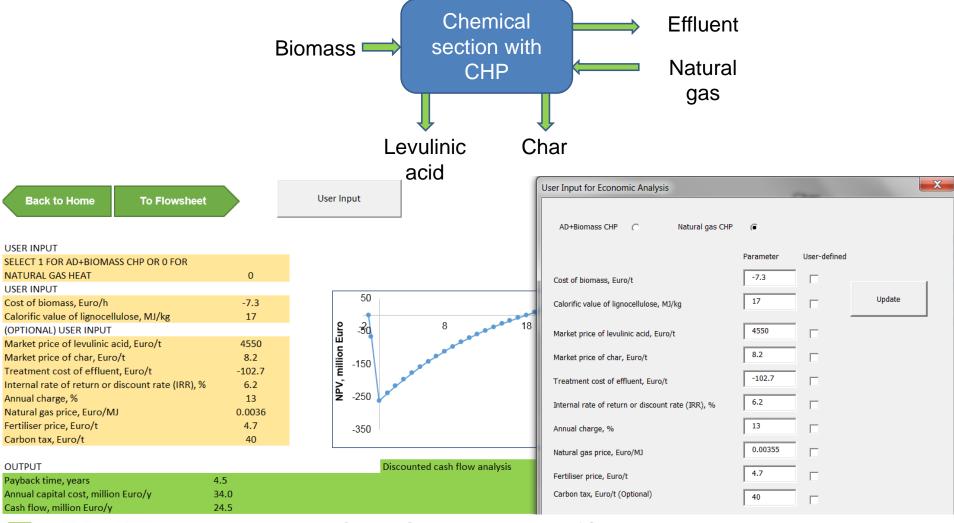
Working Session 4.3 (Economic Analysis due to difference in CHP configuration) Questions



Report Economic Analysis results of lignocellulose from MSW, due to difference in CHP configuration.

Working Session 4.3 - Solutions

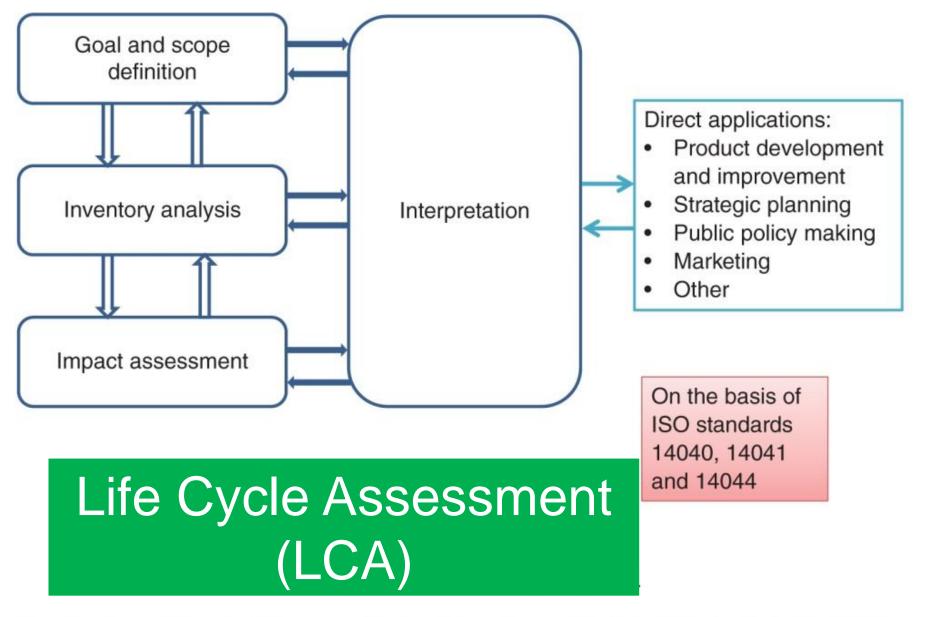
Case 1: Economic Analysis (Lignocellulose from MSW)



knowledge and education in Biorefinery Engineering

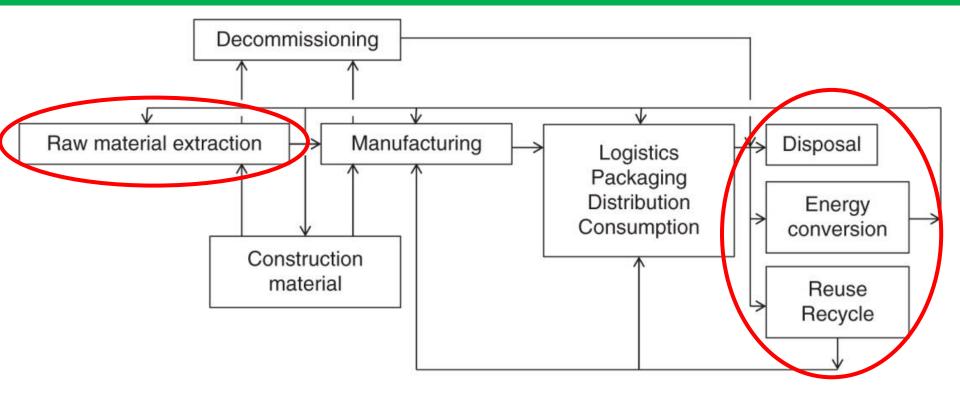
©Jhuma Sadhukhan, University of Surrey (ihumasadhukhan@gmail.com)

Case 2: Economic Analysis (Lignocellulose from MSW)


Biorefinery Engineer

Advancing cross-disciplinary knowledge and education in Biorefinery Engineering ©Jhuma Sadhukhan, University of Surrey (ihumasadhukhan@gmail.com)

Summary


- Variables for revenues include product values, feedstock costs, (credits, taxations, landfilling and gate fees, emission charges), etc.
- Influence of CHP configurations discussed
- Value analysis and EVEI analysis give graphical visualisation of comprehensive performance analysis of individual streams in a system

Biorefineries and Chemical Processes: Design, Integration and Sustainability Analysis, First Edition. Jhuma Sadhukhan, Kok Siew Ng and Elias Martinez Hernandez. © 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd. 5 Companion Website: http://www.wiley.com/go/sadhukhan/biorefineries

Life Cycle Stages

Figure 4.2 Life cycle stages of a cradle to grave system.

Biorefineries and Chemical Processes: Design, Integration and Sustainability Analysis, First Edition. Jhuma Sadhukhan, Kok Siew Ng and Elias Martinez Hernandez. © 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd. Companion Website: http://www.wiley.com/go/sadhukhan/biorefineries

Life Cycle Stages

				Customer needs	
LCM stage impact	Material acquisition	R&D operations	Manufacturing operations	Use	Disposal
Environment					
Energy/Resources					
Health					
Safety					

Figure 4.6 (above) LCA documents published by the International Organization for Standardization (ISO). (below) 3M, 1997, developed a Life Cycle Management framework for the assessment of risks and opportunities throughout the various stages of a product's life cycle.

