
 

 

 
 

Discussion Papers in Economics 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 

 

DP 03/22 
 

School of Economics 
University of Surrey 

Guildford 
Surrey GU2 7XH, UK 

Telephone +44 (0)1483 689380 
Facsimile +44 (0)1483 689548 

Web https://www.surrey.ac.uk/school-economics 
ISSN: 1749-5075 

 
IDENTIFICATION THROUGH THE FORECAST ERROR 

VARIANCE DECOMPOSITION: AN APPLICATION TO 

UNCERTAINTY 
 

By 
 

Andrea Carriero  
(Queen Mary University of London and University of Bologna) 

 
 

& 
 

Alessio Volpicella  
(University of Surrey). 

 
 
 

 
 
 

 

 

 

 

https://www.surrey.ac.uk/school-economics


Identification through the Forecast Error Variance

Decomposition: an Application to Uncertainty∗

Andrea Carriero† and Alessio Volpicella‡

March 11, 2022

Abstract

We develop a novel approach to achieve point identification in a Structural Vector Au-

toregression, based on imposing constraints on the forecast error variance decomposition.

We characterize the properties of this approach and provide Bayesian algorithms for es-

timation and inference. We use the approach to study the effects of uncertainty shocks,

allowing for the possibility that uncertainty is an endogenous variable, and distinguishing

macroeconomic from financial uncertainty. Using US data we find that macroeconomic

uncertainty is mostly endogenous, and that overlooking this fact can lead to distortions

on the estimates of its effects. We show that the distinction between macroeconomic and

financial uncertainty is empirically relevant. Finally, we study the relation between uncer-

tainty shocks and pure financial shocks, showing that the latter can have attenuated effects

if one does not take into account the endogeneity of uncertainty.
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1 Introduction and Related Literature

Since the influential paper of Bloom (2009), the business cycle relationship between un-

certainty and macroeconomic variables and the underlying transmission mechanism have

received extensive consideration.1 Several measures of uncertainty have been proposed,

and many scholars have analyzed the macroeconomic effects of uncertainty shocks.2

Three challenges come to the fore. First, most works usually employ structural vec-

tor autoregressions (SVARs) with some recursive identification scheme. The common

assumption is that uncertainty is exogenous, i.e. it does not respond contemporaneously

to economic variables, whereas economic variables react contemporaneously to uncer-

tainty.3 Recursive schemes are widespread due to the simplicity of implementation and

interpretation, but for uncertainty it is extremely challenging to defend them as convinc-

ing identification strategies.

In fact, the current evidence makes researchers unable to take up a position on the

direction of the causality between uncertainty and economic variables: there is no un-

controversially accepted, theoretically grounded belief to assert that a specific recursive

or sign restriction scheme is credible for identification of uncertainty shocks. On the

contrary, both directions of causality are conceivable and macroeconomic theory is also

ambiguous about the possible sign of the effects of uncertainty on the economy.

Uncertainty can affect the economy through firms’ behavior, which is influenced by

uncertainty because of (i) the real option argument (Bernanke, 1983; McDonald & Siegel,

1986); (ii) the delay of hiring and investment decisions (Bloom, 2009; Bloom et al., 2018;

Leduc & Liu, 2016); (iii) the interaction with financial frictions that impact on firms’

decisions (Arellano et al., 2018; Gilchrist et al., 2014; Alfaro et al., 2018). The uncer-

tainty can influence the economy also through precautionary savings (Basu & Bundick,

2017; Fernández-Villaverde et al., 2011). On the other hand, some scholars have pointed

out that bad economic and/or credit conditions are likely to cause a rise uncertainty

(Van Nieuwerburgh & Veldkamp, 2006; Bachmann & Moscarini, 2011; Fajgelbaum et al.,
1Bloom (2014) provides an excellent survey.
2A partial list of works consists of Bloom (2009), Bachmann et al. (2013), Caggiano et al. (2014),

Jurado et al. (2015), Rossi and Sekhposyan (2015), Caldara et al. (2016), Baker et al. (2016), Basu and
Bundick (2017), Cesa-Bianchi et al. (2018), Shin and Zhong (2020), Carriero et al. (2018b), Bloom et al.
(2018), Angelini et al. (2019), Ludvigson et al. (2021), and Carriero et al. (2021).

3We use the terms exogenous (endogenous) as shorthand for predetermined (not predetermined)
within the period.
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2017; Brunnermeier & Sannikov, 2014; Atkinson et al., 2021; Plante et al., 2018). Em-

pirical contributions that have allowed for both directions of causality include Carriero

et al. (2021), Ludvigson et al. (2021), and Angelini et al. (2019). All these contributions

have shown that the direction of causality might depend on the uncertainty typology

and measure of choice. Additional literature pointed out that uncertainty can stimulate

economic activity (growth options theory): a mean-preserving spread in risk originated

from an unbounded upside combined with a limited downside can lead firms to invest

and hire, since the rise in mean preserving risk raises expected profits.4

A separate challenge is about the origins of uncertainty. Standard theories claim that

uncertainty originates from macroeconomic fundamentals, e.g., productivity, and that

such real economic uncertainty, when interacted with market frictions, decreases real ac-

tivity. However, it has been argued that uncertainty depresses the economy via its impact

on financial markets (Gilchrist et al., 2014), or through sources of uncertainty specific to

financial markets (Bollerslev et al., 2009). Furthermore, Ng and Wright (2013) discuss

that financial uncertainty –as distinct from macroeconomic uncertainty– could have a

pivotal role in recessions after 1982, both as a cause and as a propagation channel. The

challenge also arises because the theoretical literature has focused on volatility coming

from fundamentals, while empirical efforts have usually tested those frameworks employ-

ing uncertainty proxies that are strongly correlated with financial market variables. This

naturally leads to wonder whether it is macroeconomic uncertainty or financial uncer-

tainty (or both) to drive business cycle fluctuations. The current literature does not

disentangle the contributions of macroeconomic versus financial uncertainty to business

cycle fluctuations, nor it allows feedback between macroeconomic and financial uncer-

tainty. Exceptions are the small-scale models in Ludvigson et al. (2021) and Angelini et

al. (2019) and the contribution in Shin and Zhong (2020).

The final challenge is that there is high degree of comovement between indicators of

financial distress such as credit spreads and uncertainty proxies as both variables are “fast

moving”, as pointed out in several studies including Caldara et al. (2016), Brianti (2021),

Caggiano et al. (2021). It is therefore difficult to impose plausible zero contemporaneous

restrictions to identify these two disturbances. It is also difficult to impose sign restrictions
4For instance, see Oi (1961), Hartman (1972), Abel (1983), Bar-Ilan and Strange (1996), Pástor and

Veronesi (2006), Kraft et al. (2018), Segal et al. (2015), and Fernández-Villaverde and Guerrón-Quintana
(2020).
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as uncertainty and financial shocks could have theoretically the same qualitative effects

on both prices and quantities.

This paper proposes a new approach to identification which allows to deal with the

three issues above. The approach allows for endogeneity of uncertainty, i.e. for a causal

transmission channel going from uncertainty to the economic variables as well as the

opposite causal mechanism going from the economic variables to uncertainty. It also al-

lows to separately identify different sources of uncertainty, and to disentangle uncertainty

shocks from pure financial shocks. To our knowledge, this is the first paper to tackle these

issues in a unified framework. While we focus on uncertainty and financial disturbances,

the identification and estimation toolkit developed in this paper is general, and can be

applied in any SVAR where standard ordering and sign restrictions are not desirable or

sufficient to identify all of the shocks of interest (as discussed in Section 2.3).

The proposed identification scheme is based on constraints on the Forecast Error Vari-

ance (FEV) decomposition of a Structural Vector Autoregression (SVAR). The key idea

is that the structural shock to a variable in the system must be the main responsible for

the variation in that variable. For example, consider the task of identifying a macroe-

conomic uncertainty shock, a financial uncertainty shock, and a credit supply shock:5

the identifying assumption is that the structural shock to macroeconomic uncertainty is

such that: i) it explains (in the short run) the unexpected movements of macroeconomic

uncertainty variable more than it explains the fluctuations of financial uncertainty or the

credit spread, and ii) it maximizes its contribution to (a function of) the total variation of

macroeconomic uncertainty. The first requirement identifies a set of plausible structural

models, while the second requirement point-identifies a single model. The same approach

is used to simultaneously identify also financial uncertainty and credit supply shocks.

Our identification strategy involves the solution a constrained maximization problem,

where the objective function is an equally weighted linear combination of the FEV of

the variables of interest and the constraints are the inequality restrictions on the FEV.

