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Abstract

This paper studies the potential ability of an SVAR to match impulse response functions

of a well-established estimated DSGE model. We study the invertibility (fundamentalness)

problem setting out conditions for the RE solution of a linearized Gaussian NK-DSGE model

to be invertible taking into account the information sets of agents. We then estimate an

SVAR by generating artificial data from the theoretical model. A measure of approximate

invertibility, where information can be imperfect, is constructed. Based on the VAR(1) rep-

resentation of the DSGE model, we compare three forms of SVAR-identification restrictions;

zero, sign and bounds on the forecast error variance, for mapping the reduced form residuals

of the empirical model to the structural shocks of interest. Separating out two reasons why

SVARs may not recover the impulse responses to structural shocks of the DGP, namely

non-invertibility and inappropriate identification restrictions, is then the main objective of

the paper.
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1 Introduction

Following a precedent set by Christiano et al. (2005), researchers often try to match the impulse

responses of an identified SVAR with a DSGE model. But can indeed SVAR methods be

employed to recover the structural shocks and impulse response functions if the data generating

process (henceforth DGP) is a DSGE model? In principle, this may be possible since the rational

expectations (henceforth RE) solution of a linearized DSGE model is a VARMA which may be

approximated by a finite SVAR in which the reduced form errors are a linear function of the

structural shocks. A necessary and sufficient condition for such a representation is that the

VARMA is invertible (or, almost equivalently,1 satisfies fundamentalness).

The invertibility-fundamentalness problem is often described in the macro-econometrics lit-

erature as one of “missing information” when the econometrician does not have all the informa-

tion had by agents in the DGP. We refer to the econometrician’s problem as “E-invertibility”.

But in our paper, missing information of this form is not at the heart of the problem, but rather

imperfect information on the part of both agents and the econometrician takes centre stage;

indeed the information sets can be the same for both without removing non-fundamentalness

if they are imperfect. We refer to the agents’ problem as “A-invertibility” and in its absence

the perfect and imperfect information RE solutions of the model diverge. Agents then cannot

recover the current and past structural shocks and face a signal extraction problem.

The implication for estimating SVARs is that the resulting time series cannot contain the

necessary information to recover the shocks in an SVAR estimation and A-non-invertibility

results in E-non-invertibility. As pointed out by Leeper et al. (2013) and Blanchard et al.

(2013), the intuition is very straightforward: if the agents in the DGP are unable to back out

structural shocks then, faced with either the same data or a subset of the data (for instance, in

a news shocks framework), neither can the econometrician.

The non-E-invertibility of the RE solution of a DSGE model is ubiquitous. The problem for

the econometrician occurs when faced with a number of observables that is less than the number

of shocks; or with some observable variables of the system observed with a lag; or in models

featuring anticipated shocks with a delayed effect on the system such as “news” shocks; and even

with square systems when a particular choice of observables is observed with neither delayed

effects, nor a lag. In the absence of invertibility, the econometrician estimates an SVAR that,

subject to identification, recovers the one-period ahead prediction errors (the “innovation”), not

the structural shocks. Consequently, impulse response functions based on estimated SVARs can

be misleading.

Much of the empirical literature using SVARs is relatively silent on the invertibility (fun-

damentalness) problem and focuses on identification, i.e., the recovery of structural shocks

given the estimated reduced form SVAR. Given an assumed DGP consisting of a DSGE model

solved assuming RE, both non-invertibility and inappropriate identification can result in im-

pulse response functions that deviate from the true responses to structural shocks in the model.

Separating out these two components is the focus of our paper.

1.1 Main Results

The paper focuses on the potential ability of a SVAR to match IRFs of a well-established

estimated DSGE model (Smets and Wouters, 2007). Failure to do so originates from non-

1Invertibility is a more general condition that implies fundamentalness, but in practice they are usually
equivalent.
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invertibility and a poor choice of identification restrictions. We estimate an SVAR by generating

artificial data from the theoretical model. Based on the VAR(1) representation of the NK-DSGE

model, we compare three forms of SVAR-identification restrictions; zero, sign and theory-driven

bounds on the forecast error variance with bounds (BoundsFEV), for mapping the reduced

form residuals of the empirical model to the structural shocks of interest. For the estimated

non-invertible (in both E- and A- senses) DSGE models, we assume imperfect information

(henceforth II) on the part of both agents and the econometrician. We utilize the II measures

of approximate fundamentalness and assess the ability of these measures to predict the non-

invertibility of the estimated model.

The results of the paper have strong implications for the researcher using an SVAR to

compare impulse responses with those generated by a structural model. First, we can actually

report some good news for the estimated Smets and Wouters (2007) model. For the original

square case where the number of observations (data sets) equals the number of structural shocks,

there is no invertibility problem. In this case, the divergence between the estimated model

and SVAR are entirely due to a combination of the finite VAR assumption and the choice of

identification strategy. Regarding the latter, we find that of the identification schemes (Cholesky

vs Sign vs BoundsFEV) it is very clear that BoundsFEV of Volpicella (2021) delivers the best

estimation precision, removing the implausible responses and outperforming the Cholesky- and

sign-VARs in replicating the IRFs of the assumed DGP (in terms of the median responses).

Our second finding reports more good news even for the non-square non-invertible case

where the number of observations is far greater than the number of structural shocks which

include a shock to the inflation target and measurement errors. Namely, the monetary policy

and government spending shocks are approximately fundamental as indicated by the IRFs and

our approximate fundamentalness measures for the two shocks. This is encouraging as many

researchers only focus on these two shocks in the empirical literature. These results are very

robust to the alternative identification strategies, but again BoundsFEV delivers the best fit.

However, our third finding is that non-invertibility-fundamentalness does matter in general

and a comparison of our approximate fundamentalness measure with the actual impulse function

responses of the DGP demonstrates its usefulness. For the non-square case, specific results

are that four shocks - investment, preference, price mark-up and inflation target - are not

approximately fundamental according to our measure and this is confirmed by the poor matching

of the IRFs of the SVARs with those of the DGP even with our preferred identification scheme.

These, to the best of our knowledge, are novel results for both the SVAR and DSGE lit-

erature; while there is a substantial body of literature devoted to understanding theory-driven

identification strategies, no previous studies have linked this to the informational assumptions

in the DGP in the context of constructing data-SVARs that are compatible with the DSGE

theory.

1.2 Literature Background and Contributions

Two seminal papers on the invertibility-fundamentalness problem are Lippi and Reichlin (1994)

that introduces Blaschke matrices and Fernandez-Villaverde et al. (2007) that examines the

conditions for a solution of a RE model to have a VAR representation. A popular example

of the missing information problem comes from “news shocks” observed by agents but not by

the econometrician - see, for example, Leeper et al. (2013). “Noisy” news papers by Blanchard

et al. (2013) and Forni et al. (2017) study models closely related to our imperfect information

general framework.
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Despite a growing literature on the important impact of II on DSGE models, many (indeed

most) models of the macro-economy are still solved and/or estimated on the assumption that

agents are simply provided with perfect information (henceforth PI), effectively as an endowment

rather than the consequence of A-invertibility. Levine et al. (2022), on which our paper draws,

studies how the general nature of the agents’ signal extraction problem under II impacts on the

econometrician’s problem of attempting to infer the nature of structural shocks and associated

impulse responses from the data. Levine et al. (2020) describes a toolkit that implements the

procedures in that paper and provides, as one of a number of examples, the application in this

paper.

Based on the earlier studies of informational frictions, II in representative agent (RA) models

was initiated by Minford and Peel (1983) and generalized by Pearlman (1986) and Pearlman

et al. (1986) - henceforth PCL - with major contributions by Woodford (2003) and Collard and

Dellas (2010). These papers show that II can act as an endogenous persistence mechanism in

the business cycle. More recently, applications with estimation were made by Collard et al.

(2009), Neri and Ropele (2012) and Levine et al. (2012).

A more recent literature studies imperfect information in a heterogeneous agent framework:

e.g.,Pearlman and Sargent (2005), Nimark (2008), Angeletos and La’O (2009), Graham and

Wright (2010), Rondina and Walker (2021), Huo and Pedroni (2020), Angeletos and Huo (2020),

Angeletos and Huo (2021) and Levine et al. (2022). Angeletos and Lian (2016) provide a recent

comprehensive survey of what they refer to as the incomplete information literature. Section

2.5 provides a link between the RA framework of our paper and this literature.2

If the RE solution of a DSGE model is not E- and A-invertible, all is not lost in the ability

of impulse response functions from an SVAR to replicate those in the assumed DGP, the DSGE

model. The solution may be approximately fundamental, at least for some shocks, in the sense

described by Forni and Gambetti (2014), Forni et al. (2016), Beaudry et al. (2016), Canova and

Sahneh (2018), and Levine et al. (2022).

Turning to the identification issue, early SVAR studies employed short-run or long-run re-

strictions on impulse response functions (henceforth IRFs) for the identification of structural

shocks. However, recent research has relaxed controversial restrictions and has identified struc-

tural shocks with sign restrictions on either the IRFs or the structural parameters. Standard

text-books such as Kilian and Lutkepohl (2017) provide an overview of this literature. Volpicella

(2021) provides an up-to-date review and a novel identification tool for estimation and infer-

ence in SVARs that are set-identified through bound restrictions on the forecast error variance

decomposition (FEVD). These restrictions complement the standard sign restrictions approach

which are also employed in our paper.

In the light of this review, our paper makes the following three main contributions to the

literature.

First contribution: Our paper emphasizes the crucial importance of the information prob-

lems of agents and the econometrician when validating a DSGE model by comparing its im-

pulse response functions with those of a SVAR. We distinguish invertibility from the viewpoint

of the econometrician and agents, E- and A-invertibility, respectively. An application of the

“Poor Man’s Invertibility Condition” of Fernandez-Villaverde et al. (2007) then states that E-

2Here a comment on terminology is called for. Our use of perfect/imperfect Information (PI/II) is widely used
in the second strand of literature when describing agents’ information of the history of play driven by draws by
Nature from the distributions of exogenous shocks. The complete/incomplete framework of the Angeletos-Lian
survey (and other work by these authors) incorporates PI/II, but also refers to agent’s beliefs regarding each
other’s payoffs. In our framework this informational friction (leading to “Global Games”) is as yet absent.
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invertibility only holds if additional conditions for A-invertibility hold, in which case the agents’

information problem under II replicates that under PI. We show both generally and in an illus-

trative example the presence of Blaschke factors in the IRFs in the case where A-invertibility

does not hold.

Second contribution: When A- and therefore E-invertibility fails, we construct measures

of approximate fundamentalness which generalize results in the literature that implicitly assume

PI on the part of agents in the assumed DGP.

Third contribution: In our application to a well-established estimated DSGE model,

we use this measure and the identification scheme of Volpicella (2021) to separate out two

reasons why SVARs may not recover the impulse responses to structural shocks, namely, non-

invertibility and inappropriate identification restrictions.

1.3 Road-Map

The rest of the paper is organized as follows. Section 2 reviews the underlying theory that links

the invertibility-fundamentalness issue with the information set assumptions in the model. In

Subsection 2.6, an illustrative example motivates the results. Section 3 sets out the log-linearized

Smets-Wouters model in Smets and Wouters (2007) (Subsection 3.1) which is then estimated

in Subsection 3.2. We consider two forms of the model: a square system as in the original

paper which is E- and A-invertible and for which the PI and II RE solutions coincide; and a

modified non-square system which is no longer invertible in both E- and A- senses. Subsection

3.3 then provides measures of invertibility-fundamentalness for each shock and confirms the

effectiveness of our measure. Section 4 compares the IRFs of the estimated model with those

from the SVAR estimated from artificial data comparing the identification schemes described

above. To further examine the performance of IRF comparisons, Section 5 computes a metric

to measure the cumulative distance for the IRF divergence over the response horizon. Up to

this point the paper chooses an SVAR(p) with lag p = 1; a final robustness check confirms our

main results for lags up to p = 5. Section 6 provides concluding remarks.

2 Invertibility and the Information Sets of Agents

The potential ability of an SVAR to match impulse response functions of a DSGE model depends

crucially on the information sets of its agents. We begin by making these explicit in a linearized

RA RE model of the following general form

A0Yt+1,t +A1Yt = A2Yt−1 + Ψεt mE
t = LEYt mA

t = LAYt (1)

where matrix A0 may be singular, Yt is an n× 1 vector of macroeconomic variables; and εt is a

k×1 vector of Gaussian white noise structural shocks. We assume that the structural shocks are

normalized such that their covariance matrix is given by the identity matrix i.e., εt ∼ N(0, I).

The Gaussian assumption is required later to apply the Kalman Filter.

We define Yt,s ≡ E
[
Yt|IAs

]
where IAt is information available at time t to the representative

agent, given by IAt = {mA
s : s ≤ t}. We assume that this contains the history of a strict subset

of the elements of Yt, hence information is in general imperfect. In the special case that agents

are endowed (somehow) with perfect information, LA = I (the identity matrix). Note that

measurement errors can be accounted for by including them in the vector εt.
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2.1 Conversion to Blanchard-Kahn Form

We first introduce a key result proved in Levine et al. (2022) that converts from the very general

class of linear RE models (1) into results that are based on the generalized Blanchard-Kahn

(BK) form of Pearlman et al. (1986).

Theorem 1. For any information set, (1) can always be converted into the following form, as

used by PCL

[
zt+1

xt+1,t

]
=

[
G11 G12

G21 G22

][
zt
xt

]
+

[
H11 H12

H21 H22

][
zt,t
xt,t

]
+

[
B

0

]
εt+1 (2)

mA
t =

[
M1 M2

] [ zt
xt

]
+
[
M3 M4

] [ zt,t
xt,t

]
(3)

where zt, xt are vectors of backward and forward-looking variables, respectively. The covariance

matrix of shocks is the matrix BB′. Note that, at this stage, we focus solely on the agents’

informational problem: mA
t . We specify the properties of m × 1 vector mE

t where m ≤ k, the

vector of observables available to the econometrician later.