Biorefineries and Chemical Processes: Design, Integration and Sustainability Analysis, First Edition. Jhuma Sadhukhan, Kok Siew Ng and Elias Martinez Hernandez. © 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd. Companion Website: http://www.wiley.com/go/sadhukhan/biorefineries

Life Cycle Impact Assessment (LCIA) Methods

A & Environmental quantities				
A CML 2001 - Nov. 2010				
Earlier versions of methods				
▷ 🏯 EDIP 2003				
A Impact 2002+				
A New impacts ILCD recommendation				
A ReCiPe 1.07				
D & TRACI 2.1				
▷ 🏯 UBP 2006				
D 🎄 USEtox				
🖻 🚓 Water				
A Primary energy demand from ren. and non ren. resources (gross cal. value)				
A Primary energy demand from ren. and non ren. resources (net cal. value)				
A Primary energy from non ren. resources (gross cal. value)				
A Primary energy from non ren. resources (net cal. value)				
A Primary energy from renewable raw materials (gross cal. value)				
A Primary energy from renewable raw materials (net cal. value)				

Figure 4.20 LCIA methodologies and their impact characterizations available in LCA software (a to h). (a) LCIA methodologies available in LCA software.

Biorefineries and Chemical Processes: Design, Integration and Sustainability Analysis, First Edition. Jhuma Sadhukhan, Kok Siew Ng and Elias Martinez Hernandez. © 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd. Companion Website: http://www.wiley.com/go/sadhukhan/biorefineries

11

Environmental impacts (CML 2010 method gives primary impacts: http://www.cml.leiden.edu/research/industrialecology/researchpr ojects/finished/new-dutch-lca-guide.html)

- **1. Global warming potential (kg CO₂ equivalent)**
- 2. Ozone layer depletion potential (kg R-11 equivalent; Chlorofluorocarbon-11 or CFC-11 or Refrigerant-11)
- 3. Acidification potential (kg SO₂ equivalent)
- 4. Photochemical oxidant creation potential (kg Ethylene equivalent)
- 5. Eutrophication potential (kg Phosphate equivalent)
- 6. Freshwater aquatic ecotoxicity potential (kg DCB equivalent)
- 7. Marine aquatic ecotoxicity potential (kg DCB equivalent)
- 8. Human toxicity potential (kg DCB equivalent)
- 9. Terrestric ecotoxicity potential (kg DCB equivalent)

DCB: 1, 4-dichlorobenzene

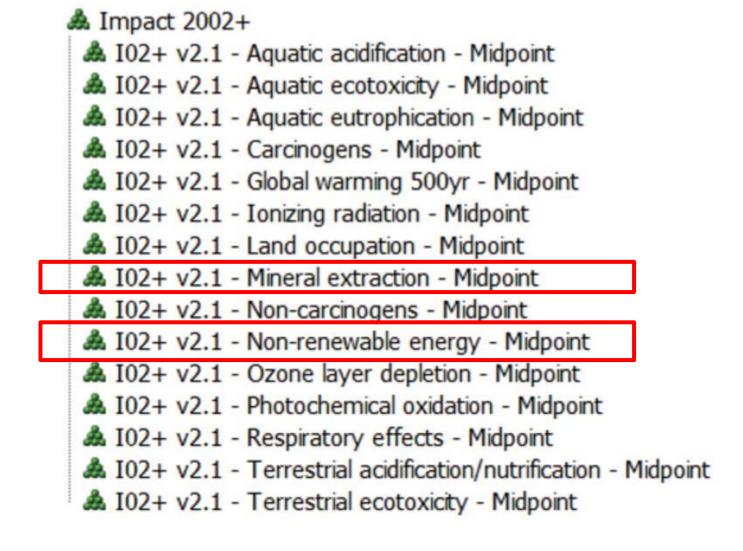


Figure 4.20(e) Mid-point impact characterizations included in Impact 2002+.

Biorefineries and Chemical Processes: Design, Integration and Sustainability Analysis, First Edition. Jhuma Sadhukhan, Kok Siew Ng and Elias Martinez Hernandez. © 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd. 13 Companion Website: http://www.wiley.com/go/sadhukhan/biorefineries New impacts ILCD recommendation
 Acidification, accumulated exceedance
 CML2002 Resource Depletion, fossil and mineral, reserve Based
 IPCC global warming, excl biogenic carbon
 IPCC global warming, incl biogenic carbon
 Particulate matter/Respiratory inorganics, RiskPoll
 Terrestrial eutrophication, accumulated exceedance
 Total freshwater consumption, including rainwater (acc. to UBP 2006)

Figure 4.20(f) New impacts recommended in ILCD.

Biorefineries and Chemical Processes: Design, Integration and Sustainability Analysis, First Edition. Jhuma Sadhukhan, Kok Siew Ng and Elias Martinez Hernandez. © 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd. Companion Website: http://www.wiley.com/go/sadhukhan/biorefineries

A TRACI 2.1

- A TRACI 2.1, Acidification Water
- A TRACI 2.1, Ecotoxicity (recommended)
- A TRACI 2.1, Eutrophication Air
- A TRACI 2.1, Eutrophication Water
- 🎄 TRACI 2.1, Global Warming Air
- 🎄 TRACI 2.1, Human Health Particulate Air
- TRACI 2.1, Human toxicity, cancer (recommended)
- A TRACI 2.1, Human toxicity, non-canc. (recommended)
- & TRACI 2.1, Ozone Depletion Air
- A TRACI 2.1, Resources, Fossil fuels
- & TRACI 2.1, Smog Air
- A UBP 2006
 - & UBP 2006, Ecological scarcity method
- A USEtox
 - & USEtox, Ecotoxicity (recommended)
 - & USEtox, Human toxicity, cancer (recommended)
 - & USEtox, Human toxicity, non-canc. (recommended)
- A Water
 - A Blue water consumption
 - A Blue water use
 - A Total freshwater consumption (including rainwater)
 - A Total freshwater use

Figure 4.20(h) Primary impact characterizations included in TRACI, UBP, USEtox and Water.

Biorefineries and Chemical Processes: Design, Integration and Sustainability Analysis, First Edition. Jhuma Sadhukhan, Kok Siew Ng and Elias Martinez Hernandez. © 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd. Companion Website: http://www.wiley.com/go/sadhukhan/biorefineries

Global Warming Potential Impact Characterisation

- The IPCC gives the following classifications of pollutants for global warming potential (GWP) impact assessment:
- Carbon dioxide, Methane, Nitrous oxide, Substances controlled by the Montreal Protocol, Hydrofluorocarbons, Perfluorinated compounds, Fluorinated ethers, Perfluoropolyethers, Hydrocarbons and other compounds – Direct Effects
- See:

https://www.ipcc.ch/publications_and_data/ar 4/wg1/en/ch2s2-10-2.html

Types of LCA

- Stand-alone
 - Hot spot analysis of a technology or product life cycle
- Accounting
 - How does the sustainability of a technology compare against currently exploited technologies?
- Change oriented
 - How does the sustainability of a technology compare against future technologies in low carbon transition pathway through to 2050?
 - If the technology was integrated to an existing facility?