We show that this corresponds to a quadratic optimization problem on the columns

of the rotation matrix transforming reduced-form residuals into structural shocks. We

provide a flexible toolkit and establish mild conditions under which the solution of the

optimization problem exists and is unique. We develop simple algorithms to perform
5A credit supply shock is defined as a shock to credit supply and measured through the credit spreads.
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Bayesian estimation and inference, even though of course the identification result and

properties do hold also in a frequentist setting.

The FEV decomposition has been already used as an identification device. A major

example is the method put forward by Uhlig (2004) in which the FEV decomposition is

optimized under a set of constraints given by sign restrictions, which can be individually

verified for each FEV decomposition of each variable. In our approach instead the con-

straints are inequalities restrictions that have to hold across the FEV decompositions of

different variables: hence they need to be verified for all the shocks simultaneously. This

is computationally more challenging, but has the advantage of (i) identifying simultane-

ously a multiplicity of shocks, and (ii) being well-suited (even) when sign restrictions are

unavailable, or cannot help distinguish competing shocks: uncertainty disturbances are a

natural example. Furthermore, the fact that inequality restrictions on the FEV decom-

position correspond to quadratic constraints on the rotation matrix has some effects on

estimation and inference with respect to the case of sign restrictions.

The approach also differs from Amir-Ahmadi and Drautzburg (2021) and Volpicella

(2021). Amir-Ahmadi and Drautzburg (2021) employed set-identification through rank-

ing restrictions on the impulse response functions, combined with standard sign restric-

tions. Volpicella (2021) puts sign restrictions and bounds on the FEV to set-identify a

single shock; on the contrary in this paper we point-identify shocks, do not place bounds,

and allow identification of a multiplicity of shocks.

Turning to the empirical application, we start with a simulation exercise in which we

show that our approach recovers the impulse response functions in different Data Gen-

erating Processes (DGPs), with exogenous or endogenous uncertainty; our identification

strategy successfully captures the effect of uncertainty on the economy regardless the

exogeneity extent of the uncertainty disturbances in the DGP.

We apply the proposed identification scheme to a SVAR model estimated with US

data. We find that both macroeconomic and financial uncertainty shocks act as negative

demand shocks, i.e. decrease the real activity and trigger a deflationary pressure. The

responses to the two shocks are quantitatively substantially different: macroeconomic

uncertainty has a stronger and more persistent effect on the real activity variables. We

also find evidence that separating macroeconomic from financial uncertainty is important,

and not doing so can dramatically distort the impulse responses.
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We find evidence that uncertainty is endogenous to some extent. In particular,

dismissing the feedback effect from the macroeconomy to macroeconomic uncertainty

changes the estimated responses in non trivial ways. This suggests that naive schemes

such as sign restrictions and recursive ordering are too restrictive. These results are in

line with Ludvigson et al. (2021) and Carriero et al. (2021). Angelini et al. (2019) instead

found that both macro and financial uncertainty are exogenous.

In closing we turn our interest on the relation between financial conditions and uncer-

tainty, motivated by several recent theoretical contributions have emphasized the pivotal

role that financial conditions might have in amplifying and propagating the effects of

uncertainty to real economy (Arellano et al., 2018; Christiano et al., 2014; Gilchrist et

al., 2014; Brunnermeier & Sannikov, 2014; Alfaro et al., 2018). We find that this chan-

nel is crucial for the transmission of financial uncertainty shocks but negligible for the

transmission of macroeconomic uncertainty shocks. We also find that financial shocks are

recessionary and ignoring the endogenous role of uncertainty leads to under-estimating

their effects on the economy.

The paper is organized as follows. Section 2 introduces the identification strategy;

Section 3 illustrates the effectiveness of our approach via a simulation; Section 4 presents

the empirical application; Section 5 concludes. Appendix A and Appendix B provide

proofs and robustness checks, respectively.

2 Theoretical framework

Consider a SVAR(p) model

A0yt = a+

p∑
j=1

Ajyt−j + εt (2.1)

for t = 1, . . . , T, where yt is an n× 1 vector of endogenous variables, εt an n× 1 vector

white noise process, normally distributed with mean zero and variance-covariance matrix

In, Aj is an n×n matrix of structural coefficient for j = 0, . . . , p. The disturbances εt are

mutually uncorrelated, and are therefore interpretable as structural shocks. The initial

conditions y1, . . . ,yp are given. Let θ = (A0,A+) collect the structural parameters,

where A+ = (a,Aj) for j = 1, . . . , p.
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The reduced-form representation is a Vector Autoregression (VAR):

yt = b+

p∑
j=1

Bjyt−j + ut, (2.2)

where b = A−10 a is an n × 1 vector of constants, Bj = A−10 Aj, ut = A−10 εt denotes

the n × 1 vector of reduced-form errors. var(ut) = E(utu
′
t) = Σ = A−10 (A−10 )′ is the

n × n variance-covariance matrix of reduced-form errors. Let φ = (B,Σ) ∈ Φ collect

the reduced-form parameters, where B ≡ [b,B1, . . . ,Bp], Φ ⊂ Rn+n2p ×Ξ, and Ξ is the

space of symmetric positive semidefinite matrices.

We define the n× n matrix

IRh = Ch(B)A−10 (2.3)

as the impulse response at h-th horizon for h = 0, 1, . . . , where Ch(B) is the h-th co-

efficient matrix of (In −
∑p

h=1BhL
h)−1. Its (i, j)-element denotes the effect on the i-th

variable in yt+h of a unit shock to the j-th element of εt. As is well known there are

several observationally equivalent A0 matrices, and expression (2.3) actually involves a

set of impulse responses.

To formalize this fact we follow Uhlig (2005) and define the set of all IRFs through an

n×n orthonormal matrix Q ∈ Θ(n), where Θ(n) characterizes the set of all orthonormal

n × n matrices. Uhlig (2005) showed that {A0 = Q′Σ−1tr : Q ∈ Θ(n)} is the set of

observationally equivalentA0’s consistent with reduced-form parameters, where Σ relates

to A0 by Σ = A−10 (A−10 )′, Σtr denotes the lower triangular Cholesky matrix with non-

negative diagonal coefficients of Σ. The likelihood function depends on φ and does

not contain any information about Q, leading to ambiguity in decomposing Σ. The

identification problem arises because there is a multiplicity of Q’s which deliver A0 given

φ. Specifically, the impulse response of variable i to shock j at horizon h, i.e., (i, j)-

element of IRh, can be expressed as e′iCh(B)ΣtrQej ≡ c′ih(φ)qj, where ei is the i-th

column vector of In, qj is the j-th column of Q and c′ih(φ) represents the i-th row

vector of Ch(B)Σtr. Alternative identification schemes can be achieved by placing a

set of restrictions on Q. For example, imposing Q = In implies a recursive ordering

identification, i.e., the Cholesky decomposition, whereas sign restrictions specify a set of
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admissible Q’s.

2.1 Identification strategy

Our identification scheme identifies k ≤ n shocks j ∈ 1, . . . , k, denoted by qj = Qej,

where q′jqj̃ = 0 for j 6= j̃ is the standard orthogonality condition.

In our empirical application we will set k = 3 and shocks of interest are those to

macroeconomic uncertainty, financial uncertainty, and credit supply. Consider the goal of

identifying the structural shock to macroeconomic uncertainty. Identification is achieved

by verifying that a given candidate model satisfies two requirements. The first require-

ment is that such shock must explain the unexpected movements of macroeconomic un-

certainty variable more than it explains the fluctuations of financial uncertainty and credit

spreads, upon impact. This reduces the identified set to a smaller set of candidates. The

second requirement is that the shock maximizes its contribution to (a function of) the

total variation of macroeconomic uncertainty. The same methodology applies to identify

the financial uncertainty and credit supply shocks.

The second requirement implements the belief that movements in a given variable

are significantly driven by structural shocks to the variable itself (this does not exclude

endogeneity, though). Such an assumption seems reasonable in general, and in the specific

example at hand has some empirical support in e.g. Caldara et al. (2016) and Brianti

(2021), which show that movements in uncertainty are substantially driven by uncertainty

disturbances, after controlling for other sources of uncertainty and financial conditions,

while unanticipated deterioration in credit conditions are largely caused by an adverse

financial shock, after controlling for uncertainty.