The expressions involving zt,t and xt,t arise from rewriting the model in PCL form (2).

This transformation involves a novel iterative stage which replaces any forward-looking expec-

tations with the appropriate model-consistent updating equations. This reduces the number of

equations with forward-looking expectations, while increasing the number of backward-looking

equations one-for-one. But, at the same time, it introduces a dependence of the additional

backward-looking equations on both state estimates zt,t
(
≡ E[zt|IAt ]

)
and estimates of forward-

looking variables, xt,t.

For later convenience, we define matrices G and H conformably with zt and xt and define

two more structural matrices F and J

F ≡ G11 −G12G
−1
22 G21 J ≡M1 −M2G

−1
22 G21 (4)

F and J capture intrinsic dynamics in the system, that are invariant to expectations formation

(i.e., by substituting from the second block of equations in (2) we can write zt = Fzt−1+[
B′ 0

]′
εt+1 plus additional terms involving expectations formed at time t; and mA

t = Jzt+

additional terms likewise). PCL show that the filtering problem is unaffected by these additional

terms.

2.2 From the Perspective of the Agents

First, we consider the solution under perfect information . Here we assume that the repre-

sentative agent directly observes all elements of Yt, hence of {zt, xt}, as an endowment. Hence

zt,t = zt, xt,t = xt, and using the standard BK solution method there is a saddle path satisfying

xt +Nzt = 0 where
[
N I

]
(G+H) = ΛU

[
N I

]
(5)

where ΛU is a matrix with unstable eigenvalues. If the number of unstable eigenvalues of (G+H)

is the same as the dimension of xt, then the system will be determinate.
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To find N , consider the matrix of eigenvectors W satisfying

W (G+H) = ΛUW (6)

Then, as for G and H, partitioning W conformably with zt and xt, from PCL, we have

N = W−1
22 W21 (7)

From the saddle-path relationship (7), the saddle-path stable RE solution under PI is

zt = Azt−1 +Bεt xt = −Nzt (8)

where

A ≡ G11 +H11 − (G12 +H12)N (9)

is a non-structural matrix dependent on the saddle-path solution through the matrix N .

Turning to imperfect information , for the general case of imperfect information, the

transformation of (1) into the form (2) and (3) in Theorem 1 allows us to apply the solu-

tion techniques originally derived in PCL. We briefly outline this solution method. Following

Pearlman et al. (1986), we apply the Kalman filter updating given by[
zt,t
xt,t

]
=

[
zt,t−1

xt,t−1

]
+K

[
mA
t −

[
M1 M2

] [ zt,t−1

xt,t−1

]
−
[
M3 M4

] [ zt,t
xt,t

]]
(10)

The Kalman filter was developed in the context of backward-looking models, but extends

here to forward-looking models. The representative agent’s best estimate of {zt, xt} based on

current information is a weighted average of their best estimate using last period’s information

and the new information mA
t . Thus the best estimator of {zt, xt} at time t − 1 is updated

by the “Kalman gain” K of the error in the predicted value of the measurement. K is solved

endogenously as

K =

[
PAJ ′

−NPAJ ′

]
[(M1 −M2N)PAJ ′]−1 (11)

where PA is defined below, but is not directly incorporated into the solution for {zt, xt}.
Using the Kalman filter, the solution under II as derived by Pearlman et al. (1986) is given

by the pre-determined and non-predetermined variables zt and xt, described by processes for

the predictions zt,t−1 and for the prediction errors z̃t ≡ zt − zt,t−1

Predictions : zt+1,t = A (zt,t−1 +KJz̃t) (12)

Prediction Errors : z̃t = QAz̃t−1 +Bεt (13)

Non-predetermined : xt = −N (zt,t−1 +KJz̃t)−G−1
22 G21 (I −KJ) z̃t (14)

Measurement Equation : mA
t = E (zt,t−1 +Kz̃t) (15)

where

K =PAJ
(
JPAJ

′
)−1

; QA = F [I −KJ ] (16)

F and J are as defined above in (4), K is an alternative Kalman gain matrix after stripping out

the predictable variation in the state variables zt+1 arising from dependence on xt. The matrix

A, defined in (9) is the autoregressive matrix of the states zt in the solution under PI; and we

6



have introduced another non-structural matrix E defined by

E ≡M1 +M3 − (M2 +M4)N (17)

which captures the impact of predictions and prediction errors for zt on observable variables.

B captures the direct (but unobservable) impact of the structural shocks εt and PA = E[z̃tz̃
′
t]

is the solution of a Riccati equation given by

PA = QAPAQA
′
+BB′ (18)

To ensure stability of the solution PA, we also need to satisfy the convergence condition,

that QA has all eigenvalues in the unit circle. Since the matrix QA is also the autoregressive

matrix of the prediction errors z̃t in (13), this is equivalent to requiring that prediction errors

are stable. Since there is a unique solution of the Riccati equation under mild conditions that

satisfies this condition, it follows that the solution (12)–(15) is also unique thereby extending

this property of the PI BK solution to the II case.

We can thus see that the solution procedure above is a generalization of the Blanchard-Kahn

solution for PI and that the determinacy of the system is independent of the information set.

We finally note that the II solution can be transformed into the PI solution when the agent’s

information set is {zt, xt}. Choose just a subset of the information, mt = Jzt, such that JB

is invertible. We then deduce from (18) that PA = BB′ and hence z̃t = Bεt. Substituting into

(12) yields zt+1,t = Azt,t−1 + ABεt = A(zt,t−1 + z̃t) = Azt. Adding this to z̃t+1 = Bεt+1 yields

zt+1 = Azt +Bεt+1, the PI solution.3

2.3 From the Perspective of the Econometrician

This section shows how the econometrician’s problem relates to the solution of the agents’

problem presented in Subsection 2.2.

Informational Assumptions Throughout the paper, we assume under II that the agents have

the same information set for the aggregate economy as the aggregate information set available

to the econometricians; thus mA
t = mE

t .

A-invertibility: When II Replicates PI It is evident that II introduces non-trivial addi-

tional dynamics into the responses to structural shocks - a contrast which is crucial to much

of our later analysis. However, there is a special case of the general problem under II, which

asymptotically replicates perfect information, and hence where PA = BB′.

Definition 1. A-invertibility: The RE solution is A-invertible if agents can infer the true

values of the structural shocks εt (and hence εit) from the history of their observables, or equiv-

alently PA = BB′ is a stable fixed point of the agents’ Riccati equation, (18).

E-invertibility: The ABCD (and E) of VARs Corresponding to A-invertibility we now

define the corresponding concept from the viewpoint of the econometrician:

3Under PI, we have that M1 = I and M2 = 0 so xt = −Nzt is also observed. Then J = I, but then the
this information set is in general of higher dimension than the shocks, so we pick a linear combination J̄ of the
information set such that J̄B is invertible and Q̄A = F (I −B(J̄B)−1J̄) has stable eigenvalues (which is possible
if (F,B) is controllable). From (18) it follows that PA = BB′, the covariance matrix of the structural shocks,
and Q̄A is as above. Hence Q̄AB = 0 and therefore z̃t = Bεt. Finally, adding z̃t+1 to both sides of (12) yields
the result for PI.
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Definition 2. E-invertibility: The RE solution is E-invertible if the values of the shocks εt
can be deduced from the history of the econometrician’s observables,

{
mE
s : s ≤ t

}
.

To see how the two concepts of A- and E-invertibility relate to each other, consider an

econometrician’s state-space representations of the aggregate economy of the type that arise

naturally from our solution method in Section 2.2, of the general form:

st = Ãst−1 + B̃εt mE
t = Ẽst ≡ C̃st−1 + D̃εt (19)

where C̃ ≡ ÃEB̃ and D̃ ≡ ẼB̃ and where the tildes over each of the matrices distinguish this

state-space representation from the particular form (without tildes) under perfect information.

It is straightforward to show that both the PI and II representations of the previous two sections

are in the ABE form of (19).4

For the PI case, given the informational assumptions set out above, we have, straightfor-

wardly, st = zt, Ã = A, B̃ = B, Ẽ = E. For the II case, we have

st =

[
zt,t−1

z̃t

]
(20)

Ã ≡

[
A AKJ
0 QA

]
(21)

B̃ ≡

[
0

B

]
(22)

Ẽ ≡
[
E EKJ

]
(23)

where A, K, J, QA and E are as defined after (12) to (15).

Theorem 2. Poor Man’s Invertibility Conditions (PMIC): The conditions for the RE

solution to be E-invertible which we exploit below in Theorem 3 is then an application of the

“Poor Man’s Invertibility Condition” of Fernandez-Villaverde et al. (2007),5 The necessary and

sufficient conditions are:

Condition 1. A ‘square system’ with m = k (an assumption we relax when we consider the

innovations representation and when we come to Section 2.7 on measures of approximate in-

vertibility/fundamentalness).

Condition 2. D̃ (now a square matrix) is non-singular.

Condition 3. ẼB̃ is invertible and that Ã(I − B̃(ẼB̃)−1Ẽ) has stable eigenvalues.

Proof. See Appendix A.

4The advantages of using the ABE state-space form in what follows are (i) the Riccati equation is simpler
than for any of the other formulations, (ii) the solution under II is much simpler to express and, most usefully,
(iii) the representation of the model using the innovations process has the same structure as the original model
(see Levine et al., 2022 for further discussion). Note also that the ABCD state-space form can be written as a
VARMA process as follows: From (19) st = (I − ÃL)−1B̃εt where L is the lag operator. Substituting into the
expression for mE

t , we then have |I−ÃL|mE
t = C̃(I−ÃL)∗B̃εt−1 +D̃εt where |X| and X∗ denote the determinant

and matrix of sub-determinants of matrix X respectively. This is of VARMA form Λ(L)mE
t = Φ(L)εt.

5This result appears to date back at least to the work of Brockett and Mesarovic (1965). A slightly weaker
condition than invertibility is fundamentalness which allows some eigenvalues to be on the unit circle. However
we use the two terms interchangeably and in fact, if we restrict our models to have only stationary variables,
then the two concepts are equivalent.
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E-invertibility: When Agents Have PI The conditions for E-invertibility under PI are

straightforward, and are identical to the original PMIC, derived from the ABCD representation,

in Fernandez-Villaverde et al. (2007) with Ã = A, B̃ = B, Ẽ = E, st = zt. Hence we immediately

have: if agents have PI, the conditions for E-invertibility (as in Definition 2) are: the square

matrix EB is of full rank and A(I −B(EB)−1E) is a stable matrix.

E-invertibility: When Agents Have II We now consider the more general case of E-

invertibility under II. The result is straightforward, but powerful:

Theorem 3. Assume that the number of observables equals the number of shocks (m = k).

Assume further that the PMIC conditions under PI hold (so the system would be E-invertible

under PI), but agents do not have PI. Then E-invertibility under II holds if and only if A-

invertibility holds, and this requires that the square matrix JB is of full rank, and QA = F (I −
B(JB)−1J) is a stable matrix.

Proof. See Appendix B.

While there is a clear mathematical parallel between the condition for invertibility under

PI, the crucial difference is that, for the II case, the conditions for E-invertibility under PI are

necessary, but not sufficient conditions for E-invertibility.

2.4 Why VARs Fail in the Presence of Blaschke Factors

Given a fundamental Moving Average (MA) representation D(L) (all roots greater than or equal

to unity), one can always find a Blaschke matrix to construct a non-fundamental one with some

roots less than unity (called ‘root-flipping’). Root-flipping can go in the opposite direction: we

can transform a non-fundamental into a fundamental representation. Lippi and Reichlin (1994)

and Canova (2007), p114, show how to construct such matrices.

The text-book description (see, for example, Kilian and Lutkepohl, 2017) goes as follows.

Consider a general fundamental (invertible) MA representation written as

yt = D(L)εt = D(L)B(L)︸ ︷︷ ︸
D̂(L)

(B(L))−1εt︸ ︷︷ ︸
et

(24)

Then yt = D̂(L)et is non-fundamental (non-invertible) if we choose B(L) to be Blaschke matrices

with two properties: (i) all roots inside the complex unit circle and (ii) B(L)−1 = B∗(L−1) where
∗ denotes the conjugate transpose. et are then the one-period ahead prediction errors. An

example of a scalar Blaschke factor that satisfies (i) and (ii) is B(L) = L−a
1−aL which will convert

an invertible MA process yt = (1− aL)εt with a < 1 into a non-invertible one. Generally, these

become yt = D(L)εt and yt = D̂(L)et. These are two MA representations of the same time

series with the same first and second moments; but the impulse response functions for εt and

et are quite different.

In our illustrative example in Section 2.6, the RE solution for the PI case is of the form

yt = D(L)εt where parameter values can be chosen to make this MA process fundamental

but, for the II case, the process is yt = D(L)B(L)εt where a Blaschke factor B(L) = L−a
1−aL

appears with a < 1 thus turning a fundamental into a non-fundamental process. Then A-non-

invertibility under II in this example shows clearly how the information assumptions in the

model are a source of non-fundamentalness-invertibility.
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If A-invertibility Fails The conditions for A- (and hence E-) invertibility to be satisfied are

stringent. The following result reveals the role of Blaschke factors and forms the basis for our

remaining analysis of cases where E-invertibility conditions are not satisfied.

Theorem 4. Under the assumptions of Theorem 3, if A- (and hence E-) invertibility fail, then

the II solution for aggregate variables can never be identical to the PI case, and will incorporate

Blaschke factors in the IRFs.

Proof. See Appendix C.