Working Session 4.4 (LCIA due to difference in CHP configuration) Questions

Report LCIA results of lignocellulose from MSW, due to difference in CHP configuration.

www.theibest.org

Working Session 4.4 - Solutions

www.theibest.org

Case 1: LCIA (Lignocellulose from MSW)

Т

		Char		
Back to Home To Flowsheet		Eff	uent	
	Biomass 👄	Chemical section with CHP ←	ETP and Anaerobic digestion	
		Bio	ogas	
		Levulinic acid	Fertiliser	
Data extracted for EU using Ecoinvent 3.0	Saving due to Levulinic Acid	Saving due to Fertiliser	Cost due to Biogas and Char	Net saving
Impact 2002+ Non-renewable energy savings - Midpoint [PJ/year]	1.0759	-0.0082	-0.1480	1.2157
CML	1			
Acidification Potential (AP) [kt SO ₂ -Equiv./year]	0.1719	0.2763	0.1815	0.2667
Eutrophication Potential (EP) [kt Phosphate-Equiv./year]	0.0493	0.0236	0.0503	0.0225
Freshwater Aquatic Ecotoxicity Pot. (FAETP inf.) [kt DCB-Equiv./year]	3.7617	12.7284	3.2523	13.2378
Global Warming Potential (GWP 100 years) [kt CO ₂ -Equiv./year]	44.1477	31.0407	17.2873	57.9010
Human Toxicity Potential (HTP inf.) [kt DCB-Equiv./year]	43.5701	26.4997	7.8946	62.1753
Marine Aquatic Ecotoxicity Pot. (MAETP inf.) [Mt DCB-Equiv./year]	9.8209	40.2248	8.6174	41.4283
Ozone Layer Depletion Potential (ODP, steady state) [t R11-Equiv./year]	0.2621	0.0067	0.0008	0.2680
Photochem. Ozone Creation Potential (POCP) [kt Ethene-Equiv./year]	0.0326	0.0267	0.0109	0.0484
Terrestric Ecotoxicity Potential (TETP inf.) [kt DCB-Equiv./year]	0.2104	-0.5425	0.1480	-0.4800

Advancing cross-disciplinary knowledge and education in Biorefinery Engineering

www.theibest.org

©Jhuma Sadhukhan, University of Surrey

(jhumasadhukhan@gmail.com)

Case 2: LCIA (Lignocellulose from MSW)

Back to Home To Flowsheet	Biomass — section with CHP — N			Effluent Natural gas	
Data extracted for EU using Ecoinvent 3.0	Saving due to Levulinic Acid	Saving due to Char	Cost due to Natural Gas	Cost due to Effluent	Net saving
Impact 2002+ Non-renewable energy savings - Midpoint [PJ/year]	1.0759	1.9030E-04	2.2268	8.3335E-05	-1.1509
CML					
Acidification Potential (AP) [kt SO ₂ -Equiv./year]	0.1719	0.4171	0.1370	0.0577	0.3944
Eutrophication Potential (EP) [kt Phosphate-Equiv./year]	0.0493	0.1513	0.0347	0.6313	-0.4655
Freshwater Aquatic Ecotoxicity Pot. (FAETP inf.) [kt DCB-Equiv./year]	3.7617	5.1168	3.8302	10.3781	-5.3298
Global Warming Potential (GWP 100 years) [kt CO ₂ -Equiv./year]	44.1477	33.7938	150.0887	72.8423	-144.9896
Human Toxicity Potential (HTP inf.) [kt DCB-Equiv./year]	43.5701	12.0959	5.8138	3.0134	46.8388
Marine Aquatic Ecotoxicity Pot. (MAETP inf.) [Mt DCB-Equiv./year]	9.8209	17.6787	11.0639	7.9629	8.4728
Ozone Layer Depletion Potential (ODP, steady state) [t R11-Equiv./year]	0.2621	0.0337	0.0212	5.2194E-04	0.2741
Photochem. Ozone Creation Potential (POCP) [kt Ethene-Equiv./year]	0.0326	0.0596	0.0275	0.0157	0.0490
Terrestric Ecotoxicity Potential (TETP inf.) [kt DCB-Equiv./year]	0.2104	0.2385	0.1396	0.1033	0.2061

Advancing cross-disciplinary knowledge and education in **Biorefinery Engineering**

www.theibest.org

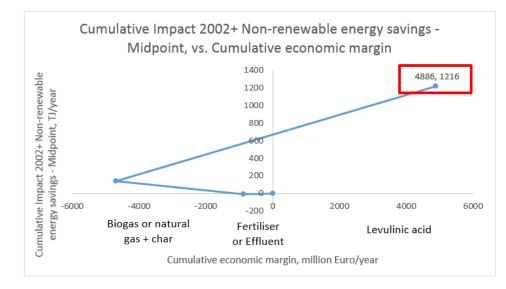
Working Session 4.5 (Effect of biomass composition on environmental performance) Questions

Compare EVEI between lignocellulose from MSW, sugarcane bagasse, blue agave bagasse and sago bark using the default economic basis.

It may be useful to set up a table like this

Lignocellulose from MSW	Sugarcane bagasse	Blue agave bagasse	Sago bark (runs on natural gas)

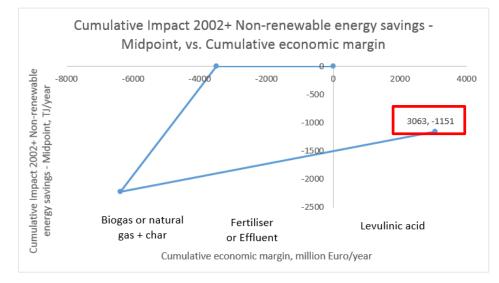
www.theibest.org


Working Session 4.5 - Solution

www.theibest.org

Case 1: EVEI Analysis (Lignocellulose from MSW)

	Cumulative economic margin	Cumulative Impact 2002+ Non-renewable energy savings - Midpoint
	million Euro/year	TJ/year
	0	0
Saving due to Fertiliser	-878	-8
Saving due to biogas and char as fuel to CHP	-4693	140
Saving due to Levulinic Acid	4886	1216