Importantly, this approach does not require the researcher to take a stance in regards

to the possible exogeneity or endogeneity of uncertainty: uncertainty can impact on macro

variables, and vice-versa. In fact, Section 3 shows that our identification assumptions

are consistent with DGPs regardless whether those frameworks consider endogenous or

exogenous uncertainty, and successfully recover the impulse response functions of different

DGPs.
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2.1.1 Formal setup

In what follows we provide a formalization the strategy described above. Let CFEV i
j (h̃)

denote the FEV at horizon h̃ of variable i explained by the j-th structural shock:

CFEV i
j (h̃) = q′jΥ

i
h̃
(φ)qj, (2.4)

where Υi
h̃
(φ) =

∑h̃
h=0 cih(φ)c

′
ih(φ)∑h̃

h=0 c
′
ih(φ)cih(φ)

is a n× n positive semidefinite matrix. Expression (2.4)

describes the percent contribution - expressed with a number in the interval [0, 1] - of the

shock j to the unexpected fluctuations of variable i at horizon h̃.

Without loss of generality, suppose that (i) j = 1 is the first shock, j = 2 is the second

shock, j = 3 is the third shock and so on; (ii) the n endogenous variables are ordered such

that i = 1 is the macroeconomic uncertainty variable, i = 2 is the financial uncertainty

variable, and i = 3 is the credit spreads. Define the following I−j = {1, . . . , k}/{j} as a

subset of the shocks of interest. The identification of Q1:k = [q1, q2, . . . , qk], with k = 3

and j ∈ 1, 2, 3, requires to solve the following constrained optimization problem:6

Q∗1:k = arg max
Q1:k

k∑
i=1

q′iΥ
i
h̃
(φ)qi (2.5)

subject to

q′jΥ
j

h̃
(φ)qj ≥ q′jΥi

h̃
(φ)qj for j = 1, . . . , k, ∀i ∈ I−j (2.6)

and

Q′1:kQ1:k = In. (2.7)

In our application, we will set h̃ = 0. For j = 1, we will identify the macroeconomic

uncertainty shock as the innovation that maximizes its contribution to the FEV of the

macroeconomic uncertainty variable subject to the following constraints. Restrictions

(2.6) establish that (for j = 1) the contribution of the macroeconomic uncertainty shock to

the FEV of the macroeconomic uncertainty variable must be higher than the contribution

to the FEV of financial uncertainty variables and credit spreads (upon impact). Those

restrictions are instrumental to separate macroeconomic uncertainty shocks from financial

uncertainty and credit supply shocks. Restrictions (2.7) ensure that the identified shocks
6Once columns 1 to k are identified, we can always construct orthogonal columns k + 1 to n.
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are mutually orthogonal.7 Similarly for j = 2, 3, the problem (2.5)-(2.7) identifies the

financial uncertainty and the credit supply shock, respectively. As a shorthand notation

we will use Γ(φ,Q) ≥ 0 to denote the whole set of inequality constraints on the FEV

represented by (2.6).8

2.1.2 Existence and Uniqueness of a solution

Several papers have pointed out that there is a trade-off between sharp identification

and computation, and this is especially true when using inequality constraints.9 In fact

restrictions that are too tight can lead to unfeasible or empty regions, i.e. the constraints

in (2.6) are so demanding that they are rejected in the data. On the other hand, loos-

ening the requirements in (2.6) eventually leads to identified sets so large to be barely

informative. In this section we provide sufficient conditions for the existence of a solution

to the constrained optimization problem. Doing so solves the trade-off by ensuring that

an identification scheme can be found which is both informative and not rejected by data.

Recall that q∗j for j − 1, . . . , k denotes the j-th column of the identified matrix Q∗1:k.

For j = 1, given the constraints in (2.6)-(2.7), we define the following functions:

f1 =
1

2
q′1
[
Υ2
h̃
(φ)−Υ1

h̃
(φ)

]
q1,

f2 =
1

2
q′1
[
Υ3
h̃
(φ)−Υ1

h̃
(φ)

]
q1,

f3 =
1

2
q′1q1 +

1

2
,

f4 =
1

2
q′1q1 −

1

2
.

Similar functions can be trivially defined for j = 2, . . . , k.

We start with establishing a Gordan type alternative theorem, which will be instru-

mental to obtain the existence result.

Proposition 2.1 Assume j = 1. If @λ ∈ R4
+\{0} such that (∀q1 ∈ Rn)

∑4
i=1 λifi ≥ 0,

q∗1 exists.
7The orthogonality restriction matters only if we restrict multiple shocks simultaneously. For indi-

vidual identification, we can always construct vectors in the Nullspace of the restricted shocks.
8In a different setup, i.e., identification of monetary policy via sign restrictions, Wolf (2020) stresses

that in principle inequality constraints are necessary, but not sufficient, to successfully separate shocks
because linear combinations of structural shocks can still satisfy the constraints. We find this is not the
case in our simulation experiment and empirical application.

9See Amir-Ahmadi and Drautzburg (2021); Giacomini and Kitagawa (2020); Giacomini et al. (2020);
Gafarov et al. (2018); Granziera et al. (2018); Volpicella (2021); Uhlig (2017).
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The proof is provided in Appendix A. This proposition rules out that - for a given

shock - the restrictions contradict each other and more generally it rules out that linear

combinations of inequality constraints on the FEV violate the restrictions. Note that

this proposition alone establishes existence of a solution to (2.5)-(2.6), but ignoring the

orthogonality conditions (2.7). The satisfaction of orthogonality condition is essential for

identifying simultaneously all of the shocks, avoiding the well known issue that shocks

identified one-at-a-time can be correlated to each other.

Next we establish the conditions for the existence of a solution to the constrained

optimization problem (2.5)-(2.7). Let σ denote a permutation of 1, . . . , k among the k!

possible permutations and σ(z) for z = 1, . . . , k denote the z-th element of the permuta-

tion σ. The following proposition holds:

Proposition 2.2 (Existence) If there exists a permutation σ such that

i) for j = σ(1) Proposition 2.1 is satisfied,

ii) conditions in Proposition 2.1 are met for all j = σ(2), . . . ,σ(k) in the Nullspace of

the previous j − 1 shocks,

then Q∗1:k exists.

Appendix A provides a proof and a technical discussion. The permutation σ is instru-

mental to find at least one matrix Q∗1:k such that its first k columns q∗1 , . . . , q∗k satisfy

Proposition 2.1 and are orthogonal to each other.

Proposition 2.2 offers sufficient conditions, which may or may not be satisfied depend-

ing on the application. The conditions were verified in the empirical application presented

in this paper, but of course it may happen that they are not verified in other instances.

Should this happen, one needs to abandon the convenience of simply checking the suf-

ficient conditions and must implement a numerical procedure which we will illustrate

in Section 2.2. Such procedure allows to investigate the feasibility of the optimization

region.

In closing, note that Proposition 2.1 and Proposition 2.2 can be easily tweaked to

include also sign restrictions to the set of requirements. These would be in the form of

linear inequality constraints on Q1:k. Such an extension would allow users to combine

the scheme proposed here with standard sign restrictions schemes.

11



The constrained optimization problem (2.5)-(2.7) is non-convex and in general allows

a multiplicity of solutions which require time consuming numerical optimization, without

guarantee of finding a global optimum. The proposition below establishes a sufficient

condition forQ∗1:k to be unique, which in turn implies that the numerical problem becomes

easily tractable.

Proposition 2.3 (Uniqueness) Assume that Q∗1:k exists and is orthogonal. If c′ih(φ)qj ≥

0 for i, j = 1, . . . , k, h = 0, . . . , h̃, then Q∗1:k is unique.

The formal proof is provided in Appendix A. Proposition 2.3 provides a sufficient

condition that is both easy to verify and allows for an economic interpretation. Specifi-

cally, if there is a positive feedback - in either direction - between targeted variables in

the system, then Q∗1:k is selected over a closed convex feasibility region, and uniqueness

follows. In the empirical application presented in this paper we have never found a case

in which the sufficient condition of Proposition 2.3 was violated, but of course it may be

not satisfied in some instances. In such cases researchers can still implement our identifi-

cation strategy, but they would need to check for the possibility of multiple optima (this

would need to be done in Step 3 of algorithm 2.1 below).

2.2 Implementation

The following Algorithm delivers the posterior distribution of the impulse response func-

tions (or any other structural object) of interest.

Algorithm 2.1

1: Draw φ from the posterior distribution of the reduced-form VAR.

2: Check existence and uniqueness of a solution using Proposition 2.2 and 2.3.

3: ObtainQ∗1:k by solving the optimization problem (2.5)-(2.7) and compute the impulse

response functions via (2.3).

4: Repeat Step 1-3, L times, e.g. L = 1000.