The first element of this theorem is unsurprising: if agents cannot correctly identify the true

structural shocks then their responses are bound to differ from those under PI. But the key

feature that the aggregate solution that results from these response must incorporate Blaschke

factors is less straightforward to prove, but crucial for what follows in the rest of the paper.

2.5 Explaining Imperfect Information in a Representative Agent Model

While there has been a substantial literature that assumes imperfect information in a represen-

tative agent model, building on the foundations developed by Pearlman et al. (1986), any such

model is subject to the critique that it cannot explain why information is imperfect. Drawing

on the recent heterogeneous agent imperfect information literature outlined in Section 1.2, this

question is addressed in Levine et al. (2022). There it is shown that if, in a heterogeneous agent

framework, agent i observes a composite aggregate plus idiosyncratic shock and we solve the

model for the limiting case of extreme heterogeneity, as a general result, the solution for the

aggregate economy turns out to have the same finite state-space form as for a parallel economy

with a representative agent with II. But the aggregate dynamics of this parallel economy are

affected in important ways by the underlying heterogeneity. The RA-II solution can then be

rationalized as partial equilibrium symmetric heterogeneous-agent economy where idiosyncratic

far outweighs aggregate uncertainty (empirically plausible) and agent i fails to take into account

the fact that she is a representative agent.

2.6 An Illustrative Example

We illustrate our analysis so far with reference to the informational implications of a simple

and tractable RBC model with an inelastic labour supply. In linearized form we have

Capital : kt+1 = λ1kt + λ2at + (1− λ1 − λ2)ct

Consumption : Etct+1 = ct +
1

σ
rt

Output : yt = (1− α)at + αkt = cyct + (1− cy)it
Investment : it = (kt+1 − (1− δ)kt)/δ

Real Interest Rate : rt = EtrKt+1

Gross Return on Capital : rKt = (1− β(1− δ))vt
Rental Rate (Measurement) : vt = (1− α)(at − kt)

TFP Shock Process : at = εa,t ∼ n.i.i.d(0, σ2
a)

where λ1 = 1
β , λ2 = (1−α)

αβ (1 − β(1 − δ)), β is the discount factor, α is the capital share of

output in a Cobb-Douglas production function, δ is the depreciation rate, σ is the risk aversion
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parameter in the single-period utility function and, for the II case, the rental rate vt is assumed

to be observed.

The details of the solution are provided below, but the saddle path properties are identical

to those under PI, with the stable root given by µ1. Using the RE solution procedures set out

in Section 2 the solutions for rental rate vt for the RA model are then given by

PI : vt =
(1− α)

(
1− (λ1+λ2)µ1L

λ1
L
)

(1− µ1L)
at (25)

II : vt =
(1− α)

(
1− µ1L

(λ1+λ2)λ1

)
(1− µ1L)

(1− (λ1 + λ2)L)(
1− L

(λ1+λ2)

)
︸ ︷︷ ︸

Blaschke Factor (almost)

at (26)

The final term in (26) is not quite a Blaschke factor. To arrive at one we need to redefine the

measurement as −(λ1 + λ2)vt ≡ ṽt. This does not change the signal extraction problem of the

agents so we then have

II : ṽt =
(1− α)

(
1− µ1L

(λ1+λ2)λ1

)
(1− µ1L)

(
L− 1

(λ1+λ2)

)
(

1− L
(λ1+λ2)

)
︸ ︷︷ ︸

Blaschke Factor

at

=
(1− α)

(
1− µ1L

(λ1+λ2)λ1

)
(1− µ1L)

et (27)

Parameter values can be chosen to make the PI MA process, D(L), fundamental.6 Since

(λ1 + λ2) > 1, the introduction of II then introduces a root within the unit circle and therefore

non-fundamentalness. For an econometrician observing this economy, the presence of a Blaschke

factor in (27) is crucial and provides the link to the seminal paper in the econometrics literature

on invertibility-fundamentalness by Lippi and Reichlin (1994). In the absence of a theoretical

model, the VAR estimated will recover the innovations et, but not the structural shock εa,t,

leading to misleading comparisons of impulse response functions.

One measure of the non-invertibility problem we later employ is the difference between

impulse responses for the PI and II cases. In Figure 1, a temporary technology shock εa,t
raises the gross return rKt , the single observable. Comparing PI and II trajectories the agent

with II then underestimates the technology shock with Etat < at and confuses this with an

underestimate of the capital stock (Etkt < kt). She therefore expects the return to increase in

the future and therefore overestimates the real interest rate rt = EtrKt+1. Consumption falls,

savings increase thus crowding in more investment and capital stock under II.

2.7 Exact and Approximate Invertibility-Fundamentalness

But suppose that the PMIC invertibility conditions fail? Then there exists an invertible inno-

vations representation for the one-period ahead prediction errors

et = mE
t − Et−1m

E
t (28)

6See Levine et al. (2022).
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Figure 1: Simple RBC Model. All Impulse Responses to a Temporary Technology
Shock for PI and II. Parameter Values: r = 0.01, α = 0.333, δ = 0.025, σ = 2, ρa = 0

where et is the innovation found by solving another filtering problem.7 The resulting VAR in

et is what the econometrician estimates so she does not recover the structural shocks εt. But

when the system is invertible, et = Dεt, where D is a matrix of structural parameters in the

ABC and D state-space representation of the model’s RE solution so the two shock processes

are perfectly correlated.

This leads to Forni et al. (2019) who suggest as a measure of non-fundamentalness regressing

the structural shocks εt against the innovations et using the standard OLS measure of goodness

of fit for shock i

Fi = cov(εi,t)− cov(εi,t, et)cov(εt)
−1cov(et, εi,t) (29)

Fi corresponds to a measure of goodness of fit of the innovations residuals to the fundamental

shocks. In addition, the maximum eigenvalue of Fi then provides a measure of overall non-

fundamentalness obtained from the models. If m = k, and if Fi = 0 for all i, then since FPI

is by definition a positive definite matrix, it must be identically equal to 0. The more of the

eigenvalues of F that are close to 0, the more one can trust that at least some of the residuals

are good approximations to the fundamental shocks.8

Levine et al. (2022) provide a generalization of Forni et al. (2019) and develop measures of

approximate fundamentalness for both perfect and imperfect information cases based on the

7This is the second result in Fernandez-Villaverde et al. (2007).
8This provides how well the VAR residuals correspond to the fundamentals. See Levine et al. (2022).
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following measure of goodness of fit

FPI = V −B′E′(EPEE′)−1EB (30)

FII = V −B′J ′(JPAJ ′)−1JPAE′(EZE′)−1EPAJ ′(JPAJ ′)−1JB (31)

where the diagonal terms then correspond to the terms Fi of (29). In (30) we note that

EPEE′ = cov(ε̂t), and (EB)i = cov(et, εi,t). Analogously to the perfect information case,

EZE′ = cov(et), with EPAJ ′(JPAJ ′)−1JB = cov(et, εt). Z satisfies the Riccati solution

Z = AZA′ −AZE′(EZE′)−1EZA′ + PAJ ′(JPAJ ′)−1JPA (32)

where E = M1 + M3 − (M2 + M4)N , A = G11 + H11 − (G12 + H12)N , J = M1 −M2G
−1
22 G21,

F = G11 −G12G
−1
22 G21, and V is the covariance matrix of shocks with diagonal terms (= σ2

i ).

3 The Empirical Model

For our application, we use an industry standard DSGE model, Smets and Wouters (2007). The

model has at its core our motivating RBC model example but with an elastic household labour

supply. It features a number of nominal and real frictions in order to closely mimic the pattern

of real aggregate variables such as output, inflation and interest rate. To save space, we refer

to the original article for full details of the micro-foundations. The notation is consistent with

the illustrative example of Subsection 2.6 and the Smets and Wouters (2007) - henceforth SW

- paper.

3.1 The Linearized Model

yt = C/Y ct + I/Y it +RkK/Y zt + egt

ct = c1ct−1 + (1− c1)Etct+1 + c2(ht − Et[ht+1])− c3(rt − Et[πt+1] + ebt)

it = i1it−1 + (1− i1)Et[it+1] + i2qt + εit

qt = q1Et[qt+1] + (1− q1)Et[rkt+1]− (rt − Et[πt+1] + ebt)

yt = αφpkt + (1− α)φpht + φpε
a
t

kst = kt−1 + zt

zt = ψ/(1− ψ)rkt

kt = k1kt−1 + (1− k1)it + k2ε
i
t

mpt = α(kst − ht) + eat − wt
πt = π1πt−1 + π2Et[πt+1]− π3mpt + ept

rkt = −(kt − ht) + wt

mwt = wt −
(
σnht +

1

1 + λ/γ
(ct − λ/γct−1)

)
wt = w1wt−1 + (1− w1)Et[(πt+1 + wt+1)]− w2πt + w3πt−1 +mwt + ewt

rt = ρrrt−1 + (1− ρr)(ρππt + ρy(yt − yft ) + ρ∆y∆(yt − yft )) + ert

+ flexible economy equations
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where variables with time subscript are variables from the original non-linear model expressed

in log deviation from the steady state. The latter, variables without time subscript, are the

corresponding balanced growth steady state with growth rate γ.9 Flexible output is defined

as the level of output that would prevail under flexible prices and wages in the absence of the

two mark-up shocks. There are seven structural shocks. The model has five AR(1) processes

for government spending, technology, preference, investment specific, monetary policy, and two

ARMA(1,1) processes for price and wage mark-up. The process for ‘government spending’

includes a net exports demand effect which depends on the technology shock and in log-form is

given by

egt = ρge
g
t−1 + εgt + ρgaε

a
t (33)

The nominal interest rate rule in the SW model differs from that used in the small-scale NK

model in that the latter does not require knowledge of the output gap yt− yft and is referred to

as ‘implementable’ by Schmitt-Grohe and Uribe (2007). This is a more natural choice of rule

in our imperfect information set-up. Indeed in the version of the SW model with measurement

errors neither output nor inflation is directly observed so we introduce an implementable form

of the monetary rule

rt = ρrrt−1 + (1− ρr)(ρππt,t + ρyyt,t + ρ∆y∆yt,t) + ert (34)

Note that with agents’ information PI (assumed in SW) we have πt,t = πt, yt,t = yt and

∆yt,t = ∆yt.

3.2 Bayesian Estimation

The SW model is estimated by a Bayesian method based on seven quarterly macroeconomic

time series: real output, consumption, investment, and real wage growth, hours, inflation, and

the interest rate. The data sample is 1966Q1-2004Q4 which is the same as in Smets and Wouters

(2007). The corresponding measurement equations for the 7 observables are

output growth

consumption growth

investment growth

real wage growth

hours

inflation

fed funds


=



γ̄ + ∆yt
γ̄ + ∆ct
γ̄ + ∆it
γ̄ + ∆wt
l̄ + lt
π̄ + πt
R̄+Rt


(35)

where all variables are measured in percent, π̄ and R̄ measure the steady state level of net

inflation and short term nominal interest rates, respectively, γ̄ captures the deterministic long

growth rate of real variables, and l̄ captures the mean of hours. ∆yt, ∆ct and ∆it are the log

growth of real GDP, personal consumption expenditure deflated by the GDP deflator and Fixed

Private Domestic Investment, respectively. Hourly compensation is divided by the GDP price

deflator in order to get the real wage variable (wt). The aggregate real variables are expressed

per capita by dividing with the population over 16. Inflation is the first difference of the log of

the Implicit Price Deflator of GDP and the interest rate is the Federal Funds Rate divided by

9These are Y,C, I,Rk,K,W,H and, e.g., yt = log
(
Yt
Y

)
, where Yt is output from the non-linear equilibrium

conditions.
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four.

When we assume that this exactly coincides with the agents’ imperfect information set so

in effect the number of measurements is equal to the number of shocks and EB is non-singular.

This we refer to as Case 1: the original SW with 7 shocks and 7 observables (the data). In

the modified versions of the model, the only changes we make are that (1) we add an inflation

target shock so the number of shocks exceeds the number of observables; (2) we further add

measurement errors10 to the observations of real variables and inflation. We refer to this non-

square system as Case 2: SW with 13 shocks and again 7 observables.11 Table 1 summarizes

the full estimation results. In terms of fitting the model empirically, we show that, for the

7-shock case the perfect and imperfect information cases coincide. From Case 2, including the

additional shocks under II leads to a small improvement in fitting the data including the second

order empirical moments.12

3.3 Invertibility and Perfect vs Imperfect Information

Table 2 first presents the key invertibility results from the estimated models and the test for

non-fundamentalness, based on Levine et al. (2022), as useful measures to show the (mis-)use of

VARs to validate DSGEs. We find that the original system is completely invertible according to

the eigenvalue measures and indeed produces exactly the same simulated moments (including

the IRFs). The model is E- and A-invertible. When we add the additional shocks in Case 2,

this introduces non-invertibility and non-fundamentalness into the model, drives a bigger wedge

between PI and II, in the sense that the fundamentalness problem worsens for the performance

of VARs (suggesting larger differences in IRFs). Figures in Online Appendix F.1 plot the

posterior IRFs based on the estimates reported in Table 1 and compare them for Case 2 which

is non-square and therefore has a non-invertible RE solution.

To illustrate the effectiveness of our measure of approximate fundamentalness-invertibility

for individual shocks for Case 2, Figure 2 compares IRFs for the technology, monetary policy

and preference shocks. For the former two, the relevant II measures are FIIa = 0.0004 and

FIIr = 0.0036 which are close to indicating a good approximation of the structural shock to the

innovation whereas for the latter, FIIb = 0.9526, indicating a poor approximation. From Section

2.3, invertibility requires A-invertibility and the ability of agents to back out the shocks. Then

in this case, the PI and II equilibria coincide. Thus a wedge between PI and II IRFs is also a

measure of non-fundamentalness. However, one needs to take into account that the estimated

parameters for the PI and II cases are different so part of the wedge arises for this reason. So we

also compare PI and II in the model where both simulations apply to the SW model estimated

under our preferred II case (i.e., the latter generates a better fit in the Bayesian comparison in

Table 1).

