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11.5 Introduction SURREY

The aim of this unit is to review some of the basic rules of integration
together with some applications.

While studying these slides you should attempt the “Your Turn’ questions in
the slides.

After studying the slides, you should attempt the Consolidation Questions.
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11.5 Learning objectives

At the end of this lecture and seminar you should be able to;

11.5.1 Integrate functions of the form ax™ (n is rational, n # -1) using

n+1

ax
n+1

+C

j ax"dx =
11.5.2 Apply the fundamental theorem of calculus:

[} f (x)ax = [F ()} = F(b)- F(a)

and use this to solve a variety of problems

11.5.3 Integrate basic functions containing e*, sin x, cos x
11.5.4 Find the equation of a curve given f'(x) and any point P(x,y) on the curve
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Integration as the reverse process 2 >URREY
of differentiation

Integration is the reverse of differentiation but
consider the following functions and their derivatives:

_ Diferentiation_

Function Derivative
X2 2X
X2+ 5 2X
X2 — 3 2X

 Integration - butwhich one?
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The constant of integration

We don’t know what the original function was, only that it belongs to a
family of functions containing x? + a constant!

So, we add a constant of integration, C, where c is any real number:

Function Derivative
X2+ C 2X
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11.5.1 Integrate functions of the form ax™

A general rule:

n+1
If ﬂ:ax”,then y:ax
dx n+1

But we must remember the constant of integration:
n+1

If ﬂ:ax”,then y:ax +C
dx n+1

Does this rule work for all values of n?
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What happens whenn = —1?

If we did try and use our rule for n = -1, think what
would happen:

O

n+1

ax

=ax',then y= +C
dx n+1
Let % = ax~1, then using the rule above:
_ax’ .
y = 0 ¢

Cleary the division by zero is an undefined operation...
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We need a special case!

Integration is the reverse of differentiation

1

d
We know that — (Inx) = "

So,

dx
—=lnx+2C
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We must add a condition to our general rule for integration of algebraic
expressions because it is not valid for every case:

n+1
If ﬂ:ax”,then y:ax +C, nzx-1
dx n+1

It's mostly the case that we use the integration symbol,

n+1

jax dx_X—+C

n+1

10
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Example
. dy
Given ™ = —3x? + -I- \/_ find y as a function of x.

We want to flndf —3x? + S+ Y x dx

Procedure: integrate each term separately using the rule:

n+1
If ﬂ:ax”,then y:ax +C, n=-1
dx n+1

11
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Rewrite the expression we want to integrate using negative and
fractional powers,

becomes:

12
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Then we use the rule for integration,

x2t1 x3+1 x1/4+1

+ 5

C
2+1 2311 1/a+1 "

y=-3

Notice that all constants of integration are consolidated into one
constant of integration. Now simplify the coefficients and powers:

5 4
y=—X3—2—xz+§X5/4+C

13
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Example

Find,
J(4x2 + 2x‘2/3)dx

The rule for integration can be applied to individual terms. It's often
easier to think of it as,

1. Add 1 to the exponent
2. Divide by the new exponent

2 ~2/3 4x° 1/3
(4x + 2x )dx=T+6x +C

14
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Example

Find,

X

jx2<x3—x‘2/3+\/§+2>dx

Before we integrate, we must simplify the expression into single terms in x.
f .

x® 3x7/3  2x5/2
ff(x)dx=6— — +x24C

Then

15
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Your turn! (1)

' N m_ 1
Given f(x) = Vx W-l_e —

Find [ f(x)dx
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Solution
4x 1
flx) = \/x5—3,_x4+e BTy
s 1 1
f(x)=x2—-4x 3+e T
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11.5.2 Apply the fundamental theorem o
calculus

[ f (x)ax =[F(x)} = F(b)- F(a)

a

The above expression is called the fundamental theorem of calculus
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Example

Evaluate the following definite integral:
3
j (x? — 2x3)dx
1

The numbers at the top and the bottom of the integration symbol are the
limits of integration

3
f (x? — 2x3)dx
1

Since we are integrating with respect to x, as indicated by the dx, then
the limits are values of x, in this case, x = 1is the lower limitand x = 3,
the upper limit.

19
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To evaluate this definite integral, we first integrate as usual,

3
x4

3 3
j (x% —2x3)dx = [— ——
) 32,

Notice the use of square brackets after integration, and the limits of
Integration are written to the right of the square brackets. We do not
need to include the constant of integration as it will cancel out.