Algorithm 2.1 consists in a step of conventional sampling from the posterior of reduced-

form parameters (Step 1), a step for investigation of feasibility (Step 2), and a step of
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numerical optimization (Step 3). The optimization involves a quadratic objective function

with quadratic constraints, but can be reduced to a much more tractable problem using

Proposition 2.3. Note that Step 1 uses a posterior distribution, which means it is based on

a Bayesian estimation of the underlying reduced form VAR. This choice is simply based on

the observation that Bayesian VARs are widely used in empirical macroeconomics. Still,

Step 1 can be easily adapted to a frequentist framework, for example using maximum

likelihood estimates and invoking large sample results or using a bootstrap approach to

produce draws from the VAR coefficients. In either case the entire procedure would still

remain valid, since the remaining steps condition on the reduced-form parameters (φ)

and do not depend on a prior over Q.

When conditions in Proposition 2.2 do not hold, researchers can consider the opti-

mization region unfeasible if Step 3 in Algorithm 2.1 cannot detect an interior solution for

a variety of starting points. Alternatively, one can stick to the conventional approach and

think of the feasibility region as empty whether, for many draws from the orthonormal

space, an admissible rotation matrix Q cannot be discovered.

Finally, in those cases in which Proposition 2.3 cannot be verified researchers need to

ensure that Step 3 delivers a global - as opposed to a local - optimum.

2.3 Relation to alternative identification methods

The identification approach outlined above allows to avoid strong identification assump-

tions such as recursive orderings, and therefore it lends itself naturally to investigate

questions in which one wants to remain agnostic about the direction of the various causal

effects. The study of the effects of macroeconomic uncertainty shocks is just one example

of such a situation, as both the theoretical literature and the empirical evidence so far are

inconclusive on whether uncertainty is an exogenous impulse or an endogenous response.

Importantly, our strategy identifies all of the shocks simultaneously, thereby sidestep-

ping the well known issue that shocks identified one-at-a-time can be correlated to each

other, a problem which is particularly relevant in uncertainty literature. For instance,

Cascaldi-Garcia and Galvão (2020) showed that news and uncertainty shocks tend to be

correlated if identified separately; as such they are not truly structural. Caldara et al.

(2016) separated uncertainty and financial shocks by imposing different ordering restric-

tions, finding that the order hugely affects the results. Of course, solving this problem
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comes at a cost. The cost of allowing simultaneous identification of a multiplicity of

shocks is that the optimization problem can become non-convex. In Section 2.1.1 we

establish mild conditions under which the problem is tractable and computationally fast.

Furthermore, the approach can resolve situations in which set-identification schemes

are not sufficient to satisfactorily pin down the desired shock. For example Kilian and

Murphy (2012) showed that qualitative information beyond sign restrictions is necessary

to distinguish demand and supply shocks in the oil market. Similarly, separation between

news and surprise shocks requires to rank the relative effect of those disturbances over

target variables, see Amir-Ahmadi and Drautzburg (2021) for an example of such a

situation. In order to separate credit and housing shocks Furlanetto et al. (2017) assumed

that the former explain variation of total credits to households and firms more than the

contributions to the fluctuations in the real estate value, and the other way around. The

approach proposed in this paper achieves point-identification, avoiding the drawbacks of

set-identification that affect most of the aforementioned studies (Baumeister & Hamilton,

2015; Giacomini & Kitagawa, 2020).

Finally, it is worth clarifying the differences between the approach pursued in this pa-

per and that of Volpicella (2021). The two approaches both use the FEV decomposition,

but are different conceptually and methodologically. In particular, Volpicella (2021) uses

bounds on the FEV decomposition, in combination with traditional sign restrictions, to

set-identify a single shock. The approach in this paper instead achieves point- (as opposed

to set-) identification of a variety of shocks (as opposed to one) which are guaranteed to

be mutually orthogonal. Furthermore, the approach of Volpicella (2021) requires the

use of sign restrictions, which are essential to economically label the shocks, while the

approach presented here can identify shocks without the need of imposing any sign re-

strictions. Methodologically, Volpicella (2021) requires specifying exact ad-hoc bounds

on the FEV decomposition, while the approach proposed here only imposes milder in-

equality constraints that require the FEV of each shock to be larger relative to that of

all the remaining shocks, but otherwise leave the FEV decomposition unbounded. This

leads to major differences in both estimation and inference.
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2.4 Relation to macro models

In this section we briefly discuss our identification assumptions in relation to the existing

theoretical work on uncertainty. As discussed above (see Section 1 and the references

therein), a large macroeconomic literature has developed models in which uncertainty is

an exogenous source of fluctuations. In most of these models our identification assump-

tions are immediately satisfied, since they consider a single source of uncertainty and

assume that the macroeconomic uncertainty shock explains 100% of the within period

variation of macroeconomic uncertainty.

Our identification assumptions are also satisfied in those models that consider more

than one source of uncertainty. For example, Shin and Zhong (2020) built upon Basu

and Bundick (2017) and Gertler and Karadi (2011) to construct a DSGE model with

financial frictions (and credit supply shocks), exogenous macroeconomic uncertainty (as

TFP volatility), and exogenous financial uncertainty (as capital quality volatility). Our

identifying restrictions are confirmed by employing both the baseline parameterization in

Shin and Zhong (2020)10 and their battery of alternative calibrations11

Finally, there is some more recent literature modeling uncertainty as an endogenous

response. In particular, Atkinson et al. (2021) departed from a Cobb-Douglas produc-

tion function and suggested that complementarity between capital and labor inputs can

generate endogenous uncertainty because the concavity in the production influences how

output responds to productivity shocks.12 However, even in that case credit shocks are

not able to explain short run fluctuations of the uncertainty proxy more than uncertainty

disturbances, which is in line with our identification approach.

3 Simulation exercise

This section presents a simulation showing that the proposed approach can recover the

impulse response functions regardless on whether uncertainty is modeled as exogenous or

endogenous.

We first employ a SVAR with endogenous uncertainty as Data Generating Process
10See Table A-7 of their paper.
11See Section D.2.1 of the their paper.
12When matching labor share and uncertainty moments, they found 16% of the volatility of uncertainty

is endogenous in the short run.
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(DGP) and generate artificial data for industrial production (IP), financial uncertainty

(uF*), credit spread (CS), price index (PCEPI), monetary policy rate (FFR), and macroe-

conomic uncertainty (uM*). In order to generate endogeneity in uncertainty, macro and

financial uncertainty are ordered after the other covariates. In the baseline scenario of

Figure 1, financial uncertainty is ordered before macroeconomic uncertainty, but the re-

sults still hold if we reverse the order between uncertainty disturbances. The DGP is

parameterized at the maximum likelihood estimates based on monthly US data for the

period 1962 to 2016. Once the artificial data have been generated, we use them to es-

timate the impulse response functions. For brevity, here we provide simulated results

mostly for financial uncertainty shocks, but the insights below apply to macroeconomic

uncertainty and credit supply shocks as well.

Figure 1 shows that our identification strategy can successfully identify the uncertainty

shocks in presence of endogeneity, while methods based on exclusion restrictions can not.

In the figure the blue line denotes the true responses based on the DGP. Note the different

scale across different rows of the figure.

In the panels on the first row of Figure 1, we employ our identification scheme to

estimate the impulse responses (black lines). According to panels (a), (b) and (c), our

strategy works well. The remaining rows in this figure we will depart from this ideal

situation, showing that imposing too strong identification assumptions will distort the

estimated responses.

In the panels on the second row of Figure 1 (panels (a′), (b′) and (c′)) we have shut

down the short run13 response of macroeconomic uncertainty in the estimated model; this

corresponds to considering only one of the sources of uncertainty present in the DGP. As

a consequence of this omission, the estimated responses of both real activity and credit

spreads are biased. Similarly, in the panels on the third row of Figure 1 (panels (a′′), (b′′)

and (c′′)) we estimated a model that assumes that financial uncertainty is exogenous, i.e.,

no shock can contemporaneously affect it. Also in this case this leads to biased impulse

responses.

The panels on the last row of Figure 1 (panels (a′′′), (b′′′) and (c′′′)), illustrate a model

in which impulse responses are identified using ordering restrictions between financial

and uncertainty disturbances echoing the spirit of Caldara et al. (2016). Also in this case
13Short run is defined as up to h = 4 months, but the results remain unchanged for h = 0, 1, . . . , 6.
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horizon(monthly)Figure 1: DGP with endogenous uncertainty: estimated responses to financial uncertainty
shock. The blue line denotes the impulse responses to uncertainty shocks in the DGP.
The black solid line represents the posterior mean of the estimated impulse responses,
where in the first row ((a), (b), (c)) responses are identified through constraints on the
FEV; in the second row ((a′), (b′), (c′)) the macroeconomic uncertainty response is shut
down; in the third row ((a′′), (b′′), (c′′)) the uncertainty is estimated as exogenous; in the
fourth row (panels (a′′′), (b′′′) and (c′′′)), impulse responses are estimated by replacing
inequality constraints on the FEV with ordering restrictions between financial and uncer-
tainty disturbances. The dashed black lines display the 68% Bayesian credibility region
across replications. Shock size is set to 1 standard deviation.

impulse responses are biased.