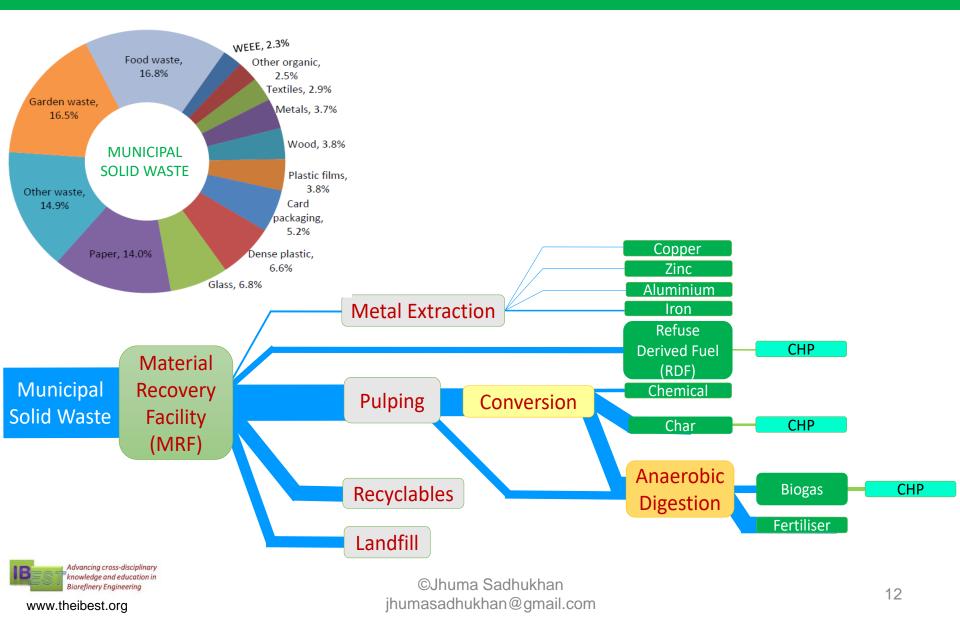


www.theibest.org

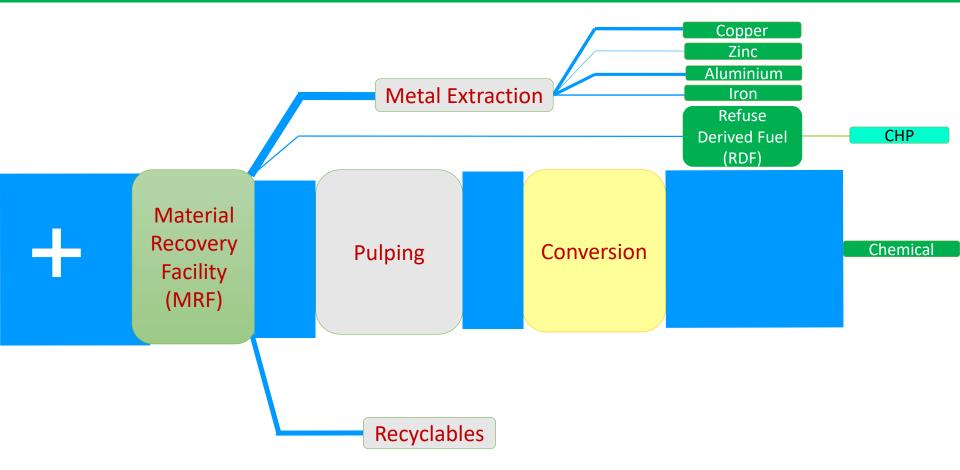
Case 2: EVEI Analysis (Lignocellulose from MSW)

	Cumulative economic margin Cumulative Impact 2002+ Non-renewable energ	
	million Euro/year	TJ/year
	0	0
Saving due to effluent	-3509	0
Saving due to natural gas as fuel to CHP and char as product	-6376	-2227
Saving due to Levulinic Acid	3063	-1151

www.theibest.org

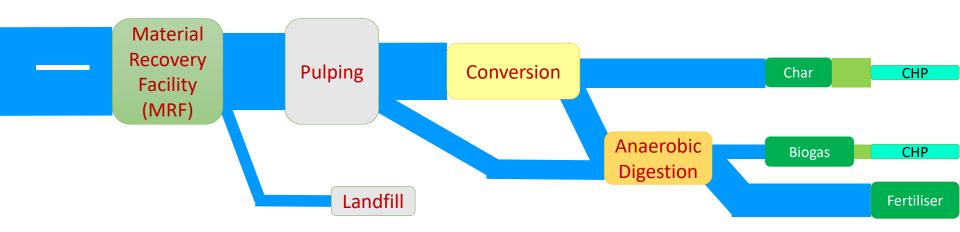

Results' table looks like this

	Lignocellulose from MSW	Sugarcane bagasse	Blue agave bagasse	Sago bark (runs on natural gas)
Cumulative economic margin, million Euro/year	4886	2831	5650	1128
Cumulative Impact 2002+ fossil energy savings – Midpoint, TJ/year	1216	970	1262	-2247



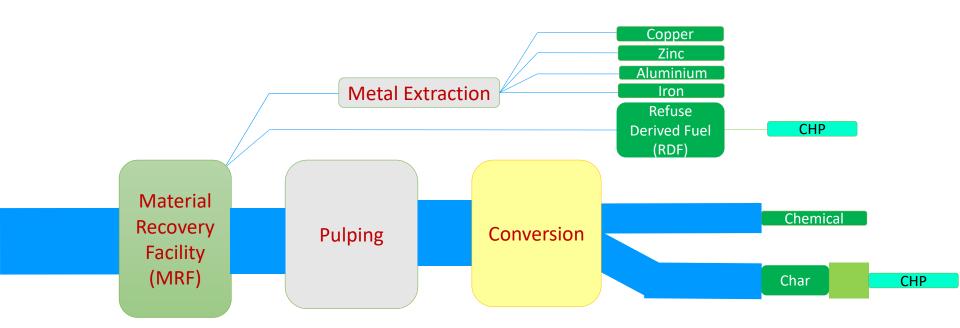
www.theibest.org

Mass Transfer From Waste To Products


Value Analysis From Waste To Profitable Products

www.theibest.org

Value Analysis From Waste To Non-profitable Products



www.theibest.org

©Jhuma Sadhukhan jhumasadhukhan@gmail.com

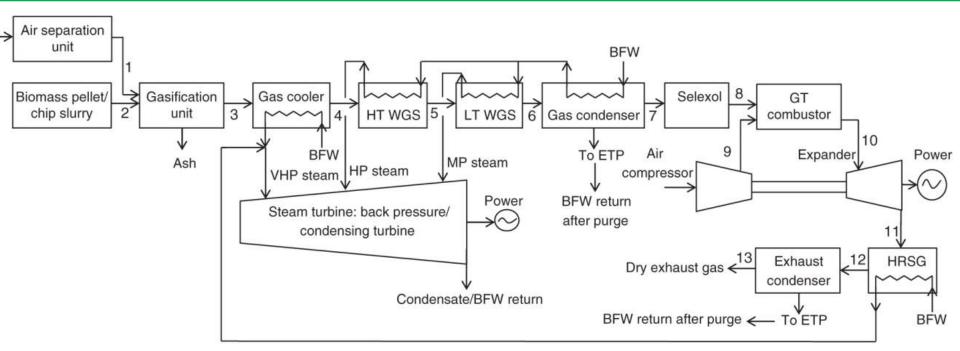
Fossil Energy Savings From Waste To Products

www.theibest.org

Workshop on Sustainable Biorefineries

Lecture 5: Enhancing energy and resource efficiency by multi-platform biorefinery systems

Dr Kok Siew Ng Dr Jhuma Sadhukhan Dr Elias Martinez Hernandez


• To understand how in-process energy integration can be attained.

• To understand the structure and components in a utility system.

• To understand how multi-site integration can be attained.