In the figures, the solid black lines are PI responses for the estimated model under PI. The

dashed red lines are II responses for the estimated model under II. The dashed blue lines are PI

responses with II estimated parameters. Hence the wedge between the blue and red lines arises

solely from the different information assumptions (i.e., an indication of pure A-invertibility).

10These are equivalent to the noise in the signal in the “noisy news” papers by Blanchard et al. (2013) and
Forni et al. (2017).

11According to the U.S. Bureau of Labor Statistics, national employment, hours and earnings statistics are
surveyed and published very frequently (more so than GDP and CPI). The hours data is constructed based on
these statistics. We do not assume a measurement error to the employment data and the reason for that is
that the frequency in revising and publishing the employment data reduces measurement error, for hours to be
observed.

12The complete set of empirical results is reported in Levine et al. (2020).
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Parameter Prior Mean Post. Mean (PI) Post. Mean (II) Prior Prior S.D.

ρa 0.5 0.9795 0.9786 beta 0.2

ρb 0.5 0.4241 0.4010 beta 0.2

ρg 0.5 0.8250 0.8972 beta 0.2

ρi 0.5 0.7231 0.7694 beta 0.2

ρr 0.5 0.2226 0.2501 beta 0.2

ρp 0.5 0.3646 0.8895 beta 0.2

ρw 0.5 0.9689 0.9091 beta 0.2

ρt 0.5 0.5093 0.5996 beta 0.2

µp 0.5 0.5552 0.5827 beta 0.2

µw 0.5 0.5325 0.7793 beta 0.2

ρga 0.5 0.6002 0.6232 beta 0.25

εa 0.1 0.4792 0.4695 invg 2

εb 0.1 0.1304 0.1782 invg 2

εg 0.1 0.3986 0.4252 invg 2

εi 0.1 0.3809 0.3566 invg 2

εr 0.1 0.2581 0.2503 invg 2

εp 0.1 0.1686 0.0860 invg 2

εw 0.1 0.0790 0.2924 invg 2

εt 0.1 0.0814 0.0837 invg 2

γw 0.5 0.4897 0.6544 beta 0.15

γp 0.5 0.4507 0.4208 beta 0.15

ψ 0.5 0.4831 0.5125 beta 0.15

φp 1.25 1.5053 1.5561 norm 0.125

α 0.3 0.1970 0.2014 norm 0.05

φ 4 5.3027 5.1554 norm 1.5

σc 1.5 1.2731 1.4176 norm 0.375

σl 2 0.9992 0.9683 norm 0.75

ξw 0.5 0.6836 0.6789 beta 0.1

ξp 0.5 0.6122 0.6728 beta 0.1

λ 0.7 0.8305 0.7943 beta 0.1

ρπ 1.5 1.6886 1.8027 norm 0.25

ρr 0.75 0.7714 0.7295 beta 0.1

ρy 0.125 0.0692 0.0708 norm 0.05

ρdy 0.125 0.2012 0.2005 norm 0.05

γ̄ 0.4 0.3800 0.3639 norm 0.1

π̄ 0.75 0.8747 0.9887 gamm 0.4

β̄ 0.25 0.2094 0.1878 gamm 0.1

l̄ 0 -0.2338 -1.0533 norm 2

Log Data Density (MHM) -905.469531 -904.886754

Table 1: Posteriors Results for Model Parameters (Case 2)

Notes: We report our results from Bayesian maximum-likelihood estimation. A sample from the posterior distribution is
obtained with the Metropolis-Hastings (MH) algorithm using the inverse Hessian at the estimated posterior mode as the
covariance matrix of the jumping distribution. Two parallel Markov chains of 250,000 runs each are run from the posterior
kernel for the MH, sufficient to ensure convergence according to the indicators recommended by Brooks and Gelman (1998).
The first 50,000 draws from each chain have been discarded.
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(a) Technology: FII = 0.0004
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(b) Monetary Policy: FII = 0.0036
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(c) Preference: FII = 0.9526

Figure 2: Estimated SW Model Non-invertible Case 2

Notes: Solid black line PI responses. Dashed red line II responses. Dashed blue line PI responses with II estimated
parameters. Where red lines are invisible they coincide with the blue lines and therefore PI is equivalent to II based on
the same estimates. Each panel plots the mean response corresponding a positive one standard deviation of the shock’s
innovation. Each response is for a 40 period (10 years) horizon and is level deviation of a variable from its steady-state
value.
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Case 1: Original SW Case 2: SW with MEs
Measurements = Shocks =7 Measurements = 7 < 13 Shocks

PMIC Conditions Hold Fail

Goodness of Fit FPI = FII = 0 FPI(13×13) FII(13×13)

Diagonal Values All Zero



0.0003
0.2904
0.2020
0.1211
0.0405
0.1680
0.0344
0.9904
0.9996
0.4551

1
0.9994
0.8671





0.0004
0.9526
0.0194
0.5085
0.0036
0.6655
0.0111
0.9989

1
0.1287

1
1

0.4968


Table 2: Fundamentalness and Invertibility Measures for Estimated SW Model

Notes: Order of shocks: technology, preference, government spending, investment specific, monetary policy, price and wage mark-up, inflation
objective and measurement errors for output growth, consumption growth, investment growth, real wage growth and inflation. The simulation
results in this table are based on the estimated posterior means.

From the figure for the approximately fundamental technology shock, these are impossible to

discern whereas for the preference shock with a high non-fundamental FIIi measure the wedge is

considerable. Online Appendix F.1 shows similar plots for the other shocks. For example, for the

monetary policy shock, FIIr = 0.0036, whereas for the investment specific shock, FIIi = 0.5085.

For the former, IRFs diverge very little, but for the latter, this is not the case and there is

substantial divergence and, for consumption, an opposite sign. Furthermore, Section 5.1 below

reports the cumulative mean square distance that provides an additional measure for the wedge

between the blue and red lines for the shocks that we focus on for the SVAR estimations in

Section 4.

As noted, contrasting IRFs of II and PI depends not just on the information solutions, but

also on the different estimated parameters which include different estimates of persistence. The

latter in particular might drive the IRF differences (e.g., for the price mark-up shock). When

we compare the wedge between the black and blue lines (i.e., the IRFs under PI computed with

different posterior estimates) in Figure 2 and Online Appendix F.1, it is useful to know that

the effect from the estimated parameters is very small for the investment specific, government

spending and preference shocks, suggesting that the divergence in this case is almost entirely

owing to non-A-invertibility.

Further insight into the differences between PI and II solutions can be obtained by comparing

the agents’ expectations of shock process from actual outcomes. Under PI (as an endowment),

they are the same of course. But under II (the absence of A-invertibility), agents need to solve

a signal extraction problem and learn about the shocks using the Kalman filter. Thus for each

shock process xt where xt = {eat , ebt , ...} for the technology and preference AR(1) processes

etc., Et[eat ] = eat under PI but not under II in the absence of A-invertibility. Impulse response

functions give plots for each shock at a time, so with eat we have ebt = egt = 0, etc. But under II

Et[eat ] 6= eat and nor are ebt = egt = 0. Then the difference between Et[xt] and xt is a measure of
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the imperfect information of the shock process.

Figure 3 shows this Kalman learning process about the shocks that do occur and the mis-

perceptions regarding those that do not occur for the approximately fundamental technology

shock and the very strongly non-fundamental preference shock.13 For the approximately fun-

damental technology and monetary policy shocks, both types of misperception are very small

with the exception of the government spending shock in the presence of only a technolgy shock.

The reason for this is simple: namely, the inclusion of the latter in the AR(1) process (33)

for government spending. Again Online Appendix F.1 compares the learning processes for the

remaining shocks. As expected, for the technology shock (FIIa = 0.0004) and monetary policy

shock again (FIIr = 0.0036), the responses between Et[xt] and xt clearly overlap, showing no

divergence driven by the learning process.14

4 Impulse Responses from Estimated SVAR and DSGE Models

In this section, we contrast the invertible Case 1 with the non-invertible Case 2 and compare

IRFs from the RE solution of the estimated model with those of the SVAR estimated on artificial

data simulated from RE solutions of the model under PI and II (the DGP). Our procedure for

simulating the data under II is described in Appendix D.15 We estimate and compare our

SVAR using the following identification schemes: zero short-run restrictions, mixed sign and

zero restrictions, sign restrictions with uniform prior, sign restrictions with distribution-free

sets, and restrictions with bounded FEVD.

4.1 The SVAR(p) Approximation to the DGP

We first recall the ABC and D form of a RE solution:

εt = D̃−1mE
t − D̃−1C̃

∞∑
j=1

(Ã− B̃D̃−1C̃)jB̃D̃−1mE
t−j

⇒ mE
t = C̃

∞∑
j=1

(Ã− B̃D̃−1C̃)jB̃D̃−1mE
t−j + D̃εt (36)

where, for t = 1, · · ·, T , mE
t is a n × 1 vector of endogenous observed variables (the data), εt

is a n × 1 vector of structural white noise processes and Aj , for j = 0, 1 · ··, p, are matrices of

estimated structural coefficients.

An invertible RE solution of a linearized model is of form (36) if the following PMIC hold:

D̃ is non-singular and (Ã− B̃D̃−1C̃) has stable eigenvalues. Both the state space st and the Ã,

B̃ C̃ and D̃ matrices differ for PI and II.

For a possibly non-square system, the econometrician estimates an SVAR(p) model in struc-

13Impulse response functions have a standard interpretation with leisure as a normal good.
14For this reason, in what follows, we exclude the technology shock from our exercise as it does not display any

invertibility issue and is completely fundamental in our example but include the monetary shock for completeness.
Furthermore, results from Cholesky identification do not include the inflation objective shock as in the literature
this is not identified with short-run zero restrictions for obvious reasons.

15Simulated using the DSGE posterior means, our artificial dataset consists of 1,000 periods (discarding the
initial conditions), meaning that, in practice, there is no sample bias. This implies that the uncertainty around
the VAR estimates is mostly identification uncertainty which we address systematically in the following sections
with set-identification. However, all the results shown here are robust once sample bias is taken into account.
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Figure 3: Estimated SW Model Non-invertible Case 2: Misperceptions About the
Shocks under II. The graphs compare the actual structural unobserved shock pro-
cess xt with the agents belief Et[xt] for the technology, monetary policy and prefer-
ence shocks in turn.
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tural shocks

mE
t =

p∑
j=1

Ajm
E
t−j + Pεt (37)

where Aj and P are the dynamic and impact matrices, respectively, in the SVAR. (37) is the

reduced form VAR representation where the reduced form coefficients Aj are nonlinear functions

of Aj and the vector of reduced form errors ut = Pεt.

The IRFs stem from the MA representation:

mE
t =

∞∑
j=0

CjPεt−j (38)

where each Cj is a matrix of (In −
∑p

j=1AjL
j)−1, with its i-th column ci,j multiplying the i-th

shock. Identification then comes down to the choice of matrix P that satisfies Σu = PP ′.

In the absence of any identifying restrictions with an invertible system,

Σu ≡ E[utu
′
t] = ΣtrΣ

′
tr = PΣεΣ

′
εP
′ = PP ′ = ΣtrQQ

′Σ′tr (39)

P = ΣtrQ (40)

where Σtr is lower triangular of Cholesky factor of Σ̂ and Q (the ‘rotation matrix’) is an or-

thonormal matrix.

But if the PMIC fails and the model RE solution is not A-invertible, then the a-theoretical

econometrician may think that the reduced form VAR representation of the DGP is (37) whereas

in fact it is given by

mE
t =

p∑
j=1

Ãjm
E
t−j + P̂ et (41)

where, we recall from (28), et is an n× k vector of one-period ahead prediction errors and not

the structural shocks. If the model RE solution is invertible then et is a linear transformation

of εt, and then estimating and identifying (41) becomes equivalent to estimating (37).

4.2 Zero Short-Run Restrictions

Our first experiment is the classical recursive identification scheme which typically imposes

equality restrictions such as zero (short-run) restrictions on the off-diagonal elements of A0.

There are many A0 matrices with the given pattern of zeros: one simple solution is a lower

triangular A0 with positive diagonal values obtained by orthogonalizing Σe (Cholesky decom-

position). As a result, this can exactly identify the system with the exact number of equality

restrictions on each structural shock satisfying the condition for exact (point-)identification.

However, due to its simplicity, clearly this requires the sequence of causation in the model. We

identify and estimate the SVAR with the following most common ordering for yt: output, con-

sumption, investment, real wages, hours, inflation, interest rates (for example, Christiano et al.,

2005).16 Given the sequence of causation, the restrictions can be written as linear constraints

on the columns of Q as a function of the reduced form parameters.

The obvious problem of making the system recursive is that restrictions imposed regarding

the rotation matrix Q can be inconsistent with those imposed on the theoretical model (e.g., the

16Our first robustness check looks at the alternative sequences of yt. The main result is robust to the ordering
of variables in the SVAR.

21



DSGE model). Nevertheless, we estimate our SVAR identified by the simple Cholesky scheme

using the artificial data from the estimated Cases 1 and 2. Online Appendix F.2 reports the

estimated IRFs. These results show a clear message. The Cholesky scheme fails to recover the

DSGE IRFs, predicting the opposite sign on impact in many cases, even when there is perfect

information and the system is E- and A-invertible. For example, the bottom panels of Figure

4 below highlight how the IRFs from the VAR are less able to recover the DGP, compared

with Case 1, and generate the wrong sign for the impact mean responses (vis-à-vis the assumed

DGP responses). This is a well-known fact as these timing restrictions implied by a recursive

structure typically do not hold in DSGE models.
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Figure 4: Responses to Investment Specific Shock (Cholesky Decomposition)
Notes: Case 1 (top panels) and Case 2 (bottom panels). The three variables are the real wage (left), hours (centre) and
inflation (right). In each panel, the solid lines plot the posterior means of the VAR responses with the corresponding 95%
band of the point estimates (dotted). The dashed red lines are the SW-II responses for Case 2 and the dashed blue lines
are the SW-PI responses for Case 1.