We now turn on the effectiveness of our scheme when uncertainty is exogenous. Ac-

cordingly, we consider a DGP where uncertainty is ordered before the other variables.
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horizon(monthly)Figure 2: DGP with exogenous uncertainty: estimated responses to financial uncertainty
shock. The blue line denotes the impulse responses to uncertainty shocks in the DGP.
The black solid line represents the posterior mean of the estimated impulse responses,
where in the first row ((a), (b), (c)) responses are identified through constraints on the
FEV; in the second row ((a′), (b′), (c′)) the macroeconomic uncertainty response is shut
down; in the third row ((a′′), (b′′), (c′′)) the uncertainty is estimated as endogenous; in
the fourth row (panels (a′′′), (b′′′) and (c′′′)), impulse responses are estimated by replac-
ing inequality constraints on the FEV with ordering restrictions between financial and
uncertainty disturbances. The dashed black lines display the 68% Bayesian credibility
region across replications. Shock size is set to 1 standard deviation.

This experiment is illustrated in Figure 2. Also in this case our proposed identification

scheme recovers the correct responses; on the other hand, omitting distinctive sources

of uncertainty (second row in the figure), imposing endogeneity when this is absent in
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the DGP (third row in the figure), and removing the inequality constraints on the FEV

(fourth row in the figure) lead to biased impulse responses.14

4 Empirical application

4.1 Specification and data

We now turn to our empirical application. Evaluating the relationship between economic

variables and uncertainty needs selecting both a concept and metric of uncertainty. In

the baseline model, we employ the Chicago Board Options Exchange S&P 100 Volatility

Index as a measure of financial uncertainty and the the measure developed by Jurado

et al. (2015) (JLN hereafter) as a measure of macroeconomic uncertainty. We have

checked the robustness of our results to competing measures: for financial uncertainty,

we also considered the measures of Carriero et al. (2018b) and Jurado et al. (2015); for

macroeconomic uncertainty, we also used the measure of Carriero et al. (2018b).

Our baseline reduced form model is a VAR estimated with US monthly data ranging

from from 1962m7 to 2016m12. We assume 7 lags15 and a diffuse Normal Inverse Wishart

prior. The VAR includes 12 variables taken from the FRED database: macroeconomic

uncertainty (JLN), financial uncertainty (VXO), credit spreads (CS), number of non-farm

workers (PAYEM), industrial production (IP), weekly hours per worker (HOURS), real

consumer spending (SPEND), real manufacturers’ new orders (ORDER), real average

earnings (EARNI), PCE price index (PCEPI), variation of federal funds rate (FFR),

S&P 500 (S&P). The credit spread is measured as the difference between the BAA Cor-

porate Bond Yield and the 10-year Treasury Constant Maturity rate; results are robust

to employing the excess bond premium used in Caldara et al. (2016) and developed by

Gilchrist and Zakrajšek (2012). All the variables enter the model growth rates, except

for ORDER, PCEPI, FFR, CS, VXO, and JLN which enter in levels. All the variables

are demeaned prior to estimation. In order to facilitate comparisons with other studies,

the impulse responses are expressed in percentage changes with respect to the levels.

This implies that for those variables which were differenced the impulse responses are
14Removing the orthogonality assumption yielded similar results, suggesting that the inequality re-

strictions are sufficient to disentangle the various disturbances, which is also the case in our empirical
application

15This has been selected by maximizing the marginal likelihood.
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cumulated and the long run effects of transitory shocks do not vanish.

4.2 The Effects of uncertainty shocks

Figure 3 and Figure 4 show the impulse responses to macro and financial uncertainty

shocks, respectively. Uncertainty has a strong recessionary effect on employment, in-

dustrial production, hours worked, consumer spending, investment, and earnings; the

financial conditions also deteriorate, as shown by the response of stock market and credit

spreads. The shock leads to expansionary monetary policy trying to counteract the de-

pressive effect of uncertainty. Notably, shocks to macroeconomic uncertainty increase

financial uncertainty, and vice-versa.

To facilitate comparisons, Figure 5 overlays the impulse responses shown in Figure

3 and 4. The effects of macroeconomic and financial uncertainty are qualitatively com-

parable but there are some quantitative differences. For example, the recessionary effect

on real activity variables seem more pronounced following macroeconomic uncertainty

shocks, while credit spreads increase more with financial uncertainty shocks.

We find a strong evidence in favor of a negative response of prices, that is short-

lived for macroeconomic uncertainty shocks but more persistent for financial uncertainty

shocks, suggesting that uncertainty disturbances mimic demand shocks, namely they trig-

ger a recession and a deflationary pressure on the economy. The slightly looser response

of monetary policy for financial uncertainty might be driven by the more significant drop

in prices relative to macroeconomic uncertainty.

This pronounced reduction in prices is in contrast with the existing empirical evidence

on the impact of uncertainty on inflation, which is typically weak and rather mixed.

Caggiano et al. (2014), Fernández-Villaverde et al. (2015), Leduc and Liu (2016), Basu

and Bundick (2017) provided some empirical evidence that uncertainty is deflationary,

while Mumtaz and Theodoridis (2015) found the opposite. Carriero et al. (2018b) and

Katayama and Kim (2018) argued that the effect of uncertainty on prices is not significant;

the international evidence in Carriero et al. (2018a) pointed out that the reaction of prices

is country-specific and heterogeneous across the alternative measures of prices. While the

effects of uncertainty on prices are different across these contributions, they are all based

on simple recursive identification schemes: in most of these contributions uncertainty is

modeled as exogenous.
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4.2.1 Endogenous uncertainty?

Since our scheme allows for a contemporaneous feedback effect from economic and fi-

nancial variables to uncertainty, it provides a natural ground to look into the issue of

endogeneity of uncertainty. In order to tackle this question, we re-estimated the model

adding a further restriction. Specifically we assumed that each measure of uncertainty

cannot be contemporaneously affected by structural shocks other than its own shock,
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i.e., uncertainty is exogenous. This is equivalent to order uncertainty first in a Cholesky

decomposition scheme.

Panels (a)-(l) in Figure 6 display the responses to macroeconomic uncertainty shocks

for the baseline identification (black line) and when macroeconomic uncertainty is as-

sumed to be exogenous (red line): imposing exogeneity clearly changes several impulse

response functions, which supports the view that macroeconomic uncertainty is endoge-

nous to some extent. On the other hand, panels (a′)-(l′) display the responses to financial
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uncertainty shocks for the baseline identification (black line) and when financial uncer-

tainty is assumed to be exogenous (red line): in this case the evidence in support of

endogeneity is milder.

The pattern shown in Figure 6 is in line with Ludvigson et al. (2021), who argued

that while financial uncertainty is mainly exogenous, macroeconomic uncertainty presents

some endogeneity. However, such a conclusion is not clear-cut in the literature. For ex-

ample Angelini et al. (2019) found that both macroeconomic and financial uncertainty are

23



0 20 40

−
0.

6
−

0.
4

−
0.

2
0.

0
(a) PAYEM

im
pu

ls
e 

re
sp

on
se

0 20 40

−
1.

0
−

0.
6

−
0.

2

(b) IP

0 20 40

−
0.

20
−

0.
10

0.
00

(c) HOURS

0 20 40

−
0.

40
−

0.
25

−
0.

10

(d) SPEND

0 20 40

−
0.

01
5

−
0.

00
5

(e) ORDER

0 20 40

−
0.

3
−

0.
1

0.
1

(f) EARNI

0 20 40

−
0.

3
−

0.
1

0.
1

(g) PCEPI

im
pu

ls
e 

re
sp

on
se

0 20 40

−
0.

30
−

0.
15

0.
00

(h) FFR

0 20 40

−
0.

03
−

0.
01

0.
01

(i) S&P

0 20 40

0.
00

0.
02

0.
04

(j) JLN

0 20 40

0.
0

0.
2

0.
4

0.
6

0.
8

(k) VXO

0 20 40

0.
00

0.
05

0.
10

0.
15

(l) CS

0 20 40

−
0.

6
−

0.
4

−
0.

2
0.