Integrated Gasification Combined Cycle

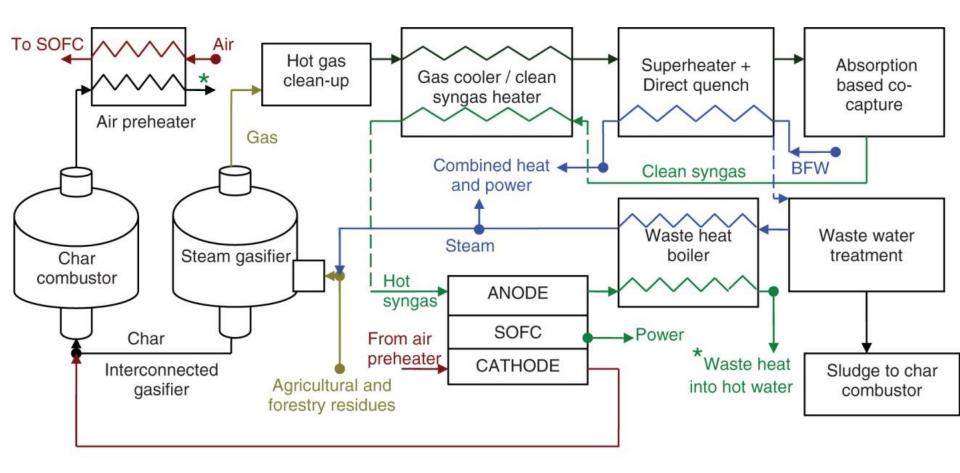
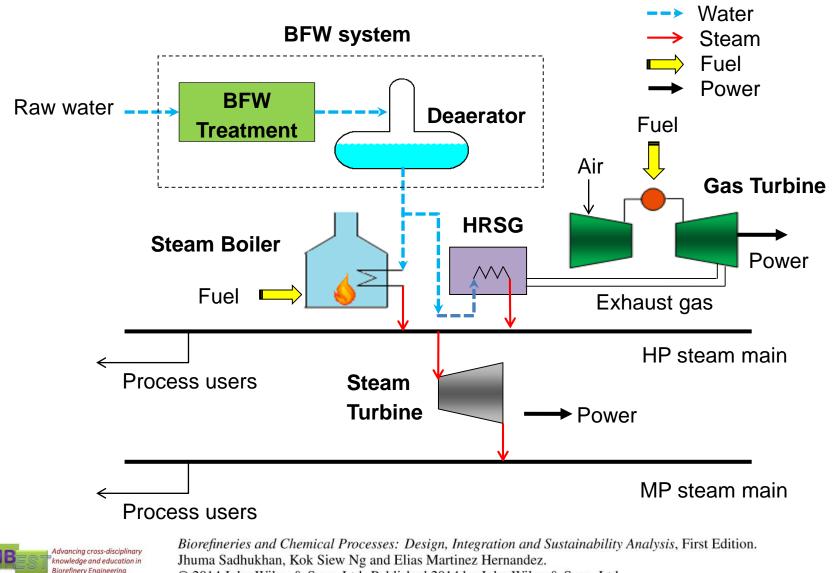


Figure 4.13 Biomass integrated gasification combined cycle (BIGCC) flowsheet configuration. BFW, boiler feed water; ETP, effluent treatment plant; GT, gas turbine; HRSG, heat recovery steam generator; HP, high pressure; MP, medium pressure; VHP, very high pressure.

Biorefineries and Chemical Processes: Design, Integration and Sustainability Analysis, First Edition. Jhuma Sadhukhan, Kok Siew Ng and Elias Martinez Hernandez. © 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd. Companion Website: http://www.wiley.com/go/sadhukhan/biorefineries

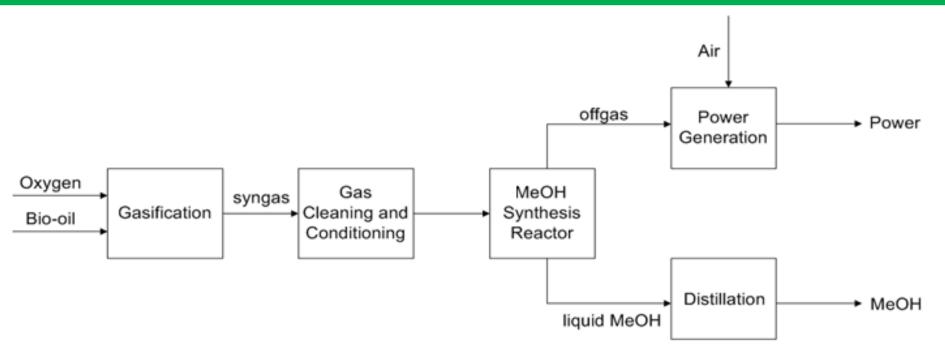
Biomass Gasification Fuel Cell System

Figure 16.3 BGFC schematic. (Reproduced with permission from Sadhukhan et al. (2010)³. Copyright © 2010, Elsevier.)

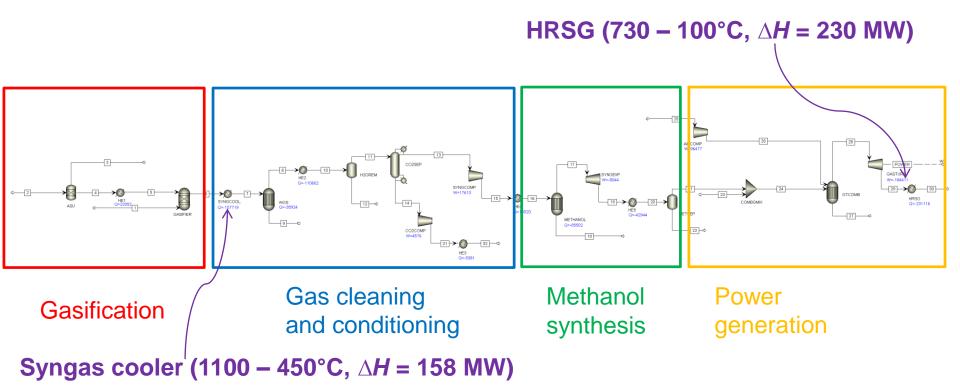

Biorefineries and Chemical Processes: Design, Integration and Sustainability Analysis, First Edition. Jhuma Sadhukhan, Kok Siew Ng and Elias Martinez Hernandez. © 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd. Companion Website: http://www.wiley.com/go/sadhukhan/biorefineries

Utility System

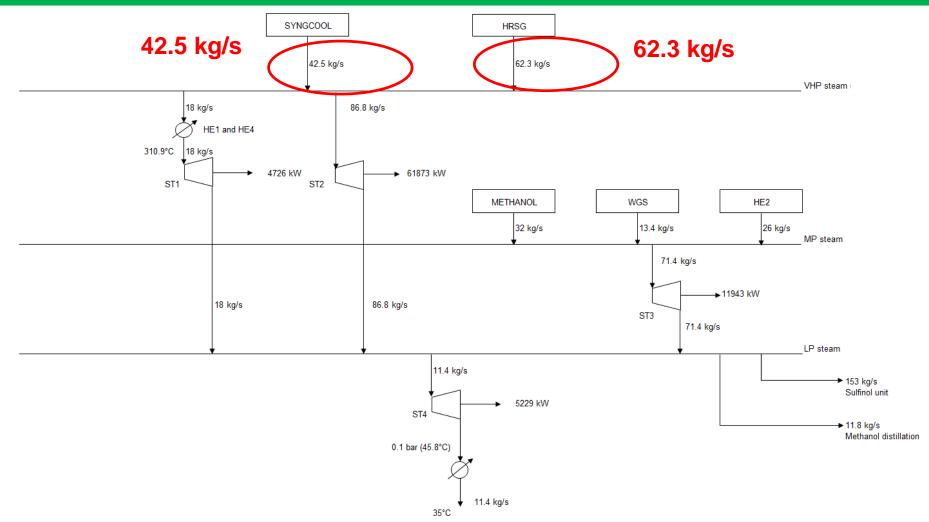
- Comprise all energy flows within the plant
- Intimate interaction between utility system and main processes
- The role of utility system in a process plant:
 - Supply heating and cooling demands
 - Supply power (from grid or on-site generation)
 - Meeting total site energy balance
- Highly efficient utility system would lead to
 - Minimum use of energy
 - Minimum energy cost


