Key words: Stationary point, local maximum, local minimum, second derivative, chain rule, rate of change.

Formulae

The chain rule : $\frac{dy}{dx} = \frac{dy}{dx} \times \frac{du}{dx}$

1. Differentiate the following using appropriate notation for the derivative:

a.
$$y = 2\sqrt{x}$$

b.
$$y = \frac{3}{x^2}$$
 c. $y = \frac{1}{3x^3}$

c.
$$y = \frac{1}{3x^3}$$

$$d. \quad f(x) = \frac{1}{3}x^3(x-2)$$

d.
$$f(x) = \frac{1}{3}x^3(x-2)$$
 e. $y = \frac{2}{x^3} + \sqrt{x}$ f. $y = \sqrt[3]{x} + \frac{1}{2x}$

$$g. \quad y = \frac{2x+3}{x}$$

h.
$$y = \frac{3x^2 - 6}{x}$$

g.
$$y = \frac{2x+3}{x}$$
 h. $y = \frac{3x^2-6}{x}$ i. $y = \frac{2x^3+3x}{\sqrt{x}}$

$$j. \quad f(x) = x(x^2 - x + 2)$$

$$k. \ \ f(x) = 3x^2(x^2 + 2x)$$

j.
$$f(x) = x(x^2 - x + 2)$$
 k. $f(x) = 3x^2(x^2 + 2x)$ l. $y = (3x - 2)(4x + \frac{1}{x})$

2. Find the gradient of the curve with equation y = f(x) at the point A where:

a.
$$f(x) = x(x+1)$$
 and A is at (0, 0)

b.
$$f(x) = \frac{2x-6}{x^2}$$
 and A is at (3, 0)

c.
$$f(x) = \frac{1}{\sqrt{x}}$$
 and A is at (1/4, 2)

d.
$$f(x) = 3x - \frac{4}{x^2}$$
 and A is at (2, 5)

3. Find the values of x for which f(x) is an increasing function, given that f(x) equals:

a.
$$3x^2 + 8x + 2$$

b.
$$4x - 3x^2$$

c.
$$5 - 8x - 2x^2$$

$$d. \ \ 2x^3 - 15x^2 + 36x$$

4. Find the values of x for which f(x) is an increasing function, given that f(x) equals:

a.
$$1 - 27x + x^3$$

b.
$$x + \frac{25}{x}$$

c.
$$x^{1/2} + 9x^{-1/2}$$

d.
$$x^2(x+3)$$

Core Mathematics Preparation 11.1 Review Questions

Find the first and second derivatives where y equals:

a.
$$12x^2 + 3x + 8$$

a.
$$12x^2 + 3x + 8$$
 b. $15x + 6 + \frac{3}{x}$

$$c. \quad 9\sqrt{x} - \frac{3}{x^2}$$

d.
$$(5x+4)(3x-2)$$

e.
$$\frac{3x+8}{x^2}$$

6. Find the equation of the tangent to the curve where:

a.
$$y = x^2 - 7x + 10$$
 at the point (2, 0)

b.
$$y = x + \frac{1}{x}$$
 at the point (2, 2.5)

c.
$$y = 4\sqrt{x}$$
 at the point (9, 12)

d.
$$y = \frac{2x-1}{x}$$
 at the point (1, 1)

e.
$$y = 2x^3 + 6x + 10$$
 at the point (-1, 2)

f.
$$y = x^2 + \frac{-7}{x^2}$$
 at the point (1, -6)

7. Find the coordinates of the stationary points on the curves of the given equations,

a.
$$y = x(x^2 - 4x - 3)$$

b.
$$y = x + \frac{1}{x}$$

c.
$$y = x^2 + \frac{54}{x}$$

d.
$$y = x - 3\sqrt{x}$$
 Take \sqrt{x} to be $+\sqrt{x}$ only

e.
$$y = x^{1/2} (x - 6)$$
 Take \sqrt{x} to be $+\sqrt{x}$ only

f.
$$y = x^4 - 12x^2$$

8. Establish whether the stationary points in question 1 are local maxima or local minima

9. Use suitable substitutions and the chain rule to differentiate the following with respect to x,

g.
$$y = (5x + 3)^6$$

h.
$$y = \frac{1}{5x+3}$$

i.
$$y = (1 - 4x)^{-3}$$

j.
$$y = (2x^2 + 3)^6$$

k.
$$y = (\sqrt{x^2 - 1} + 1)^6$$