0

(a') PAYEM

im
pu

ls
e 

re
sp

on
se

0 20 40

−
1.

0
−

0.
6

−
0.

2

(b') IP

0 20 40

−
0.

20
−

0.
10

0.
00

(c') HOURS

0 20 40

−
0.

40
−

0.
25

−
0.

10
(d') SPEND

0 20 40

−
0.

01
5

−
0.

00
5

(e') ORDER

0 20 40

−
0.

3
−

0.
1

0.
1

(f') EARNI

0 20 40

−
0.

3
−

0.
1

0.
1

(g') PCEPI

horizon(monthly)

im
pu

ls
e 

re
sp

on
se

0 20 40

−
0.

30
−

0.
15

0.
00

(h') FFR

horizon(monthly)

0 20 40

−
0.

03
−

0.
01

0.
01

(i') S&P

horizon(monthly)

0 20 40

−
0.

00
4

0.
00

2
0.

00
6

(j') JLN

horizon(monthly)

0 20 40

0
1

2
3

4

(k') VXO

horizon(monthly)

0 20 40

0.
00

0.
05

0.
10

0.
15

(l') CS

horizon(monthly)Figure 6: Baseline scenario vs exogenous uncertainty. The figure reports the posterior
median of the impulse response functions to macro (panels (a)-(l)) and financial (panels
(a′)-(l′)) uncertainty shocks for the baseline identification (black line) and when uncer-
tainty is assumed to be exogenous (red line). The blue solid line is the zero line. The
shock size is set to one standard deviation.

mostly exogenous, and Carriero et al. (2021) pointed out that macroeconomic uncertainty

displays some endogeneity, though more at quarterly than monthly frequency.16

The studies cited above are the only three - to the best of our knowledge - which

allow for endogeneity in uncertainty. They each adopt a different identification strat-
16In unreported results news-based policy uncertainty as proxy for macro volatility turns out to be

endogenous.
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egy. Ludvigson et al. (2021) uses a small-scale model and a set-identification approach

based on narrative restrictions requiring the shocks to be consistent with some histor-

ical episodes and correlated with some external instruments. Instead, we use a large-

scale model, which reduces the problems of possible omitted variable bias, and a point-

identification approach, which avoids the problems inherent in set-identification discussed

e.g. in Giacomini et al. (2021).17

Angelini et al. (2019) also use a small-scale model in which there are no proxies

for financial conditions. They achieve identification by assuming that in the sample

preceding January 2008 financial uncertainty shocks could neither contemporaneously

impact on nor been impacted by macro variables directly.18 However, an indirect channel

on real variables through the impact from financial uncertainty to macro uncertainty is

allowed since the Great Moderation. Differently from them, we never assume exogeneity

of financial uncertainty, not even in some sub-sample, and we use a large-scale model

which includes financial variables and a credit channel. The latter is relevant, as we shall

see below in section 4.2.3, to disentangle uncertainty shocks from pure financial shocks.

Carriero et al. (2021) employ a large model and achieve point-identification exploiting

heteroskedasticity in the error terms of the SVAR. However their approach has a major

drawback insofar their model does not include macroeconomic and financial uncertainty

in the same unified framework. As we shall see in section 4.2.2 such a choice does not

guarantee that the macroeconomic and financial uncertainty shock are mutually orthog-

onal, which can lead to substantial distortions in the estimated responses. Furthermore,

their approach requires an ordering restriction on the block of macroeconomic variables

in which pure financial shocks are not explicitly identified. Instead, the approach of this

paper allows to identify shocks to financial and macroeconomic uncertainty which are

orthogonal by construction, and to disentangle them from pure financial shocks.

Another nice feature of our framework is that it allows for formal tests of exogeneity.

We formally tested the exogeneity restrictions, with the null being (q∗1 )′Υ1
0(φ)q∗1 = 1

for macroeconomic uncertainty and (q∗2 )′Υ2
0(φ)q∗2 = 1 for financial uncertainty, and we

17Ludvigson et al. (2021) employed bootstrap to construct confidence intervals for the impulse response
functions, but their frequentist validity is unknown. The fact that confidence intervals are presented for a
specific point-estimate only (rather than for the identified sets as such) makes hard to evaluate the effect
of sample bias and identification uncertainty in their setting. On the other hand, Bayesian inference
naturally follows in our point-identified model.

18This is an intriguing assumption because financial markets are usually expected to react fast to news,
while macroeconomic variables are relatively slower (Gertler & Karadi, 2015; Lettau et al., 2002).
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found that exogeneity is rejected at 1% significance level for both macro and financial

uncertainty. The evidence for endogeneity of financial uncertainty is milder and it disap-

pears if one removes the stock index and credit spreads from the model.

4.2.2 Uncertainty and its sources

In the next experiment we evaluate the importance of having both a measure of macroe-

conomic and a measure of financial uncertainty in the model.19

Panels (a)-(l) in Figure 7 display the responses to macroeconomic uncertainty shock

for the baseline identification (black line) and when the response of financial uncertainty is

muted for 6 months (red line).20 Similarly, panels (a′)-(l′) show the responses to financial

uncertainty shock for the baseline identification (black line) and when the response of

macroeconomic uncertainty is muted (red line). Our results show that omitting either

one of the two uncertainty measures can lead to distortions in the estimated responses. In

particular, neglecting this channel seems to attenuate the estimated impact of uncertainty.

More formally, in our framework we always reject the hypothesis of zero impact response

of macroeconomic (financial) uncertainty to financial (macroeconomic) disturbance.

4.2.3 The financial channel

There are some contributions that have argued that financial conditions play a key role

in amplifying and transmitting uncertainty shocks. For example, Arellano et al. (2018),

Christiano et al. (2014), and Gilchrist et al. (2014) developed models featuring a finan-

cial channel in which the cost of external finance goes up in reaction to an increase in

uncertainty; Alfaro et al. (2018) found that financial frictions can double the recessionary

effect of uncertainty. On the other hand, Brunnermeier and Sannikov (2014) emphasized

that a worsening of borrowers’ financial position leads to higher uncertainty. Caldara et

al. (2016), Brianti (2021), and Caggiano et al. (2021) found evidence that deterioration

of financial conditions magnify the impact of uncertainty shocks on the real activity.

In light of these contributions we investigated the role of financial channel within our

identification scheme. Figure 8 compares the responses to macro (panels (a)-(l)) and
19Ludvigson et al. (2021) and Shin and Zhong (2020) used set-identification schemes to separate macro

and financial uncertainty shocks. Both papers found differences in the responses of the economy to these
two types of shocks.

20We tried horizons other than 6, and the results are qualitatively unchanged.
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uncertainty. Panels (a)-(l) display the responses to macroeconomic uncertainty shock for
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muted (red line). Panels (a′)-(l′) show the responses to financial uncertainty shock for the
baseline identification (black line) and when the response of macroeconomic uncertainty
is muted (red line). The blue solid line is the zero line. The shock size is set to one
standard deviation.

financial (panels (a′)-(l′)) uncertainty shock for the baseline identification (black line)

and for an alternative model in which the financial channel is shut down (red line) by

imposing that there is no contemporaneous feedback between financial variables (credit

spreads and stock market) and uncertainty. The picture emerging is one in which the

financial channel seems relevant in the transmission mechanism of both financial and
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macroeconomic uncertainty shocks, with larger effects on the former.
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.

4.3 The Effects of financial shocks

Prompted by the Great Recession and the debt crisis in the Euro-Area, a number of works

have attempted to identify and estimate the effects of credit supply shocks.21 The overall

picture emerging from these studies is one in which the estimated effects of financial

shocks are sensitive to identification schemes and some identification strategies are likely

to provide misleading results, see e.g. the discussion in Mumtaz et al. (2018).

While identification of financial shocks and measurement of credit spreads significantly

differ across the contributions in this literature, a common feature is the absence of

interaction between financial factors and uncertainty, in the sense that most specifications

exclude measures of uncertainty or overlook its role in the transmission mechanism of

financial shocks. Prominent exceptions are Caldara et al. (2016), Furlanetto et al. (2017),

Caggiano et al. (2021) and Brianti (2021), which are discussed below.

4.3.1 Uncertainty and the transmission mechanism

We use our model to shed light on the contribution of uncertainty to the transmission

mechanism of financial shocks. Figure 9 shows that an increase in credit spreads has a

depressive and deflationary effect on macroeconomic variables and leads to higher un-

certainty, especially financial uncertainty. We then consider an experiment in which for

the initial six months we shut down the response of macroeconomic uncertainty to credit

spreads shock (Figure 10, panels (a)-(l)).22 The changes in the responses is relevant and

is consistent with the endogenous features of macroeconomic uncertainty. Also, shut-

ting down the response of financial uncertainty dramatically mitigates the responses to

financial shocks and leads to substantial distortions, as seen in Figure 10, panels (a′)-(l′).