20
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Finally, evaluate the definite integral,

413
Lg(xz — 2x3)dx = [%3 - % 1
(3 3 1° 1%\ o4
—\ 3 2 3 2] 3
AN
Su)t()s:tigute Suéﬁute
Xx=1

21
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Your turn! (2)

Evaluate the definite integral
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Solution

/1
J —+ x? |dx = [Inx + x3]¢
1

X
=(lne+e3)—(n1+1)
=(1+e3)-(0+1)
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Definite integration and areas

*fox)
v/(j
£

.

Area under Hhe

E Curve (AUC)

— | 4 [ > %
s Ax xsb

AVC e-fl'l'mﬁ’CJ 69 aJ(ILng arecs
of rectanqular strips
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Summing the area elements

+The width of a strip 15 Ax and
he hecght is Y.
» €Each J’/-rip has an areo AA:yAx
. TOI‘G( areo = IzzleA
X =0

+ As Ax >0 , Hue Geewracy Increa ses
x:b

= lim
A = Y AX

A=A
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Another way of thinking about it...

.We can also see Hhat y< ac
AX
. Bubk [im éé, s dA

—

Ax->o AN dx

-ﬂms, Sﬁ:y and A=jyo’x
y &

. Boundary values of X are x=a
and x=b

b
. totel area = f“}'d"
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Definite integration as the limit of a sum

therefore - b
b < A7(=/ dx
m Zy ay

x>0 ..,

b ic the upper lim:t of Ih/'eym Lion
and a is the Lovser {imik.
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Fundamental theorem of calculus again!

Leb £ be continuous on [a, 8]
and F(x) = /f(x)dx

| 5
then fbf(.z) dx = [F"‘)L
/i_//. L r(b) " F(a) jfa

This is what you have to apply to do definite integration,
it’s fairly easy (some of the time and if it is possible!)
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Finding areas by integration

For a continuous function, we must integrate areas between all roots of the function over the domain
of the integration. In the illustration below we would need to carry out 6 separate integrations.

N=or

whet i B ttd area’

# p v
A z J:ﬂ(méh 4 Jf(’h)é t JPP(%)JVL

+ ¢ -ve + Ve

If we tried to integrate f;’ f(x)dx across the entire domain we would not obtain the correct area.

29
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A simple example to start with!

Lind the area conbaned bebeon the
&1: %1’{- n -4 and L‘AQ_ - AXIS ég,(wcgﬂ, ﬂ\b

poM) where ,f(m) =0
}(2]:7[1‘(-'74“ 6

1 S (ne)) (-
A:f(ﬁm«é)éx )
R
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Your turn! (3)

Find the area of the finite region bounded by the curve
y = x(x - 3) and the x — axis.



UNIVERSITY OF

. SURREY
Solution

The limits of integration are the x —intercepts, x = 0andx = 3

Need to evaluate ‘fos x(x — 3)dx‘

3

[x3 3x2]
3 2 1p

= |G-%) -0 3

3 2

= ‘ng(xz — 3x)dx‘ =
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Evaluating an integral — what are we doing?

Evaluate means just that — we don’t have to think about ‘positive’ and ‘negative’ areas or crossing
points on the axis.

(94 Y-19) - %+ ¥ + 24)

_ |
~‘7/L/3%__ ._.?/6
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Multiple enclosed regions

Fid Hhe area condamed bebuen fhe cucve t]:n"“m—é
omd Be n-axis m the domann - 4 < n<d.

i
|
)
)
)
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Your turn! (4)

Find the area of the finite region bounded by the curve
y = x(x- 1)(x + 3) and the x —axis.

35
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Solution

0 1
Area = f (x3 + 2x% — 3x)dx + j (x3 + 2x?% — 3x)dx
-3 0

=2t 3 73 2 T 3773
81 54 27 1 2 3
= (0) — — R .
(0) (4 3 25)+L(4+3 2) (O)‘
4 12
71



UNIVERSITY OF

Area between a curve and a SURREY
straight line
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Example

Find He wrea enclosed gg e @m‘ol‘
and e iz Y= In, befuen bhe uhersectin panfe Jf

e curve and b e
mé&rfdc.éwr.\,s

PR S

= n"-9% =0
q) =0 s ©
o ns 9

/

L n* n371
7(?71"1 )4" :[qz’%]o
RETIIRS

2 3
N ;LZ”_Zé = 243/2
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e* sinx,cosx

Differentiation Integration

%[Sinx]=cosx jcosxdx=sinx+€
%[—cosx]=sinx jsinxdx=—cosx+C
d jexdx=ex+C
a[ex]zex

%[IHM]:% f%dx=1n|x|+C
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Other useful results