4.3 Sign Restrictions with a Robust-Prior Inference

In order to further address the uncertainty about our identifying assumptions within set-

identified models, in this section, we revisit the sign-restricted SVAR estimated in Online Ap-

pendix E.3, in which the shocks are identified using the algorithm proposed by Uhlig (2005).

The Bayesian sampling algorithm generates a posterior distribution of IRFs to reflect uncer-

tainty about the reduced form parameters and the rotation matrix Q by specifying a commonly

used uniform prior on Q.17 The problem is that this prior choice does not imply a uniform

distribution over the identified set of the structural parameters which are a function of both

reduced form parameters and Q (Baumeister and Hamilton, 2015). Baumeister and Hamilton

(2015) and Giacomini and Kitagawa (2021) have also highlighted that this approach induces

prior information on the IRFs that cannot be updated by data even asymptotically because Q

is not identified and the likelihood is flat over the space of the admissible Q′s, and substantially

affects the posterior estimation of IRFs. This issue of having a posterior that is proportional

17Details of the algorithm designed to implement the sign restrictions are set out in Online Appendix E.3. Our
results are also appended to the paper.

22



to the prior, even asymptotically, is clearly relevant to us as our focus here is to separate the

impact of identification from invertibility.

To resolve this issue, this section estimates the sign-restricted models with a robust-prior

algorithm over the bounds of the identified set through a numerical optimization procedure set

out by Volpicella (2021) where the identified set is distribution-free and does not depend on a

specific prior over the Q matrix.18 The algorithm triggers an iterative procedure that solves a

constrained optimization problem consisting of a given objective function and, in general, the

user-specified linear, nonlinear inequality and equality constraints, to produce a distribution-free

identified set.19

Algorithm 1 Robust-Prior Procedure

Here we briefly describe the numerical algorithm that we use to robustly compute the impulse
response identified sets with a linear objective and inequality constraint. For each variable
i = 1, ..., n and for each horizon H:
1. Draw the estimate Ãi of Ai in (37) and Σ̂e from the posterior distribution of the reduced
form parameters.

2. Compute the bounds of the identified set by solving the following problem:

min
q

and max
q

c′ih(Ã,Σe)q

s.t. S(Ã,Σe)q ≥ 0

‖q‖ = 1

(42)

where q is the column of Q that corresponds to the shock of interest. c′ih(·) represents the
i-th row vector of ChΣtr for computing the impulse vectors. ‖ · ‖ denotes the Euclidean norm.
S(Ã,Σe)q ≥ 0 collects all the sign restrictions.

3. Repeat Steps 1-2 N times. Save the results as upper and lower bounds.

In Online Appendix F.4, we present the estimated IRFs from the SVAR using PI-simulated

artificial data and SW model (PI). Online Appendix F.4 also depicts the IRFs from the estimated

SVAR Model (II), SW Model (II) and SW Model (PI) simulated with the II estimates for Case

2. The prior-robust IRFs implied by the sign restrictions are now displayed with the posterior

means of the set bounds (solid) and the corresponding 95% band of the set (dotted). Table 3

summarizes the sign of the first period responses of the seven variables to Yt under PI and II

obtained from simulating the estimated models (calibrated at their posterior means). We use

(D.11) from Appendix D which is the DSGE solution capturing the shocks’ impact effect on

observables given RE. Sign restrictions are therefore necessary to identify the DSGE shocks.

It is not surprising to see that they are significantly more effective in recovering the DGP

relative to the Cholesky VARs, getting closer to those of the DGP, and can pin down the sign

of the SW IRFs in a decent number of cases, but still deliver very large set-estimates (imprecise

estimation) as there is high identification uncertainty (as is indeed the case in Section E.3).

However, what is relevant to our application is that, in some cases, the introduction of II on

18In effect, the optimizer computes [inf, sup] over all admissible rotation matrices Q′s.
19We apply Algorithm 1 for 1000 draws from the reduced form posterior specification, where a flat Normal

Inverse Wishart distribution is employed as prior. In our figures involving set-identified responses, we accordingly
report the posterior mean for upper and lower bound of the impulse responses identified sets and the corresponding
95% Bayesian credibility region. The latter is defined as Equal-Tailed Interval (ETI). For the case of our sign-
restricted models, this is in practice equivalent to the solutions in Amir-Ahmadi and Drautzburg (2021) and
Giacomini and Kitagawa (2021).
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dlGDPt dlCONt dlINVt dlWAGt HOUt dlCPIt FEDt

Case 1 Perfect Info. (IRFs based on PI case of (D.11))

GovExp + – – + + + +
MonPol – – – – – – +
Preference + + + + + + +
Investment + – + + + + +
PMarkup – – – – – + +

Case 2 Perfect Info. (IRFs based on PI case of (D.11))

GovExp + + – + + + +
MonPol – – – – – – +
Preference + + + + + + +
Investment + – + + + + +
PMarkup – – – – – + +
InfObj + + + + + + –

Case 2 Imperfect Info. (IRFs based on (D.11))

GovExp (FIIi = 0.0194) + + – + + + +
MonPol (FIIi = 0.0036) – – – – – – +
Preference (FIIi = 0.9526) + + + + + + +
Investment (FIIi = 0.5085) + + + + + + +
PMarkup (FIIi = 0.6655) – – – – – + +
InfObj (FIIi = 0.9989) + + + + + + –

Table 3: Sign Restrictions for Smets and Wouters (2007) Shocks

Notes: The non-fundamental measures, FII
i , are in parentheses. The IRF of Yt can be obtained based on PI case of (D.11),

that is, the Wold representation of (37). The IRFs can be derived as the conditional moments depending on the history of
shocks. We also check the signs of the impact impulse responses computed from simulating the model using 10,000 draws
of the posterior estimates.

agents’ information set makes the sign-restricted VAR less able to recover the assumed DGP.

Thus, at least partially, the informational frictions from agents can play a role, and this is evident

from Online Appendix F.4 in a straight comparison of PI and II solutions for the preference

and investment specific shocks. To focus the presentation, we compare the effectiveness of both

PI and II in recovering the DGP based on several selected figures in Section 4.5.

4.4 Restrictions on Bounds of the Forecast Error Variance Decomposition

To help further shrink the set of admissible structural parameters in our sign-SVAR, we utilize

Volpicella (2021) and impose bounds on the FEVD implied by the estimated DGP as an addi-

tional strategy of appropriating the impulse vectors and to eliminate any uncertainty about the

specific values used for bounding the IRFs. In other words, we identify and estimate the SVAR

restricted with both the sign restrictions and bounds on the variances of the forecast errors

(FEV) implied by the SW model. This approach, by complementing sign restrictions with a

novel methodology, aims to further improve the estimation precision of our sign-restricted model

and deliver informative inference.

Both the sign restrictions and FEV bounds are imposed at h = 0.20 We generate the

bounds by randomly drawing DSGE parameter vectors from the posterior distribution. FEVD

decomposes the variation in each endogenous variable into each shock to the system, thus

providing information on the relative importance of each disturbance as a source of variation

for each variable. In particular, it decomposes the FEV for the target Yz,t+h using information

20As a robustness check, we extend the sign restrictions and bounds on the FEV up to 4 quarters. This does
not change the results.
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at time t into the percentage explained by each of the shocks s

FEV Dz
s(h) ≡ FEV z

s (h)

FEV z(h)
(43)

where FEV z
s (h) is the FEV of variable z due to shock s at h, FEV z(h) the total FEV of

variable z at h, and 0 ≤ FEV Dz
s(h) ≤ 1. Using the notations in Volpicella (2021), we can write

(43) as

FEV Dz
s(h) = q′sΓ

z
h(Ã,Σe)qs = q′s

∑h
0 czh(Ã,Σe)c

′
zh(Ã,Σe)∑h

0 c
′
zh(Ã,Σe)czh(Ã,Σe)

qs (44)

We define the set of bounds on the FEVD for Yz at h from shock s

lbzhs ≤ q′sΓzh(Ã,Σe)qs ≤ ubzhs (45)

then we simply add to (42) the above quadratic inequality constraints on the columns of Q

when searching for the set of Q′s that satisfy the both linear and quadratic constraints that are

now more restrictive. Step 2 of Algorithm 1 becomes

min
qs

and max
qs

c′ih(Ã,Σe)qs

s.t. S(Ã,Σe)qs ≥ 0

lbzhs ≤ q′sΓzh(Ã,Σe)qs ≤ ubzhs
‖qs‖ = 1

(46)

To derive the theory-driven restrictions using bounds on the FEVD, we simply compute the

90% intervals or the maximum and minimum value of the FEVDs simulated by the 10,000 draws.

Solutions to problem (46) then allow to compute bounds of the identified sets of the impulse

responses. Among the restrictions, we have sign restrictions and bounds on the FEVD. Table 4

displays these FEV bounds at horizon h = 0 generated by the posterior estimation of the DGP

for the seven variables of the SW model. These bounds show relatively small intervals for many

variables. For instance, in the short run, a monetary shock explain a large share of unexpected

movements in the interest rate and over 50% of the fluctuations of inflation can be attributed

to the price mark-up shock. We therefore anticipate that these bounds, in conjunction with the

impact sign constraints, can be very informative in terms of tightening the estimation precision

and removing implausible effects of shocks from our set-identified IRFs. Having been able to

maximise the ability of identifying assumptions to recover the DGP responses, we can turn our

focus to invertibility of the DGP.

4.5 Assessment

A clear message emerges from the results in this section is that, with respect to the sign

restrictions (set out in Table 3), the identification uncertainty decreases because of the additional

restrictions (set out in Table 4), significantly improving the precision of our estimated IRFs

in line with the theoretical SW model. Clearly, identification is what mostly matters when

the system/shocks are exactly fundamental but the information frictions can still impact on

the recoverability of the SW IRFs which is conditional on the RE solution for agents being

consistent with A-invertibility or not.

First, we can actually report some good news for the estimated SW model. For the original

square Case 1 there is no invertibility problem so the divergence between estimated model and
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dlGDPt dlCONt dlINVt dlWAGt HOUt dlCPIt FEDt

Case 1 Perfect Info., [lbzs, ub
z
s], h = 0

GovExp [0.23,0.50] [0.00,0.07] [0.00,0.02] [0.00,0.01] [0.21,0.47] [0.00,0.01] [0.00,0.06]
MonPol [0.02,0.12] [0.04,0.26] [0.01,0.09] [0.00,0.04] [0.02,0.12] [0.00,0.07] [0.35,0.79]
Preference [0.15,0.41] [0.51,0.94] [0.01,0.21] [0.00,0.09] [0.14,0.39] [0.00,0.04] [0.07,0.39]
Investment [0.04,0.26] [0.00,0.07] [0.65,0.93] [0.00,0.02] [0.04,0.25] [0.00,0.09] [0.00,0.06]
PMarkup [0.00,0.06] [0.00,0.05] [0.00,0.07] [0.13,0.43] [0.00,0.04] [0.51,0.95] [0.03,0.17]

Case 2 Perfect Info., [lbzs, ub
z
s], h = 0

GovExp [0.17,0.46] [0.00,0.02] [0.00,0.03] [0.00,0.01] [0.15,0.47] [0.00,0.02] [0.00,0.06]
MonPol [0.02,0.13] [0.01,0.17] [0.01,0.19] [0.00,0.04] [0.02,0.12] [0.00,0.17] [0.66,0.96]
Preference [0.08,0.51] [0.16,0.68] [0.01,0.62] [0.00,0.15] [0.08,0.50] [0.00,0.12] [0.00,0.13]
Investment [0.03,0.28] [0.00,0.02] [0.18,0.94] [0.00,0.01] [0.03,0.32] [0.00,0.10] [0.00,0.06]
PMarkup [0.00,0.04] [0.00,0.02] [0.00,0.05] [0.00,0.25] [0.00,0.02] [0.07,0.89] [0.00,0.17]
InfObj [0.00,0.05] [0.00,0.03] [0.00,0.07] [0.00,0.02] [0.00,0.05] [0.00,0.14] [0.00,0.06]

Table 4: Estimated FEV Bounds for Smets and Wouters (2007) Shocks

Notes: The bounds of the FEVD are computed as the maximum and minimum value of the estimated FEVDs simulated
using the 10,000 parameter draws.

SVAR are entirely due to a combination of the finite VAR assumption and the choice of the

mapping matrix (the traditional identification problem). For example, if we focus on the real

effect of IRFs to a monetary policy shock for Case 1 and compare the outputs from the three

identification schemes (Cholesky vs Sign vs BoundsFEV) in Figure 5, it is very clear that our

latest identification approach delivers the best estimation precision, removing the implausible

responses and outperforming the Cholesky- and sign-VARs in replicating the responses in the

assumed DGP (i.e., in terms of the median responses).
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Figure 5: The Real Effect of Monetary Policy Shock for Invertible Case 1 (Cholesky
vs Sign vs BoundsFEV)
Notes: Cholesky (top panels), Sign (middle panels) and BoundsFEV (bottom panels). The real variables are GDP (left),
consumption (centre) and investment (right). The solid lines plot the posterior means of the VAR response set bounds for
Sign and BoundsFEV with the corresponding 95% band of the set (dotted). The solid lines plot the mean responses for
Cholesky with the corresponding 95% band of the point estimates (dotted). The dashed blue lines are the SW-PI responses.