This confirms that although the evidence for endogeneity in financial uncertainty is mild

with respect to macroeconomic variables, the feedback effect from financial conditions

is substantial. Formal tests reject the null of no response on impact of uncertainty to
21Peersman (2011), Bijsterbosch and Falagiarda (2014), Eickmeier and Ng (2015), and Gambetti and

Musso (2017) employed sign restrictions; Gilchrist and Zakrajšek (2012) developed a measure of credit
spreads based on firm level data, finding that a component of this index is an indicator for credit supply;
alternative proxies of credit supply have been put forward by Kashyap and Wilcox (1993), Gertler and
Gilchrist (1994), and Lown and Morgan (2006).

22We also constrained horizons other than 6, and the findings do not change.
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credit spread shocks.23 Overall, omitting the role of either form of uncertainty results in

under-estimating the effects of credit shocks.
23The null being c′10(φ)q∗3 = c′20(φ)q

∗
3 = 0.
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horizon(monthly)Figure 10: Financial shocks: shutting down uncertainty. Panels (a)-(l) report the poste-
rior median of the impulse response functions to financial shocks for the baseline identi-
fication (black line) and when the response of macroeconomic uncertainty is shut down
(red line). Panels (a′)-(l′) report the posterior median of the impulse response functions
to financial shocks for the baseline identification (black line) and when the response of
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4.3.2 Relation with other studies

There are other papers which have analyzed the issue of the role of uncertainty in the

transmission of financial shocks. In what follows we describe the main differences in the

identification approach with respect to these studies.
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Caldara et al. (2016) identified level (financial) and second moment (uncertainty)

shocks by employing a penalty function approach which relies on the ordering of the

two first and second moment proxies and found that results are very sensitive to order-

ing. They assumed a single source of uncertainty within the economy. The advantage

of the identification scheme we propose here is that we do not require any ordering and

do not exclude multiple forms of uncertainty. Furlanetto et al. (2017) and Caggiano

et al. (2021) identified financial uncertainty and pure financial shocks by employing a

mix of sign, ratio, and narrative restrictions. They do not separately identify macroe-

conomic uncertainty shocks. Compared to these contributions, our approach achieves

point-identification thereby avoiding the problem inherent with is set-identified models,

i.e., it is not clear how much the posterior estimation is driven by the prior distributions

(Baumeister & Hamilton, 2015; Giacomini & Kitagawa, 2020). Brianti (2021) identified

credit supply and macroeconomic uncertainty shocks relying on the qualitatively different

responses of corporate cash holdings to a macroeconomic uncertainty shock (that pushes

firms to increase their cash holdings for precautionary reasons) and a first-moment fi-

nancial shock (that leads firms to reduce cash reserves as they lose access to external

finance). However, i) those restrictions come from a theoretical framework with exoge-

nous uncertainty and ii) the financial shocks as estimated by Brianti (2021) are a mix

between first- and second-moment shocks within the financial sector, and as such cannot

separate financial uncertainty shocks from pure credit supply disturbances.

5 Conclusions

This paper developed a novel multiple shocks identification scheme for SVARs, based on

constraining the FEV decomposition. The approach involves the solution of a quadratic

optimization problem. We characterized the properties of this approach, such as existence

and uniqueness of a solution, and provided an algorithm for its implementation. The

identification and estimation toolkit developed in this paper is general, and can be applied

in any SVAR where standard ordering and sign restrictions are not desirable or sufficient

to identify all of the shocks of interest. We used the approach to investigate the effects of

uncertainty allowing for endogeneity. We also considered the interaction of uncertainty

with financial shocks. Using US data, we found that some variables have a significant
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contemporaneous feedback effect on macroeconomic uncertainty, and overlooking this

endogenous channel can lead to distortions. On the other hand, our empirical results

suggest that financial uncertainty is likely to be an exogenous source of business cycle

fluctuations. Finally, we found that omitting the role of uncertainty in the transmission

mechanism can lead to underestimate the effects of financial shocks on the economy.

Appendix A: Proofs

For simplicity, in our proofs we assume k = 3, but results trivially hold for any finite

discrete scalar k > 0.

Proof of Proposition 2.1.

Note that the feasibility region for q1 is characterized by fi ≤ 0 for i = 1, . . . , 4 in

Section 2.1.2 of the main text. Let us write fi for i = 1, . . . , 4 more compactly:

f1 =
1

2
q′1A1(φ)q1, (5.1)

f2 =
1

2
q′1A2(φ)q1, (5.2)

f3 =
1

2
q′1A3(φ)q1 +

1

2
, (5.3)

f4 =
1

2
q′1A4(φ)q1 −

1

2
, (5.4)

where A1(φ) = Υ2
h̃
(φ)−Υ1

h̃
(φ), A2(φ) = Υ3

h̃
(φ)−Υ1

h̃
(φ), and A3(φ) = A4(φ) = In,

with In being the identity matrix. Note that Ai(φ) for i = 1, . . . , 4 is a square n × n

matrix and can be as such decomposed into symmetric and skew-symmetric (or anti-

symmetric) components (Toeplitz decomposition): Ai(φ) ≡ AiS(φ) + AiAS(φ), where

AiS(φ) = Ai(φ)+(Ai(φ))
′

2
and AiAS(φ) = Ai(φ)−(Ai(φ))

′

2
are the symmetric and antisymmet-

ric components ofAi(φ), respectively. It is trivial to show that q′1Ai(φ)q1 = q′1AiS(φ)q1.

As a result, we obtain

f1 =
1

2
q′1A1S(φ)q1, (5.5)

f2 =
1

2
q′1A2S(φ)q1, (5.6)

f3 =
1

2
q′1A3S(φ)q1 +

1

2
, (5.7)

f4 =
1

2
q′1A4S(φ)q1 −

1

2
. (5.8)
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We now define the following objects:

H1 =

A1S 0

0 0

 , H2 =

A2S 0

0 0

 , H3 =

A3S 0

0 1

 , H4 =

A3S 0

0 −1

 . (5.9)

Note that Hi for i = 1, . . . , 4 is a Z-matrix, i.e., the off-diagonal elements of a symmetric

matrix are non-positive. Define a set Ω0:

Ω0 := {(1

2
a′H1a, . . . ,

1

2
a′H4a) : a ∈ Rn+1}+ intR4

+. (5.10)

It suffices to prove that if q∗1 does not exist, then ∃λ ∈ R4
+\{0} such that (∀q1 ∈

Rn)
∑4

i=1 λifi ≥ 0. In doing so, we follow the argument in Jeyakumar et al. (2009),

Theorem 5.2. Assume that q∗1 does not exist. This is equivalent to state that the following

system has no solution: q1 ∈ Rn, fi < 0, i = 1, . . . , 4. Introduce 4 homogeneous functions

f̄i : Rn+1 → R, with f̄i = 1
2
(q, t)Hi(q, t)

′, where t is a scalar:

f̄1 =
1

2
q′1A1S(φ)q1, (5.11)

f̄2 =
1

2
q′1A2S(φ)q1, (5.12)

f̄3 =
1

2
q′1A3S(φ)q1 +

1

2
t2, (5.13)

f̄4 =
1

2
q′1A4S(φ)q1 −

1

2
t2. (5.14)

Note that f1 = f̄1 and f2 = f̄2. Then 0 6∈ Ω0. Otherwise, there exists some q ∈ Rn such

that fi < 0, i = 1, . . . , 4, which is a contradiction (Jeyakumar et al. (2009) in Theorem

5.2 provide the technical proof of this). Since Hi for i = 1, . . . , 4 are Z-matrices, Ω0 is

a convex set (see Theorem 5.1 in Jeyakumar et al. (2009)). By the convex separation

theorem, there must exist λ ∈ R4\{0} such that for all (y1, . . . , y4) ∈ Ω0,
∑4

i=1 λiyi ≥

0. In turn, this means that there must exist λ ∈ R4
+\{0} and for all (q, t) ∈ Rn+1,∑4

i=1 λif̄i ≥ 0. Setting t = 1 implies fi = f̄i for i = 1, . . . , 4, namely ∃λ ∈ R4
+\{0} such

that (∀q1 ∈ Rn)
∑4

i=1 λifi ≥ 0.

Proof of Proposition 2.2.