Differentiation Integration

d
— [tan x] = sec? x
dx

sec?xdx =tanx + C

@ _ 2
dx[ cotx] = cosec“x

cosec’xdx = —cotx + C

d

— |sec x| = sec x tan x
dx

secxtanxdx =secx+C

d

— |— cosec x] = cosec x cot x
dx

cosecx cotxdx = —cosecx +C

[N .
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Example

. 3
Find [ (2 cosx + = —+/x)dx

3
=J2cosxdx+ j;dx—f\/}dx

3 2 3
=2sinx————=x2+4+0C
x 3
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Example

f(cosx B Zex) Ix
sin? x
1 cosx
= ]( - _ —Zex) dx
sinx sin x

= [ (cosecx cotx — 2e*)dx

= —cosecx —2e*+C
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Your turn!(5)

Find the following definite integrals

f Stan?x .
a) 1 — cos?x *

b) ”——x/—e ]dt
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Solutions(5)

f Stan?x ;
) 1 — cos?x x

tan“x 1
sin‘x cos2x

= 5fsec2xdx =5tanx + C

b)f[——\/—e]dt =%ln|t|—\/§et+c
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Application examples

ﬂzamfk Shows a re_du'm ABCD  enclosed 6\7 bha
@m'}’l” ,,,4 j = {'“"’(’7‘:'”') and Fe (irneg g = 2%+ |,
i 31r/+ omd N 7T/4,. Fnd te area o«@ ARCD

'ﬁn”
,%z%)

o= Sk
T
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Solution
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Alternative solution

Ap is the area of the
parallelogram BCEF
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A=A -A

_ dest Q,QCLUG’U\
- ””“M,iwwx u:?uw sidacs
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11.5.4 Find the equation of a curve given f'(x) & SURREY
and any point P(x, y) on the curve f(x).

Find the éq}m%uﬁ\ d e e, given §lin) and ary
Pafnf‘ p(ny) on the  cmve ][('n),

consider te fundon Fony = %+ C ks gmplx ",

A pmﬂubo‘(m with a VerteX bocched ot n=0 (mﬂejfax@

I} ue dflorenhake this fanchin , we gek fion) = 2n.
This cam tedA us H\LSMC‘M A fn) for any vclue 4 n

Al H\LSC Fundw&) l/laU(, #‘ﬂ Same ﬁrm{wvv{ ,[uno(lzém,

}('n): n* h(_"l): 7[,2"2,5

4(n)= r -9 pn)= nt+ ¢
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We can differentiate any of these functions SURREY
but we can’t recover the original function by
integration alone
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Example

[ Find y o torms df 5, quen/ y'=2 ) ardl (3,2)
A point O fhe gmfl\ of Y

[fta) = &
Lem = S?/_cjﬂx : In+ C

\yz In+ C af (3,1)

2= 90)+c 3 ¢ =
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Example

2. e vy = op 4 2 and e point [(15) Lo
m the Orap/\ df [(9‘)) Lind 'f(l).

Plovs 5+ &

fon): J(Ga)dn

= lnnw‘ Zki+»Q

Ian + In + C a/((()f)
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Example

3, Cien t = cot36 wmd & =72 i root of £ find
F o teems of 6.

— COP:;O'
- ff_of‘g& d8

L Télnr 7"2‘"\2-

t—:éln{\!l‘v\g‘B +-£Llh9~
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Example

Suppose that a curve with equation y = f(x) passes through the point (4, 5).

Given that f'(x) = ’CZT;Z find the equation of the curve.
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3 1

1) Write f'(x) in a form suitable for integration: f'(x) = xz — 2x" 2

2) Integrate: f(x) = f(xz — 2x Z)dx

5 1

x2 x2
IS

2 2

2 5 1
=§x2—4x2+C

3) Use the fact that point (4,5) is on the curve, substitute for x and y:

2
5=§><25—4><2+C

5= o4 8+C=>C= 1
-5 5 5
The equation of the curve is f(x) = %xE — 4xz +

U'llb—\

56
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The gradient of a particular curve is given by
dy 1

— = —sint — 1. Given that y (g) =) find an

equation of the curve y = f(t).
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Solution

1) f(t)= j(—sint—l)dt =cost—t+C

2) Point (%%) IS on the curve =

1:cos£—£+C:>C:Z
2 3 3 3

= f(t):cost—t+%



Summary

You should now be able to:

11.5.1 Integrate functions of the form ax™ (n is rational, n # -1) using

n+1

jax”dx:aX—+C
n+1

11.5.2 Apply the fundamental theorem of calculus:

[} f (x)ax = [F ()} = F(b)- F(a)

a
and use this to solve a variety of problems

11.5.3 Integrate basic functions containing e*, sin x, cos x
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11.5.4 Find the equation of a curve given f'(x) and any point P(x,y) on the curve
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