

Effect of tall buildings on the urban environment

Marco Placidi, Alan Robins, Matteo Carpentieri, David Birch, Paul Hayden

FUTURE, Partners Meeting – 26th July 2021

Outline of the talk

- The EnFlo Lab
 - Facilities and equipment

- Previous/current work on tall buildings in the EnFlo Lab
 - Wakes of cylinders in ABL
 - Tall building in complex terrain
 - Tall and dense canopies
 - Wakes of building clusters in ABL

Facility and equipment – EnFlo WT

<u>Facility</u>

- Working section: 20 m x 3.5 m x 1.5 m
- Velocity: 1.5 m/s (P_~ V^β)
- Inlet heating: 15 layers, 405kW (dT/dz)_{max}=80C/m
- Floor heating/cooling: 1 kW/m² / 10 °C
- 2 overhead 3-axis traverses

Equipment

- Dantec 3D LDA (NCAS)
- Dantec 1D LDA
- Cambustion FFID (NCAS S&F Grant)
 2 x 2 channel
- Cold probe anemometry for T'
- Volumetric positioning system 6 cameras

Facility and equipment – EnFlo Lab

Facilities

A Tunnel

Working section: 4.5 m x 0.9 m x 0.6 m

Velocity: 25 m/s

Aero Tunnel

• Working section: 9 m x 1.05 m x 1.27 m

Velocity: 40 m/s

Equipment

- Dantec 2 x 2D LDA + mirrors (mean/fluctuating velocities)
- LaVision Tomographic PIV (NERC Grant)
 3 x 5.5 Mpixel sCMOS cameras
- SurreySensors P, T, U

Wake of a cylinder in ABL

Flat Plate

- AR = 4, 6, 8
- $\delta/H_B = 0.3-0.5$

Square Cylinder

- AR = 4, 6, 8
- $\delta/H_B = 0.3-0.5$

Building dimensions (width x height x depth)

- 10 x 40-60-80 x 2 mm³
- 10 x 40-60-80 x 10 mm³
- 17 x 40-60-80 x 17 mm³

Triangular Cylinder

- AR = 4, 6, 8
- $\delta/H_B = 0.3-0.5$

• 10 x 40-60-80 x 10 mm³

Effect of AR & H_B/δ

Samuel Shone

U: mean axial velocity U_e : edge velocity z: wall-normal location H_B : building height

$$\Delta U = \frac{U_e - U}{U_e}$$

Effect of Aspect Ratio (AR)

Increasing the aspect ratio of a building increases the axial velocity deficit

Effect of relative roughness height (BLHR)

The wake has a weaker dependency on relative roughness height

Tall building in complex terrain

William Lin

Collaborative work within MAGIC (Reading-Surrey)

Tall and dense canopies

Alexandros Makedonas

Uniform height

- $h_{avg} = 80 \text{ mm}$
- $\lambda_P = 0.44$
- $\sigma_h = 0$
- $h_{max} = h_{avg}$
- Staggered and aligned

Varied height

- $h_{avg} = 80 \text{ mm}$
- $\lambda_P = 0.44$
- $\sigma_h = 49 \text{ mm}$
- $h_{max} = 2.5 h_{avg}$
- Staggered and aligned

Roughness and inertial SL

Uniform height

- Shallow roughness sublayer is found to extend to 1.2h_{avg}
- Inertial sublayer is present for $1.1 < z/h_{avg} < 1.85$

Varying height

- Deep roughness sublayer is found to extend to 2.85h_{avg} just over h_{max}
- "Inertial sublayer" is present for 2.85 < z/h_{avg} < 4.4

Wake of tall building clusters in ABL

So far we have investigated:

- 1. Number of buildings 3 x 3, 4 x 4, 5 x 5
- 2. Aspect ratio of buildings AR = 4, 6, 8 ($\delta/H_B \approx 6$, 4, 3)
- 3. Spacing of buildings
- 4. Heterogeneity in height (σ_{HB})

Cluster height and size

Paul McDonald

Effect of Aspect Ratio (AR)

 small effect on the wake of 5 x 5 cluster, as the wakes are similar at different downstream locations regardless of AR

Effect of cluster size

 little influence of the cluster size once in the far field, wake is similar to that of an isolated tall building

Questions?

Marco Placidi: m.placidi@surrey.ac.uk

Acknowledgements:

Marco Choi, Samuel Shone, Paul McDonald, Joshua Doherty, Alexandros Mekedonas, Josh Minien, William Lin, Allan Wells