Our second finding reports more good news even for the non-square non-invertible Case

2. Namely, the monetary policy and government spending shocks seem to be approximately
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fundamental as indicated by the IRF comparisons and the Fi measures for the two shocks. This

is encouraging as many researchers only focus on these two shocks in the empirical literature.

These results are very robust to the alternative identification strategy implemented in Section

4.3, i.e., when we impose only the sign restriction to achieve the identified set. Indeed, our IRF

figures show that, for the monetary policy shock (with the smallest FIIr = 0.0036) for example,

most of the SW-II posterior responses capture the empirical responses very well, with most of

them lying inside the 95% uncertainty bands and the means of the identified sets (Figure 6).

There is more evidence where the divergence in IRFs starts to appear and the IRFs from

the SVAR may be badly misspecified for one particular set of IRF if we just focus on comparing

the investment responses in Figure 7 below which highlight an IRF comparison between the two

cases from a government spending shock. Note that FIIg = 0.0194 which is slightly higher than

FIIr . For Case 2 assuming II, there is a clear impact on the recoverability of the SW IRFs as

there is considerable divergence in IRFs between the DGP and the posterior mean of the upper

bound of the sets (and the dotted 95% credibility bands of the sets).

Now we turn to the remaining shocks that are not approximately fundamental based on

our Fi indicators. There is a mixed outcome from matching IRFs and the Fi measures. The

first interesting case to examine is the investment specific shock (FIIi = 0.5085). As before, we

compare the results in Figure 8 between the invertible (top panels) and non-invertible (bottom

panels) models. In addition, if we impose the same parameter estimates in simulating the SW

model, we find that II introduces more persistence compared with PI with the longer drawn-

out responses following this particular shock (we refer to Appendix F.1 panel (b) for details).

This implies that persistence is endogenously generated which should lead to a better fit of the

data without relying on other persistence mechanisms (e.g., AR(1) shock processes). This is a

well-known finding and has been extensively discussed in Collard et al. (2009) and Levine et al.

(2012).

However, if we focus on Figure 8 below, our main finding of this paper can be clearly

revealed again. In particular, the bottom panels show how the IRFs from the SVAR may be

badly misspecified and are therefore less able to recover the DGP which does generate more

hump-shaped responses and endogenous persistence in the IRFs (especially comparing the left

panels). When it comes to matching the higher order responses, the evidence is even clearer,

with the Case 1 SVAR generally fitting better the dynamics seen in the DSGE model, while the

implied VAR responses produced by Case 2 match very poorly the DGP counterparts towards

the end of the horizon.

Finally, our findings are consistent across the different shocks that we identify for the VAR

and DSGE models but are not E- and A-invertible in the latter. For example, the same con-

clusions above can be drawn for the same variables we have seen (i.e., inflation and the interest

rate) if we look at the preference shock (FIIb = 0.9526) in Figure 9 below. In other words, the

ability of identifying assumptions for the SVAR to recover the DGP response worsens with a

non-invertible non-fundamental system between Case 1-PI and Case 2-II.

In addition, as the final structural shock identified by the DSGE Case 2 and SVAR, the

bounds on the FEV in Table 4 are much more restrictive for the inflation objective shock

suggesting the narrow identified sets reported in the empirical IRFs. Despite the narrower

sets because of the added information and that the SVAR can successfully pin down the sign

of all the SW IRFs, the performance of VARs in matching the DGP seems to be much worse

compared with the other figures due to the fundamentalness problem associated with this shock.

Appendix F.5 shows similar results for the other shocks and individual IRFs.

Overall, our main findings on the potential (in)ability of an SVAR to match IRFs of a DGP,
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(a) Case 1 (PI)
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Figure 6: Responses to Monetary Policy Shock (BoundsFEV)
Notes: In each panel, the solid lines plot the posterior means of the VAR response set bounds with the corresponding 95%
band of the set (dotted). The dashed blue/red lines are the SW-PI/SW-II responses for Case 1/Case 2. FII

r = 0.0036.
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Figure 7: Responses to Government Spending Shock (BoundsFEV)
Notes: In each panel, the solid lines plot the posterior means of the VAR response set bounds with the corresponding 95%
band of the set (dotted). The dashed blue/red lines are the SW-PI/SW-II responses for Case 1/Case 2. FII

g = 0.0194.
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Figure 8: Responses to Investment Specific Shock (BoundsFEV)
Notes: Case 1 (top panels) and Case 2 (bottom panels). The two variables are inflation (left) and the interest rate (right).
In each panel, the solid lines plot the posterior means of the VAR response set bounds with the corresponding 95% band of
the set (dotted). The dashed red lines are the SW-II responses for Case 2 and the dashed blue line are the SW-PI responses
for Case 1. FII

i = 0.5085.
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Figure 9: Responses to Preference Shock (BoundsFEV)
Notes: Case 1 (top panels) and Case 2 (bottom panels). The two variables are inflation (left) and the interest rate (right).
In each panel, the solid lines plot the posterior means of the VAR response set bounds with the corresponding 95% band of
the set (dotted). The dashed red lines are the SW-II responses for Case 2 and the dashed blue line are the SW-PI responses
for Case 1. FII
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based on a well-established estimated DSGE model, are robust to a variety of identification

schemes that we use to address the identification problem: zero restrictions, mixed sign and

zero restrictions, sign restrictions with uniform prior, sign restrictions with distribution-free sets,

and sign restrictions with theory-driven bounded FEV. We also carry out a number of checks

and find that the results are robust to the choice of variables in the SVAR (Cholesky), lag order

(see Section 5.4 below), different horizons for the sign and FEV constraints, prior specification,

and a large number of random parameter draws from the DGP posterior distributions.

4.6 Can the Econometrician By-pass SVARs and Estimate IRFs Directly?

Using the method of local projections (LP) of Jorda (2005), we can indeed bypass the intervening

step of a VAR. The LP approach uses “external instruments” which are variables correlated

with a particular shock of interest, but not with the other shocks. External instruments can

then be used to directly estimate causal effects by direct instrumental variables (IV) regressions.

This method does not require invertibility, but does require good instruments which, for many

shocks, may not be available to the econometrician.

Stock and Watson (2018) compares the LP-IV approach with a more efficient SVAR-IV

approach and proposes a new test for invertibility which is applied to the study of Gertler and

Karadi (2015). Plagborg-Moller and Wolf (2021), building on Stock and Watson (2018), show

that the addition of an instrumental variable, whether external or internal, to the econometri-

cian’s information set may enable estimation of at least a scaling of the true IRF even when

structural shocks are non-invertible. However, in the context of our paper which stresses the

information problem of agents in the model, this then begs the question why agents are not

able to observe the additional information as well. What are the consequences of agents having

this additional source of information?21

A second alternative that bypasses SVARs is to follow the traditional route of the RBC

model literature and simply stick with the estimation of the structural model by Bayesian (as

in this paper) or GMM methods. Validation then proceeds by comparing second moments of

the estimated model with those of the data.

5 Cumulative Mean Square Distance

As we have established that the potential reasons for the IRF differences could be due to the

problems of (1) approximate invertibility; (2) with the identification; and (3) the lag length of

the SVAR fitted to a large number of variables. In this section, we address each of these points

in turn in order to gain further insights into the IRF estimations. We do so by defining a metric

to measure the square distance from the true responses. We also examine the performance

from the several different identification schemes using the above analysis by focusing on the

retrievable shocks (εr and εg). The results can be informative for the empirical researchers

about the reliability of identification schemes.

5.1 SW Model Case 2: Perfect vs Imperfect Information

We first compute a measure of the cumulative difference that corresponds to the analysis in

Section 3.3 and Figure 2. For the main shocks that we have identified for the SVAR estimation

including the technology shock again, we focus on comparing the responses based on the same

21See Levine et al. (2022) for more discussion and analysis of this point.
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parameterization (i.e., II simulations with II estimates vs. PI simulations with II estimates) to

isolate the effects of information on IRFs. The cumulative difference is given by

dmH =
H∑
h=0

|[IRFm=PI
SW (h, θ)]− [IRFm=II

SW (h, θ)]| (47)

where dmH measures the distance between the impulse responses accumulated from h = 0 to H.

m is the information assumption index (m = PI, II). | · | stands for the Euclidean norm which

we take to be the mean square distance between two trajectories. Table 5 compares the results

as an additional indication of pure A-invertibility and of the wedge between the IRFs arisen

solely from the different information assumptions.

dlGDPt dlCONt dlINVt dlWAGt HOUt dlCPIt FEDt qt mct dH Total

Technology (FIIi = 0.0004) 0.0003 0.0004 0.0004 0.0001 0.0005 0.0002 0.0001 0.0014 0.0003 0.0037
MonPol (FIIi = 0.0036) 0.0005 0.0005 0.0011 0.0003 0.0009 0.0003 0.0010 0.0026 0.0016 0.0087
GovExp (FIIi = 0.0194) 0.0107 0.0166 0.0090 0.0029 0.0197 0.0026 0.0042 0.0612 0.0109 0.1378
Investment (FIIi = 0.5085) 0.0185 0.0295 0.0199 0.0053 0.0328 0.0028 0.0070 0.1166 0.0185 0.2509
PMarkup (FIIi = 0.6655) 0.0256 0.0183 0.0637 0.0175 0.0611 0.0203 0.0244 0.0744 0.0634 0.3686
Preference (FIIi = 0.9526) 0.0487 0.0747 0.0365 0.0131 0.0942 0.0089 0.0222 0.2496 0.0521 0.6001

Table 5: Cumulative Mean Square Distance – Comparison of PI and II solutions in
Estimated SW Model

It clearly shows that the divergence in IRFs (measured by dH Total) is consistent with the

measure of approximate fundamentalness-invertibility (FIIi ) from those VAR-identified shocks.

Quantitatively, the table reaffirms the usefulness of our FIIi measure of approximate invertibility-

fundamentalness for each shock: the good approximation of the structural shock to the innova-

tion for the technology and monetary policy shocks produces a cumulative difference very close

to 0 for every individual IRF. The intuition of the IRF results for the estimated SW model has

been discussed in detail in Section 3.3.

5.2 SVAR(1) and SW Model Cases 1 and 2

We further compute a measure of the cumulative difference between the responses to VAR and

SW model structural shocks

dmH =

H∑
h=0

|[IRFmVAR(h, θ)]− [IRFmSW (h, θ)]| (48)

for m =PI or II.

We present the cumulative of the Euclidean norm for the two cases under PI and II as

the horizon increases (H = 20). We can gain further understanding on (i) the difference of

responses to shocks; (ii) how the cumulative of the Euclidean distance changes over time with

the horizon after the shock hits the system. We begin with the estimated SVAR(1) identified by

sign restrictions with theory-driven bounded FEV. Table 6 reports the cumulative mean square

distance (CMSD) for the two cases when p = 1 and H = 20.

dmH measures the cumulative distance between the posterior means of the VAR responses and

SW model responses. The benefit of this exercise is allow us to quantitatively study the degree

and effects of invertibility and/or identification in response to a shock. Based on the statistics

reported, not surprisingly, Table 6 shows that the cumulative differences between the VAR and

DSGE responses are the smallest for the monetary policy and government spending shocks, the
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dlGDPt dlCONt dlINVt dlWAGt HOUt dlCPIt FEDt dH Total

Case 1 dPIH (H = 20)

MonPol 0.011 0.016 0.020 0.007 0.014 0.004 0.015 0.089
GovExp 0.008 0.006 0.016 0.007 0.054 0.018 0.021 0.131
Investment 0.020 0.032 0.156 0.010 0.157 0.010 0.036 0.420
PMarkup 0.032 0.029 0.056 0.030 0.239 0.052 0.073 0.511
Preference 0.024 0.048 0.021 0.009 0.108 0.010 0.019 0.239

Case 2 dIIH (H = 20)

MonPol (FIIi = 0.0036) 0.014 0.016 0.037 0.006 0.022 0.005 0.016 0.115
GovExp (FIIi = 0.0194) 0.011 0.012 0.082 0.007 0.014 0.011 0.010 0.147
Investment (FIIi = 0.5085) 0.017 0.024 0.071 0.013 0.033 0.015 0.021 0.194
PMarkup (FIIi = 0.6655) 0.012 0.020 0.046 0.031 0.093 0.029 0.031 0.263
Preference (FIIi = 0.9526) 0.043 0.047 0.076 0.019 0.107 0.013 0.027 0.331

Table 6: Cumulative Mean Square Distance (BoundsFEV)

shocks that are approximately fundamental according to the FIIi measures, even for the non-

square Case 2. These values are close to being economically insignificant in terms of the square

distance in their cumulative responses of all the observable variables (dH in the last column is

close to 10 percentage points for εr for example). The preference shock (FIIi = 0.9526), on the

other hand, reports the largest cumulative distance generated by Case 2 estimated under II,

which is again consistent with our results above based on the IRF figures and invertibility table.

In particular, Table 6 clearly indicates, for Case 2 solved and simulated under the relevant

II assumption, a monotonic relationship between our measures of approximate invertibility-

fundamentalness, FIIi , and dH Total.

Based on the estimated VAR responses using the bounds FEV identification restrictions,

nearly all the CMSD measures to each shock (forH = 20 periods) are close to being economically

insignificant (i.e., dH < 10 percentage points). In most cases, the introduction of II makes the

identifying restrictions less able to recover the DGP. The two exceptions are the responses of

hours to the investment specific (with a large dH = 0.157) and mark-up shocks (dH = 0.239) for

the invertible Case 1. One potential explanation for this is because p = 1 lag may not enough

for fitting the SVAR to this observable. We turn to Section 5.4 for examining the increased lags

of the SVAR for all the seven variables.