Utility System: Overview

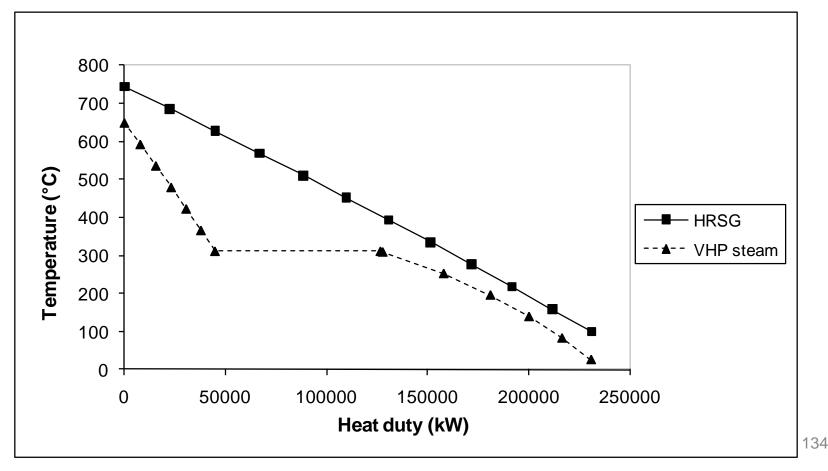
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.


www.theibest.org

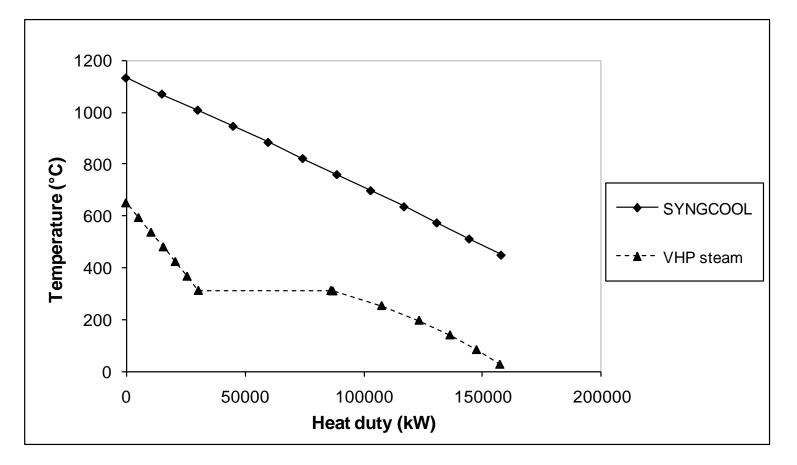
Companion Website: http://www.wiley.com/go/sadhukhan/biorefineries


Biorefineries and Chemical Processes: Design, Integration and Sustainability Analysis, First Edition. Jhuma Sadhukhan, Kok Siew Ng and Elias Martinez Hernandez. © 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd. 131 Companion Website: http://www.wiley.com/go/sadhukhan/biorefineries

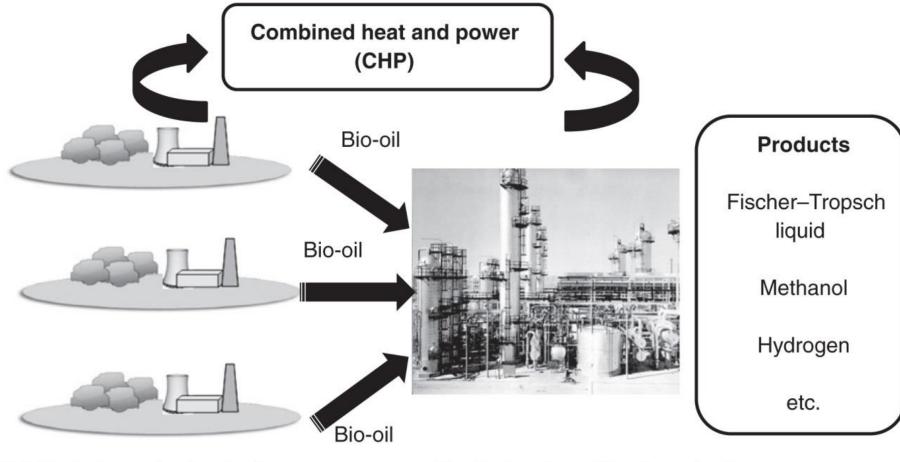
©Ng, K.S., Sadhukhan, J. (2011). Process integration and economic analysis of bio-oil platform for the production of methanol and combined heat and power. *Biomass Bioenergy*, 35(3): 1153-1169.



www.theibest.org



©Ng, K.S., Sadhukhan, J. (2011). Process integration and economic analysis of bio-oil platform for the production of methanol and combined heat and power. *Biomass Bioenergy*, 35(3): 1153-133 1169.


- Estimating maximum steam generation using composite curves.
- VHP steam generation from HRSG.
- $\Delta T_{min} = 20^{\circ} \text{C}$

- Estimating maximum steam generation using composite curves.
- VHP steam generation from syngas cooler.
- $\Delta T_{min} = 20^{\circ} \text{C}$

Advanced Biorefinery Options Based on Thermochemical Processing

Distributed pyrolysis plants

Centralized gasification plant

Figure 14.4 Distributed processing of biomass and centralized processing of bio-oil.

www.theibest.org

Biorefineries and Chemical Processes: Design, Integration and Sustainability Analysis, First Edition. ^{ary} Jhuma Sadhukhan, Kok Siew Ng and Elias Martinez Hernandez. © 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd. Companion Website: http://www.wiley.com/go/sadhukhan/biorefineries

BIOMASS AND BIOENERGY 35 (2011) 1153-1169

Process integration and economic analysis of bio-oil platform for the production of methanol and combined heat and power

Kok Siew Ng, Jhuma Sadhukhan*

Centre for Process Integration, School of Chemical Engineering and Analytical Science, University of Manchester, Manchester, M13 9PL, UK

BIOMASS AND BIOENERGY 35 (2011) 3218-3234

Techno-economic performance analysis of bio-oil based Fischer-Tropsch and CHP synthesis platform

Kok Siew Ng, Jhuma Sadhukhan*

Centre for Process Integration, Chemical Engineering, The University of Manchester, Manchester M13 9PL, UK

ARTICLE

pubs.acs.org/IECR

Economic and European Union Environmental Sustainability Criteria Assesment of Bio-Oil-Based Biofuel Systems: Refinery Integration Cases

Jhuma Sadhukhan* and Kok Siew Ng

Process Integration, Chemical Engineering, The University of Manchester, Manchester M13 9PL, United Kingdom

ABSTRACT: The biofuel mix in transport in the U.K. must be increased from currently exploited 3.33% to the EU target mix of 10% by 2020. Under the face of this huge challenge, the most viable way forward is to process infrastructure-compatible intermediate, such as bio-oil from fast pyrolysis of lignocellulosic biomass, into biofuels. New facilities may integrate multiple distributed pyrolysis units producing bio-oil from locally available biomass and centralized biofuel production platforms, such as methanol or Fischer—Tropsch liquid synthesis utilizing syngas derived from gasification of bio-oil. An alternative to bio-oil gasification is hydrotreating and hydrocracking (upgrading) of bio-oil into stable oil with reduced oxygen content. The stable oil can then be coprocessed into targeted transportation fuel mix within refinery in exchange of refinery hydrogen to the upgrader. This Article focuses on the evaluation of economic and environmental sustainability of industrial scale biofuel production systems from bio-oils.