Without loss of generality, assume a permutation of the set {1, . . . , k}: for instance,

σ = (1, . . . , k). According to condition i), we then obtain that for j = σ(1) = 1 Proposi-
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tion 2.1 is satisfied, namely q1 satisfies optimization constraints. Consider the following

projector operator: projq(v) = 〈q,v〉
〈q,q〉q, where 〈q,v〉 denotes the inner product of vectors

q and v, with q,v ∈ Rn. Put it another way, we are projecting v orthogonally into the

line spanned by q. Given q1, assume the following Gram–Schmidt process for qj with

j = σ(2), . . . ,σ(k):

q2 = v2 − projq1(v2) (5.15)
... (5.16)

qk = vk −
k−1∑
j=1

projqj(vk). (5.17)

Given q1, this corresponds to generate vectors qj which are in the Nullspace of qj−1 for

j = 2, . . . , k, i.e., generating a series of orthogonal vectors. If qj for j = 1, . . . , k satisfies

Proposition 2.1, there must exist an orthogonal matrix Q1:k = [q1, . . . , qk] consistent with

restrictions (2.6) and (2.7) in the main text. Existence follows.

Technical remark: the orthogonal vectors generated by the above Gram-Schmidt pro-

cess can be easily adjusted to make them unit vectors, i.e. construct q
||q|| . However, in

our case this would be redundant as Proposition 2.1 imposes unit vectors condition.

Proof of Proposition 2.3.

Assume thatQ∗1:k exists and is orthogonal. This proof shows that under the conditions

in Proposition 2.3, q∗1 , . . . , q∗k are unique. Without loss of generality, for j = 1 restrictions

(2.6) are reduced to:

q′1[Υ
1
h̃
(φ)−Υ2

h̃
(φ)]q1 ≥ 0 (5.18)

q′1[Υ
1
h̃
(φ)−Υ3

h̃
(φ)]q1 ≥ 0, (5.19)

where Υi
h̃
(φ) =

∑h̃
h=0 cih(φ)c

′
ih(φ)∑h̃

h=0 c
′
ih(φ)cih(φ)

. Let Υ12
h̃

(φ) = Υ1
h̃
(φ) − Υ2

h̃
(φ) =

∑h̃
h=0 c1h(φ)c

′
1h(φ)∑h̃

h=0 c
′
1h(φ)c1h(φ)

−∑h̃
h=0 c2h(φ)c

′
2h(φ)∑h̃

h=0 c
′
2h(φ)c2h(φ)

and Υ13
h̃

(φ) = Υ1
h̃
(φ) − Υ3

h̃
(φ) =

∑h̃
h=0 c1h(φ)c

′
1h(φ)∑h̃

h=0 c
′
1h(φ)c1h(φ)

−
∑h̃

h=0 c3h(φ)c
′
3h(φ)∑h̃

h=0 c
′
3h(φ)c3h(φ)

.
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Thus, restrictions on q1 are

q′1Υ
12
h̃

(φ)q1 ≥ 0 (5.20)

q′1Υ
13
h̃

(φ)q1 ≥ 0. (5.21)

For simplicity, and without loss of generality, assume h̃ = 0:

q′1Υ
12
0 (φ)q1 ≥ 0 (5.22)

q′1Υ
13
0 (φ)q1 ≥ 0, (5.23)

where

Υ12
0 (φ) =

c10(φ)c′10(φ)

c′10(φ)c10(φ)
− c20(φ)c′20(φ)

c′20(φ)c20(φ)
(5.24)

Υ13
0 (φ) =

c10(φ)c′10(φ)

c′10(φ)c10(φ)
− c30(φ)c′30(φ)

c′30(φ)c30(φ)
. (5.25)

Thus, we obtain

q′1Υ
12
0 (φ)q1 = q′1 [m1(φ)c10(φ)c′10(φ)−m2(φ)c20(φ)c′20(φ)] q1 (5.26)

= m1(φ)q′1c10(φ)c′10(φ)q1 −m2(φ)q′1c20(φ)c′20(φ)q1 (5.27)

= m1(φ) (c′10(φ)q1)
2 −m2(φ) (c′20(φ)q1)

2
, (5.28)

where m1(φ) = 1
c′10(φ)c10(φ)

and m2(φ) = 1
c′20(φ)c20(φ)

are positive scalar. Similarly, we get

q′1Υ
13
0 (φ)q1 = m1(φ) (c′10(φ)q1)

2 −m3(φ) (c′30(φ)q1)
2
, (5.29)

where m3(φ) = 1
c′30(φ)c30(φ)

. Thus, for j = 1 restrictions (2.6) are equivalent to

m1(φ) (c′10(φ)q1)
2 −m2(φ) (c′20(φ)q1)

2 ≥ 0 (5.30)

m1(φ) (c′10(φ)q1)
2 −m3(φ) (c′30(φ)q1)

2 ≥ 0. (5.31)

Recall that for j = 1, conditions in Proposition 2.3 are

c′i0(φ)q1 ≥ 0 for i = 1, . . . , 3. (5.32)

36



Combining (5.30)-(5.32) delivers the following restrictions for j = 1:

c′10(φ)q1 ≥

√
m2(φ)

m1(φ)
c′20(φ)q1 (5.33)

c′10(φ)q1 ≥

√
m3(φ)

m1(φ)
c′30(φ)q1. (5.34)

Thus, conditional on the existence of q∗1, constraints of the optimization problem become

linear, and as such, convex for q1. Also, it is easy to observe that conditions in (5.32)

make the objective function convex in q1. Since the problem is now convex, q∗1 must be

unique. Extension to h̃ > 0 is trivial. The same proof applies to j = 2, 3, i.e., q∗2 and q∗3
are unique. As a result, conditional on q∗1, q∗2 and q∗3 to exist and be orthogonal to each

other, matrix Q∗1:k is unique (with k = 3 in our setting).

Appendix B: Shocks Series and Robustness Checks

Here we present some evidence that the three identified shocks are truly structural and

exogenous to a set of structural shocks previously identified by the literature. We have

re-estimated the impulse responses by explicitly controlling, i.e, imposing orthogonality

condition, for military news (Ramey, 2016), expected tax (Leeper et al., 2013), unantici-

pated and anticipated tax (Mertens & Ravn, 2011), monetary policy (Romer & Romer,

1989), and technology surprise (Basu et al., 2006). All the results presented in the main

text are robust to this additional control. Furthermore, we have computed the correla-

tions between the three identified shocks and those disturbances, finding that correlations

are never significant at 1% and 5% level.

Ludvigson et al. (2021) and Caggiano et al. (2021) stressed that credible identifica-

tion regimes need to estimate shocks consistent with specific episodes in the history. In

particular, we focus on three events: Black Monday (October 1987), Lehman collapse

(September 2008), and Covid outbreak (March 2020). For the Black Monday, our esti-

mated financial uncertainty shock is large,24 while this is not the case for credit supply

disturbances. This is in line with the narrative of Ludvigson et al. (2021) and Caggiano et

al. (2021), where the Black Monday is featured by significant financial volatility but low
24Bigger than the median. This definition of large shocks is consistent with Ludvigson et al. (2021).
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credit conditions disruption. In September 2008, we find that our three estimated shocks

are all large, which is consistent with the consensus view of the Great Recession as a mix

of financial and uncertainty shocks. Also, we have extended our sample up to 2020: both

macro and financial uncertainty shocks are large and bigger than pure financial shock

in March 2020, which is compatible with the belief that the pandemic prompted a spike

in uncertainty but significant fiscal and monetary policy interventions prevented credit

supply deterioration.

The findings we have obtained are also robust to the following battery of checks,

which are available upon request: lag length from three to twelve; selecting the prior

tightness by maximizing the marginal likelihood rather than employing a flat specification;

using the measures of Carriero et al. (2018b) and Jurado et al. (2015) as alternative

proxies of financial uncertainty and the proposal in Carriero et al. (2018b) as proxy of

macroeconomic uncertainty; employing the excess bond premium in Caldara et al. (2016)

and Gilchrist and Zakrajšek (2012) as credit spreads. Moreover, we have run a quarterly

specification, finding that results are equivalent to what shown so far.

Finally, a number of papers have pointed out that the effect of uncertainty shocks is

more intense when the Zero Lower Bound (ZLB) holds (Caldara et al., 2016; Caggiano

et al., 2014; Basu & Bundick, 2017; Johannsen, 2014). Thus, we have estimated the

model over the sample up to 2008m9, which removes the years of the Great Recession

where the ZLB binds. The results are qualitatively equivalent to Figure 3 and Figure 4;

quantitatively, the response of the variables is slightly less pronounced. Since this is fully

consistent with the previous literature, we omit it for brevity.
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