5.3 Identification of Retrievable Shocks

It is also useful to compare these statistics generated by the various identification schemes but

only for the retrievable shocks in the SVAR: the monetary policy and government spending

shocks. For the non-retrievable ones, the results are non-informative since no identification

schemes can be successful. Table 7 can help make a clear recommendation about the perfor-

mance of our most reliable identification scheme. BoundsFEV produces the smallest and most

acceptable dH across the different assumptions and for all the observable variables whereas the

Cholesky scheme fails considerably in recovering most of the IRFs especially for the PI Case 1

which is invertible (for example, dH Total = 1.057).

It is interesting to note that, even for these retrievable shocks identified by the superior

BoundsFEV scheme, the fundamentalness problem worsens for the overall performance of VARs

under II when adding the additional shocks in the non-invertible Case 2. This is clearly evident

that, when we are able to minimise the identification uncertainty, the informational assumption

plays a key role in our model’s (in)ability to recover the DGP responses (i.e., dH Total has risen

to 0.115 and 0.147 for the monetary policy and government spending shocks, respectively). The
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dlGDPt dlCONt dlINVt dlWAGt HOUt dlCPIt FEDt dH Total

Case 1 dPIH (H = 20)

BoundsFEV

MonPol 0.011 0.016 0.020 0.007 0.014 0.004 0.015 0.089
GovExp 0.008 0.006 0.016 0.007 0.054 0.018 0.021 0.131

Sign Restrictions

MonPol 0.051 0.029 0.127 0.052 0.107 0.038 0.056 0.459
GovExp 0.051 0.038 0.130 0.059 0.267 0.048 0.047 0.641

Zero Restrictions

MonPol 0.085 0.062 0.412 0.159 0.247 0.034 0.058 1.057
GovExp 0.358 0.027 0.038 0.024 0.163 0.144 0.031 0.784

Case 2 dIIH (H = 20)

BoundsFEV

MonPol 0.014 0.016 0.037 0.006 0.022 0.005 0.016 0.115
GovExp 0.011 0.012 0.082 0.007 0.014 0.011 0.010 0.147

Sign Restrictions

MonPol 0.052 0.036 0.109 0.055 0.091 0.043 0.077 0.463
GovExp 0.045 0.053 0.111 0.061 0.193 0.048 0.048 0.561

Zero Restrictions

MonPol 0.150 0.051 0.289 0.146 0.239 0.030 0.077 0.982
GovExp 0.307 0.046 0.067 0.024 0.143 0.091 0.039 0.717

Table 7: Cumulative Mean Square Distance (BoundsFEV vs SR vs ZR)

sign-VARs also deliver very large set estimates implying that the uncertainty around these es-

timates is mostly identification uncertainty (similar to the Cholesky case). In addition to the

informational assumptions, not surprisingly, identification uncertainty also plays a key role in

recovering the DGP responses. The key result here is that, further to our brief discussion in

Figure 5, Table 7 is able to quantify and measure the superiority of the BoundsFEV identifica-

tion scheme that we apply to tackle the information/invertibility issue when using SVARs for

validation of a theoretical model.

5.4 Lags of the SVAR

This is our final check. In this section, we evaluate two additional specifications to test the

robustness of the main results. As we simulate and work on quarterly data, we check the VAR

responses with p > 1 as some may argue that the responses of some observables (e.g., the real

GDP) to these shocks may be sluggish. While the information criteria such as AIC or BIC

suggest that the optimal number of lags is between 1 and 2, we allow for sufficiently long lags

(up to 5 lags) and report the CMSD results with p = 2 and p = 3 in Table 8. Along with a

number of robustness checks that have been conducted in the previous section, we need to check

if our major finding in the paper withstands the choices of lag length when we re-estimate the

same SVAR identified by the BoundsFEV scheme.

The results are broadly consistent with those in Section 5.2. In particular, for the non-square

Case 2 estimated under II, the preference shock shows the largest cumulative difference whereas

the two retrievable shocks report the smallest cumulative differences between the VAR and

DSGE responses. If we look closely at the dH Total column, note that increasing p > 1 appears

to worsen the VAR performance for the least fundamental shock (Preference) and the most

fundamental shock (MonPol), suggesting a larger deviation from the DGP responses compared

34



dlGDPt dlCONt dlINVt dlWAGt HOUt dlCPIt FEDt dH Total

p = 2

Case 1 dPIH (H = 20)

MonPol 0.011 0.011 0.029 0.015 0.019 0.006 0.017 0.108
GovExp 0.009 0.010 0.021 0.007 0.023 0.012 0.020 0.101
Investment 0.023 0.031 0.146 0.006 0.162 0.006 0.038 0.413
PMarkup 0.027 0.025 0.048 0.026 0.189 0.051 0.060 0.425
Preference 0.032 0.054 0.018 0.013 0.122 0.007 0.022 0.268

Case 2 dIIH (H = 20)

MonPol (FIIi = 0.0036) 0.018 0.008 0.058 0.006 0.034 0.007 0.006 0.137
GovExp (FIIi = 0.0194) 0.009 0.010 0.075 0.012 0.011 0.002 0.004 0.123
Investment (FIIi = 0.5085) 0.021 0.019 0.079 0.011 0.051 0.016 0.024 0.221
PMarkup (FIIi = 0.6655) 0.010 0.019 0.021 0.031 0.077 0.030 0.028 0.216
Preference (FIIi = 0.9526) 0.044 0.050 0.077 0.020 0.118 0.019 0.032 0.359

p = 3

Case 1 dPIH (H = 20)

MonPol 0.014 0.011 0.034 0.015 0.031 0.009 0.016 0.130
GovExp 0.014 0.011 0.029 0.008 0.036 0.012 0.020 0.131
Investment 0.023 0.028 0.138 0.009 0.147 0.009 0.038 0.392
PMarkup 0.025 0.021 0.047 0.025 0.148 0.048 0.057 0.371
Preference 0.041 0.060 0.019 0.015 0.176 0.009 0.025 0.345

Case 2 dIIH (H = 20)

MonPol (FIIi = 0.0036) 0.018 0.009 0.057 0.010 0.021 0.006 0.012 0.132
GovExp (FIIi = 0.0194) 0.011 0.010 0.076 0.013 0.015 0.004 0.005 0.134
Investment (FIIi = 0.5085) 0.022 0.022 0.085 0.012 0.056 0.014 0.020 0.230
PMarkup (FIIi = 0.6655) 0.015 0.015 0.039 0.028 0.060 0.027 0.025 0.209
Preference (FIIi = 0.9526) 0.041 0.049 0.067 0.019 0.116 0.018 0.031 0.341

Table 8: Cumulative Mean Square Distance (BoundsFEV) Based on SVAR(2) and
SVAR(3)

to the case when p = 1.

However, another result is worth noting here. As mentioned, the responses of hours to the

investment specific (with a large dH = 0.157) and price mark-up shocks (dH = 0.239) for the

invertible Case 1 generate a large CMSD between the VAR and DSGE IRFs. Sufficiently long

lags may be needed for estimating the effects of these two shocks on hours even though linear

information criteria such as AIC or BIC often result in more parsimonious models. Indeed, in

the case of SVAR(2), dH for the mark-up shock has decreased to 0.189, and when estimating

the SVAR(3), these statistics have become 0.147 and 0.148 for the investment and mark-up

shocks, respectively.22 As a consequence, Table 8 reports an overall pattern of reduction in dH
Total for these two shocks as p increases.

6 Conclusions and Future Research

Can indeed SVAR methods be employed to recover the structural shocks and impulse response

functions if the data generating process is a DSGE model? In this paper, we tackled this

question by addressing both the invertibility and identification issues, thus providing a novel

procedure to uncover the potential (in)ability of an SVAR to match the structural IRFs of

DSGE models. The source of non-invertibility in our paper is the imperfect information of the

agents in the DSGE model, the assumed DGP.

By generating artificial data using the appropriate DSGE model assumptions and estimating

22To save space, we only report the CMSD results from estimating the SVAR(2) and SVAR(3) – our main
results hold up to 5 lags.
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several identified SVARs, we studied and revealed two sources of potential misspecification for

the each shock we identified for the SVAR in turn: (1) invertibility for each shock using our

FIIi measure of approximate invertibility-fundamentalness and (2) inappropriate identification

restrictions highlighting our contribution using the identifying scheme employing theory-driven

bounds on the forecast error variance. Our application based on an industry standard DSGE

model yielded very strong results that withstood a wide array of tests and checks and provided a

clear-cut answer to the research question. In doing so, we provide a methodology which is com-

pletely general for the macro-econometrics literature and should precede any SVAR validation

of a particular model using actual data.

There is some good news to report on both absolute and fundamental invertibility summa-

rized in the main results reported in Section 1.1. However, for some shocks, the results indicated

that SVARs cannot be used to compare IRFs with those of a DSGE model. It is important

to stress that our computational results are only specific to a well-established medium-sized

NK model and more (or less) severe invertibility and identification problems could well emerge

with other examples. In particular, one feature of DSGE models that might prove important

in this respect are uncertainty shocks which have driven an important literature on business

cycles in recent years for which Fernandez-Villaverde and Guerron-Quintana (2020) provides a

very useful review. They show how stochastic volatility can be conveniently modelled in linear

models by adding time-varying standard deviations as a ARMA (possibly an AR(1)) process. If

we allow for such volatility for every shock process in our model this then doubles the number of

shocks and accentuates the non-invertibility problem. However pursuing this research objective

would require an II solution that captures non-linearity and goes beyond the linear Kalman

Filter utilized in our paper.

Another area for future research is in models with heterogeneous agents and dispersed

information alluded to in the Subsections 1.2 and 2.5. Providing general solutions to the solution

of dynamic RE models with dispersed information in a heterogeneous agents setting remains a

major challenge.23

Finally, NK models with financial frictions often include a large number of financial shocks,

not necessarily matched with data, thus moving further away from the (possibly) invertible

square structure. This and other sources of non-invertibility, coupled with our measure of

approximate invertibility and the identification method of Volpicella (2021), suggest possible

areas for future research into the relationship between SVARs and DSGE models.
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Appendix

A Proof of the PMIC (Theorem 2)

From (19) we have εt = D̃−1(mE
t − C̃Lst) where L is the lag operator and (I − ÃL)st = B̃εt =

B̃D̃−1(mE
t − C̃Lst) from which we obtain st = [I − (Ã− B̃D̃−1C̃)L]−1B̃D̃−1mE

t and hence

εt = D̃−1(mE
t − C̃st−1) = D̃−1(mE

t − C̃[I − (Ã− B̃D̃−1C̃)L]−1B̃D̃−1mE
t−1) (A.1)

Expanding (I −X)−1 = I +X +X2 + · · · we then have

εt = D̃−1

mE
t − C̃

∞∑
j=1

(Ã− B̃D̃−1C̃)jB̃D̃−1mE
t−j

 (A.2)

A necessary and sufficient condition for the summation to converge is that Ã − B̃D̃−1C̃ has

stable eigenvalues (eigenvalues within the unit circle in the complex plane).

In ABE form in the Theorem we have:

C̃(Ã− B̃D̃−1C̃)j = ẼÃ(Ã− B̃(ẼB̃)−1ẼÃ)j = ẼÃ(I − B̃(ẼB̃)−1Ẽ)Ã)j (A.3)

Define X = (I − B̃(ẼB̃)−1Ẽ). Then we use

A(XA)j = (AX)jA (A.4)

This can be easily proved by induction: Suppose it is true for j = n. Then A(XA)n+1 =

AXA(XA)n = AX(AX)nA = (AX)n+1A. Hence it is true for j − n+ 1. But the result is true

for j = 1 (scalars). Hence true for j = 2, j = 3, ....

Using (A.4) we then have

C̃(Ã− B̃D̃−1C̃)j = ẼÃ(I − B̃(ẼB̃)−1Ẽ)Ã)j = Ẽ(Ã(I − B̃(ẼB̃)−1Ẽ))jÃ (A.5)

so that the PMIC requirements are that ẼB̃ is invertible and that Ã(I−B̃(ẼB̃)−1Ẽ) has stable

eigenvalues as in the main text.

B Proof of Theorem 3

Using the expressions (20)–(23) for II, and the invertibility requirement that Ã− ÃB̃(ẼB̃)−1Ẽ

has stable eigenvalues, we calculate the latter as the matrix[
A−APAJ ′(EPAJ ′)−1E 0

−F (I − PAJ ′(JPAJ ′)−1J)(JB)−1JPAJ ′(EPAJ ′)−1E F (I −B(JB)−1J)

]
(B.6)

If F (I−B(JB)−1J) has eigenvalues outside the unit circle, it immediately follows that II is not

E-invertible. If its the eigenvalues are inside the unit circle, it follows that the solution to (18) is

PA = BB′; this is because the Convergence Condition for PA is that F −FPAJ ′(JPAJ ′)−1J =

F (I − B(JB)−1J) is a stable matrix. Furthermore it follows that A − APAJ ′(EPAJ ′)−1E =

A(I −B(EB)−1E), so that (B.6) is a stable matrix as required for invertibility.

To show that invertibility implies that II and PI are equivalent, we note that (13) now
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implies that z̃t = Bεt + (F (I −B(JB)−1J))tz̃0, which in dynamic equilibrium implies z̃t = Bεt.

This implies that zt+1,t = Azt,t−1 +ABεt, and hence that zt+1 = z̃t+1 +zt+1,t = Azt,t−1 +ABεt+

Bεt+1 = Azt +Bεt+1 as in the PI case. In addition, from (15), mA
t = Ezt,t−1 +Ez̃t = Ezt, also

as in the PI case. If F (I −B(JB)−1J) is not a stable matrix, then PA 6= BB′, and the overall

dynamics of (12)–(15) are of a higher dimension than under PI.