Chemical Engineering Journal 219 (2013) 96-108

Contents lists available at SciVerse ScienceDirect

Chemical Engineering Journal

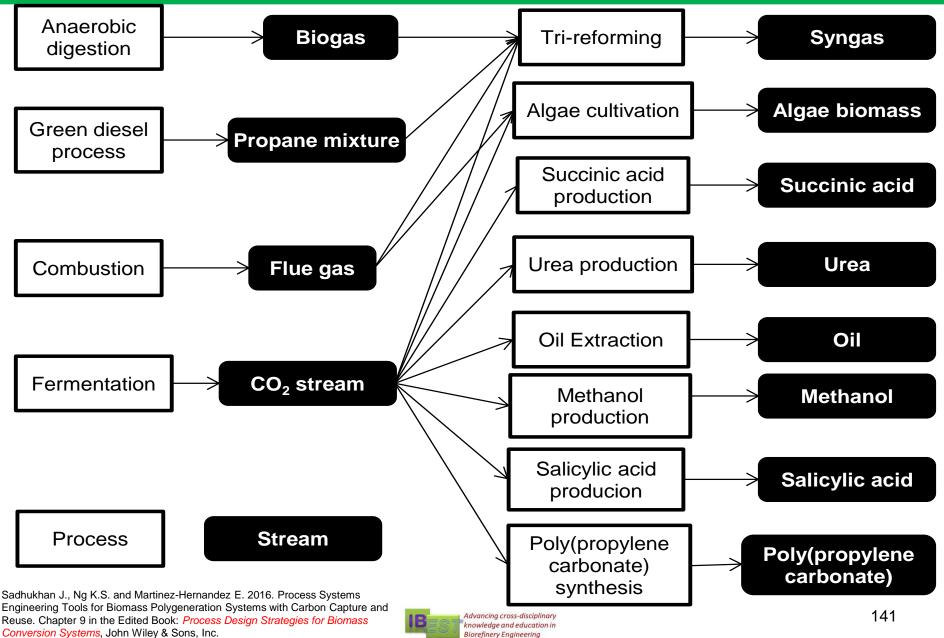
journal homepage: www.elsevier.com/locate/cej

Techno-economic analysis of polygeneration systems with carbon capture and storage and CO_2 reuse

Kok Siew Ng^a, Nan Zhang^a, Jhuma Sadhukhan^{b,*}

^a Centre for Process Integration, School of Chemical Engineering and Analytical Science, The University of Manchester, Manchester M13 9PL, UK ^b Centre for Environmental Strategy, University of Surrey, Guildford GU2 7XH, UK

Sadhukhan J., Ng K.S. and Martinez-Hernandez E. 2016. Process Systems Engineering Tools for Biomass Polygeneration Systems with Carbon Capture and Reuse. Chapter 9 in the Edited Book: *Process Design Strategies for Biomass Conversion Systems*, John Wiley & Sons, Inc.



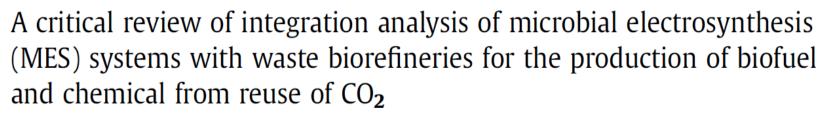
Chemical

Journal

Engineering

CO₂ Reuse Roadmap

CO₂ Reduction - Fuel and Chemical


Renewable and Sustainable Energy Reviews 56 (2016) 116-132

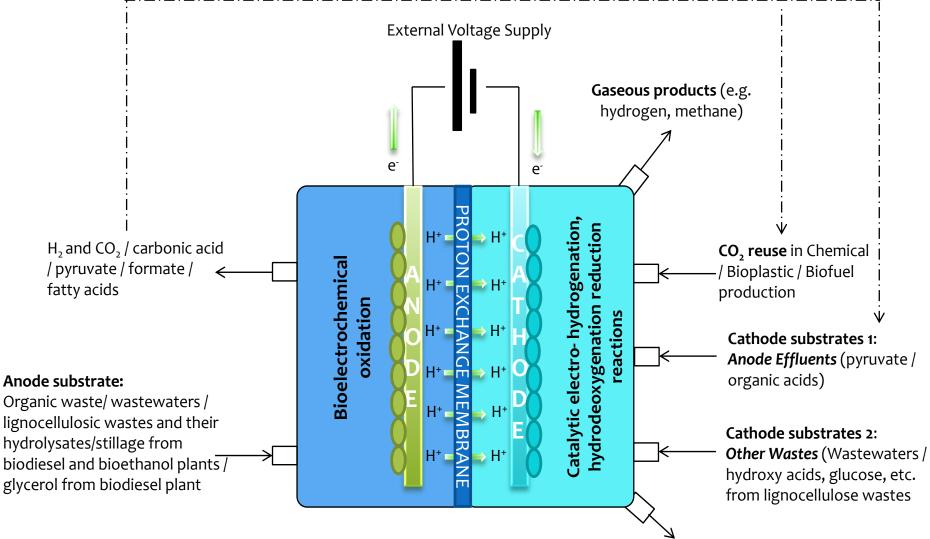
Contents lists available at ScienceDirect

Renewable and Sustainable Energy Reviews

journal homepage: www.elsevier.com/locate/rser

Jhuma Sadhukhan^{a,*}, Jon R. Lloyd^d, Keith Scott^c, Giuliano C. Premier^e, Eileen H. Yu^c, Tom Curtis^b, Ian M. Head^b

^e Sustainable Environment Research Centre (SERC), Faculty of Computing, Engineering and Science University of South Wales, Pontypridd, Mid-Glamorgan CF37 1DL, UK


^a Centre for Environmental Strategy, University of Surrey, Guildford, Surrey GU2 7XH, UK.

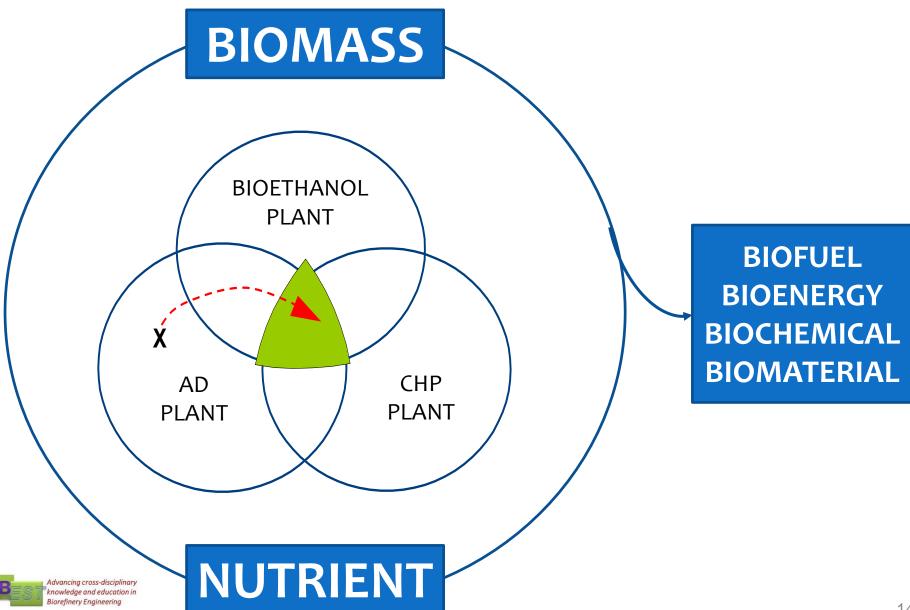
^b School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, Tyne and Wear NE1 7RU, UK.

^c School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle upon Tyne, Tyne and Wear NE1 7RU, UK.

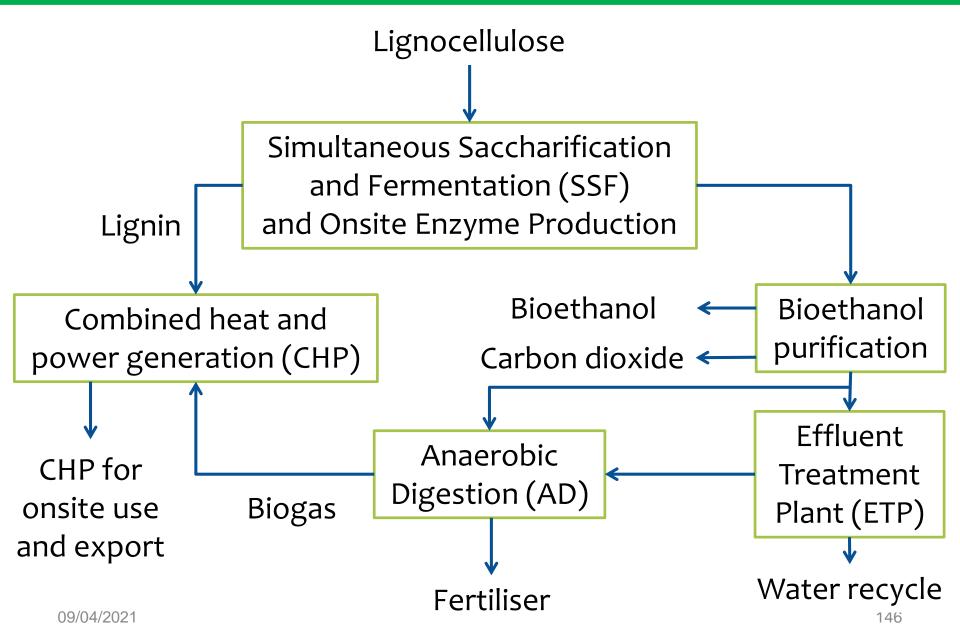
^d Manchester Geomicrobiology Group, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.

MES Schematic

Biofuel / Bioplastic / Chemical


Sadhukhan, J., Lloyd, J., Scott, K., Premier, G.C., Yu, E., Curtis, T., and Head, I. (2016). A Critical Review of Integration Analysis of Microbial Electrosynthesis (MES) Systems with Waste Biorefineries for the Production 143 of Biofuel and Chemical from Reuse of CO₂. Renewable & Sustainable Energy Reviews, 56, 116-132.

MES Products by CO₂ Reduction


Product	Cathode reaction	$\Delta G_{cathode}^{\circ}$ (kJ/mol)
Formic acid	$HCO_{3}^{-} + H^{+} + 2H_{2} \rightarrow HCHO + 2H_{2}O$ (Formate dehydrogenase)	+21.8
Methane	$HCO_3^- + H^+ + 4H_2 \rightarrow CH_4 + 3H_2O$ (Methanobacterium palustre)	-135.6
Methanol	$HCO_3^- + H^+ + 3H_2 \rightarrow CH_3OH + 2H_2O$ Carbonic anhydrase, oxidoreductase enzymes	-23
Pyruvate	$3HCO_3^- + 2H^+ + 5H_2 \rightarrow Pyruvate^- + 6H_2O$	-57.3
Acetate	$2CO_2 + 4H_2 \rightarrow C_2H_3O_2^- + H^+ + 2H_2O$ (Clostridium thermoaceticum)	-94.96
Succinate	Glycerol + $CO_2 \rightarrow Succinate^{2-} + 2H^+ + H_2O$ (Actinobacillus succinogenes)	-44.5
Lactate	Acetate ⁻ + HCO_3^- + H^+ + $2H_2^- \rightarrow Lactate^-$ + $2H_2^-O_3^-$	-4.2
Citrate	Succinate ²⁻ + 2HCO ₃ ⁻ + H ⁺ + 2H ₂ \rightarrow Citrate ³⁻ + 3H ₂ O	-23.8
Caproate, Caprylate	3 acetate ⁻ +2H ⁺ +4H ₂ → Caproate ⁻ + 4H ₂ O Ethanol + Butyrate ⁻ → Caproate ⁻ + H ₂ O (Clostridium kluyveri)	-96.6 -194
Butyrate	$2C_{2}H_{3}O_{2}^{-}(acetate) + H^{+} + 2H_{2} \rightarrow C_{4}H_{7}O_{2}^{-}(butyrate) + 2H_{2}O$ Ethanol + Acetate ⁻ \rightarrow Butyrate ⁻ + H ₂ O (Clostridium kluyveri)	-48.3 -193

Sadhukhan, J., Lloyd, J., Scott, K., Premier, G.C., Yu, E., Curtis, T., and Head, I. (2016). A Critical Review of Integration Analysis of Microbial Electrosynthesis (MES) Systems with Waste Biorefineries for the Production of 40 Biofuel and Chemical from Reuse of CO₂. *Renewable & Sustainable Energy Reviews*, 56, 116-132.



Industrial Symbiosis

Industrial Symbiosis

- 1. Sadhukhan, J., Lloyd, J., Scott, K., Premier, G.C., Yu, E., Curtis, T., and Head, I. (2016). A Critical Review of Integration Analysis of Microbial Electrosynthesis (MES) Systems with Waste Biorefineries for the Production of Biofuel and Chemical from Reuse of CO₂. *Renewable & Sustainable Energy Reviews*, 56, 116-132.
- 2. Wan, Y.K., Sadhukhan, J., Ng, K.S. and Ng, D.K.S. (2016) Techno-economic evaluations for feasibility of sago-based biorefinery, Part 1: Alternative energy systems. *Chemical Engineering Research & Design*, Special Issue on Biorefinery Value Chain Creation, 107, 263-279.
- 3. Wan, Y.K., Sadhukhan, J., and Ng, D.K.S. (2016) Technoeconomic evaluations for feasibility of sago-based biorefinery, Part 2: Integrated bioethanol production and energy systems. *Chemical Engineering Research & Design*, Special Issue on Biorefinery Value Chain Creation, 107, 102-116.

Life Cycle Sustainability Assessment (LCSA)

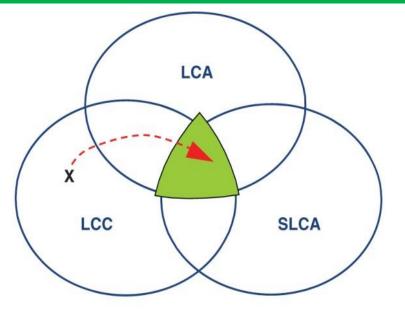


Figure 5.14 Multicriteria analysis combining LCA, SLCA and LCC tools.

Biorefineries and Chemical Processes: Design, Integration and Sustainability Analysis, First Edition. Jhuma Sadhukhan, Kok Siew Ng and Elias Martinez Hernandez. © 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd. Companion Website: http://www.wiley.com/go/sadhukhan/biorefineries

Sustainable development calls for a multi-criteria analysis, called life cycle sustainability assessment (LCSA) including social, economic and environmental impact assessments. While LCA is a tool for environmental sustainability analysis, social and economic impacts can also be assessed over life cycles. These are called social LCA (SLCA) and life cycle cost (LCC), respectively. Similar to LCA, SLCA and LCC show corresponding hotspots and ways of mitigation. The hotspots can span across the time scale (life cycle) as well as geographic regions (supply chains).