C Proof of Theorem 4

If F is a stable matrix, consider the stochastic process yt represented by

xt = Fxt−1 +Bεt yt = Jxt cov(εt) = I

where yt and εt have equal dimension. This has AR roots given by the eigenvalues of F and

MA roots that are the eigenvalues of F (I − B(JB)−1J). Given the Riccati matrix PA, there

exists a process ỹt with identical spectrum to yt of the form

x̃t = Fx̃t−1 + PAJ ′(JPAJ ′)−1ηt ỹt = Jx̃t cov(ηt) = JPAJ ′

It follows from the formula above that the MA roots of this process are given by the eigenvalues

of F (I − PAJ ′(JPAJ ′)−1J).

Noting that the spectrum of a process in L-operator form will contain terms of the form

(1−aL)(1−aL−1), it follows that the roots of the MA part of the spectrum are pairwise inverses

of one another. From this it automatically follows since yt and ỹt have identical spectra, that the

roots of F (I −B(JB)−1J) and F (I −PAJ ′(JPAJ ′)−1J) are either identical or else reciprocals

of one another.

Returning to the representation of the II solution, from the proof of Theorem 3, we have

seen that the MA roots of the VARMA process include the eigenvalues of F (I − B(JB)−1J),

while from (12)–(13), the AR roots include the eigenvalues of F (I − PAJ ′(JPAJ ′)−1J). One

or more of these are reciprocals of one another, as we have shown above. Hence the transfer

function from shocks to observables incorporates at least one Blaschke factor. It follows that

IRFs of structural shocks from the latter cannot be linear combinations of IRFs from VAR

residuals, which will only mimic the IRFs from the innovations process.

D Impulse Response Functions and Generating Artificial Data

First, we rewrite the system (12) and (13) with a one-period lead[
zt+1,t

z̃t+1

]
=

[
A A

[
PAJ ′(JPAJ ′)−1J − I

]
0 F [I − PAJ ′(JPAJ ′)−1J ]

][
zt,t−1

z̃t

]
+

[
B

0

]
εt+1 (D.7)

To obtain the impulse response for the underlying variables Yt we use the relationship

Yt = V1xt + V2st (D.8)

Recalling that zt+1 = [εt+1, st, xt]
′, it follows that st = [0 I 0]zt+1, and we may write

Yt = V1xt +

[
0 V2 0

](
Azt +A

[
PAJ ′(JPAJ ′)−1J − I

]
z̃t

)
(D.9)
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or more simply

Yt =

[
0 V2 V1

]
zt+1 =

[
0 V2 V1

] εt+1

st
xt

 (D.10)

To calculate the IRFs of observable states st, we know that, at time t, the first period

response, using (D.7), is

Is,1 =

[
A A

[
PAJ ′(JPAJ ′)−1J − I

]
0 F [I − PAJ ′(JPAJ ′)−1J ]

][
B

0

]
σε (D.11)

where σε is the standard error of εt. So the first period IRF of Yt can be obtained using (D.11)

after a one-time shock.

To obtain a simulation with shocks happening every single period, we use the same strategy

as above for simulating data. The only thing that is different is that we compute the sum of

the IRFs from all of the past shocks when at each point in time a new random shock hits the

above system.

E Online Appendix: Identification by Sign Restrictions

E.1 Literature Background

In our macroeconomic application, clearly, we cannot determine the sequence of causation in

the model. Nevertheless, understandably zero contemporaneous recursive structures are hard

to find within the DSGE context (even for identifying monetary disturbances). It is clear that

we can draw on the information in (D.11) about the pattern of responses: e.g., restricting P

in (37) to match a set of a priori sign restrictions in (D.11) would allow the structural shocks

in the VAR to be interpreted by theoretical models. While (37) does not produce any zero

restrictions or recursive structures, the model can produce a large number of non-parametric

sign restrictions that can be used for the identification process (Canova, 2007). However, unlike

the exact identification achieved using the zero restrictions (e.g., Cholesky identification), the

sign-rotation process requires an unidentified system (37), making the zero-case impossible to

achieve by rotation only.

From the early work of Uhlig (2005), the generation of the impulse vector is based on a

Givens rotation for the monetary shocks (partial identification). In the case of Rubio-Ramirez

et al. (2010) with pure sign restrictions, the candidate impact matrix is generated using a QR-

decomposition (via additional linear restrictions in the Householder transformation matrix).

Mountford and Uhlig (2009) provide the first important contribution and devise a penalty

function approach that imposes restrictions on the model using numerical optimization methods

to draw the structural parameters that is able to cope with multiple shocks simultaneously.

In terms of combining both sign and zero restrictions in SVAR models, Benati (2013) and

Binning (2013) propose alternative ways to implement multiple zero restrictions in the context

of sign identification scheme. For example, Benati and Lubik (2012) is one example of a series

of papers that implement both sets of restrictions using special rotation matrices to generate

candidate impact matrices, i.e., a combination of Householder transformations and Givens ro-

tation matrices. In a Bayesian setting, Arias et al. (2018) provide an efficient algorithm that

can correctly draw posterior of the structural parameters in order to impose sign and zero re-

strictions in SVAR models, involving Householder transformations and additional orthogonality
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restrictions.

E.2 Implementing the Algorithm

Implementing the identification algorithm involves the following general steps iteratively:

1. Estimate (37) to obtain ˆ̃Aj and Σ̂e (using either OLS or Step 2).

2. Draw ˆ̃Aj and Σ̂e from the posterior distribution of the reduced form parameters (e.g.

Uhlig (1994), Uhlig (2005) and Arias et al. (2018), using a Bayesian approach).

3. Before starting the iterative stages, consider a Cholesky decomposition to orthogonalise

shocks that do not necessarily satisfy the sign (and zero) restrictions: i.e. compute Ptr =

chol(Σe) where Ptr is the lower Cholesky factor of Σe.

4. At each iteration, draw a random orthonormal matrix Q (i.e. QQ′ = In), so that

Σe = PtrP
′
tr = PtrQQ

′P ′tr = PP ′

5. Keep the Q-draw if the transformed orthogonal impulse vector associated with the can-

didate impact matrix PtrQ fulfills a set of a priori restrictions, over a specific horizon

(Table 3), and such that it still holds that the orthogonal shocks have the same variance-

covariance matrix of the reduced form residuals

Σε = E(Q′P−1
tr ete

′
tP
′−1
tr Q) = I

6. Otherwise repeat Steps 4 and 5 until we obtain N replications. With each retained Q-

transformation, the structural impulse responses are saved.

As noted, the type of decomposition for Q involved in Steps 4 and 5 differs slightly between

Uhlig (2005) and Rubio-Ramirez et al. (2010). The way to parameterize Q in order to include

orthonormality restrictions is using the Givens rotation matrices in Uhlig (2005) and using a

QR decomposition of a random Normal matrix by Rubio-Ramirez et al. (2010). In Arias et al.

(2018), the selection matrix that introduces zeros to Q is based on the QR decomposition and

the Householder transformation matrix per model draw via some additional linear restrictions

on each column of Q.

E.3 Estimation with Pure Sign-Based Restrictions

We estimate the SVAR(1) of (37) on data simulated from the SW model under PI and II.

Following Uhlig (2005), and as described in Section E.2, in order to identify the shocks from

the VAR errors we use sign restrictions implied by the h = 0 impact IRFs from the estimated

SW model summarized in Table 3.

< Table 3 >

Online Appendix F.3 compares the IRFs of the estimated SVAR(1) model assuming PI and

II for the 7 structural shocks with those from the estimated model for the invertible Case 1 and

non-invertible Case 2. As in the previous section, we also provide a comparison between PI and

II DGSE IRFs based on the same II estimated parameters. The reason for this additional check
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is that, in addition to the contrasting information solutions, the different estimated parameters

including different estimates of persistence might drive the IRF differences – this is clearly

evident in Figure 33 in Appendix F.3 for the price mark-up shock.24 Given non-A-invertibility,

agents cannot recover the shock processes, and our FII values provide a useful measure of the

divergence between the VAR IRFs and those implied by the DGP.

Our second robustness check follows the agnostic identification procedure in Arias et al.

(2019) and estimates the SVAR by imposing mixed sign and zero restrictions for the identifica-

tion of the monetary policy shock. The motivation for this additional check is that the set of

admissible structural parameters satisfying the sign restrictions may produce very different or

implausible implications for IRFs and other implied second moments (see, for example, Arias

et al., 2019). Again, our focus here is on the invertibility condition which does not seem to play

a role across the II and PI estimations, but this is expected because the monetary policy shock

is approximately invertible based on Table 2 (FIIr = 0.0036). In the literature, we are not aware

of any meaningful mix of zero and sign restrictions for the shocks that, in our model, are not

approximately fundamental.

If we now look closely at the invertible Case 1 from, for example, the responses to the

government spending and investment specific shocks in Online Appendix F.3, some of the IRFs

are not entirely successful in recovering the SW estimated IRFs even when there is PI, suggesting

that the shortcomings of the estimated SVAR in terms of reproducing the IRFs of the DSGE

model can also be due to the possible poor choice of the transformation between the reduced

form errors and structural shocks even when the RE solution of model is invertible or at least

approximately fundamental (i.e., the traditional identification problem highlighted in Section

4.1). Therefore, in Section 4.3, we turn to examining additional identification strategies to

address the identification and estimation uncertainties in our SVAR and we aim to explicitly

disentangle the potential effect of non-invertibility on validating DSGE models using empirical

SVARs.

24Our complete analysis provides the results using PI simulated with II estimates for Case 2 and carries out
the additional checks using the methods described in Section 5. We have already established that, for Case 2
(without A-invertibility and therefore E-invertibility), the valid informational equilibrium is II. Thus, to save
space, in Sections 4.5 and 5, we only report the results comparing PI and II responses for Case 2.
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F Online Appendix: Additional Impulse Response Figures

F.1 Comparison of PI and II solutions in Estimated SW Model
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Figure 10: Estimated SW Model Non-invertible Case 2

Notes: Solid black line PI responses. Dashed red line II responses. Dashed blue line PI responses with II estimated
parameters. Each panel plots the mean response corresponding a positive one standard deviation of the shock’s innovation.
Each response is for a 40 period (10 years) horizon and is level deviation of a variable from its steady-state value.
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(b) Wage Markup: FII = 0.0111

Figure 11: Estimated SW Model Non-invertible Case 2

Notes: Solid black line PI responses. Dashed red line II responses. Dashed blue line PI responses with II estimated
parameters. Each panel plots the mean response corresponding a positive one standard deviation of the shock’s innovation.
Each response is for a 40 period (10 years) horizon and is level deviation of a variable from its steady-state value.
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Figure 12: Estimated SW Model Non-invertible Case 2: Learning About the Shocks
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Figure 13: Estimated SW Model Non-invertible Case 2: Learning About the Shocks
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F.2 Comparison of SVAR Identified using Zero Short-Run Cholesky Restric-

tions and Estimated SW Model
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Figure 14: Estimated SVAR(1) Model using Identified using Zero Short-Run
Cholesky Restrictions (Solid) and Estimated SW Models (Dashed): Invertible Case
1 – Government Spending Shock
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Figure 15: Estimated SVAR(1) Model using Identified using Zero Short-Run
Cholesky Restrictions (Solid) and Estimated SW Models (Dashed): Invertible Case
1 – Monetary Policy Shock
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Figure 16: Estimated SVAR(1) Model using Identified using Zero Short-Run
Cholesky Restrictions (Solid) and Estimated SW Models (Dashed): Invertible Case
1 – Preference Shock
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Figure 17: Estimated SVAR(1) Model using Identified using Zero Short-Run
Cholesky Restrictions (Solid) and Estimated SW Models (Dashed): Invertible Case
1 – Investment Shock
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Figure 18: Estimated SVAR(1) Model using Identified using Zero Short-Run
Cholesky Restrictions (Solid) and Estimated SW Models (Dashed): Invertible Case
1 – Price Markup Shock
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Cholesky SVAR and SW Model: Non−Invertible Case 2 − Government Spend Shock

Figure 19: Estimated SVAR(1) Model using Identified using Zero Short-Run
Cholesky Restrictions (Solid) and Estimated SW Models (Dashed): Non-invertible
Case 2 – Government Spending Shock (FIIg = 0.0194, ρg = 0.90, εg = 0.43)
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Cholesky SVAR and SW Model: Non−Invertible Case 2 − Monetary Policy Shock

Figure 20: Estimated SVAR(1) Model using Identified using Zero Short-Run
Cholesky Restrictions (Solid) and Estimated SW Models (Dashed): Non-invertible
Case 2 – Monetary Policy Shock (FIIr = 0.0036, ρr = 0.25, εr = 0.25)
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Cholesky SVAR and SW Model: Non−Invertible Case 2 − Preference Shock

Figure 21: Estimated SVAR(1) Model using Identified using Zero Short-Run
Cholesky Restrictions (Solid) and Estimated SW Models (Dashed): Non-invertible
Case 2 – Preference Shock (FIIb = 0.9526, ρb = 0.40, εb = 0.18)
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Cholesky SVAR and SW Model: Non−Invertible Case 2 − Investment Shock

Figure 22: Estimated SVAR(1) Model using Identified using Zero Short-Run
Cholesky Restrictions (Solid) and Estimated SW Models (Dashed): Non-invertible
Case 2 – Investment Specific Shock ((FIIi = 0.5085, ρi = 0.77, εi = 0.37)
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Cholesky SVAR and SW Model: Non−Invertible Case 2 − Price Markup Shock

Figure 23: Estimated SVAR(1) Model using Identified using Zero Short-Run
Cholesky Restrictions (Solid) and Estimated SW Models (Dashed): Non-invertible
Case 2 – Price Markup Shock (FIIp = 0.6655, ρp = 0.89, εp = 0.09)
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F.3 Comparison of SVAR Identified using Sign Restrictions and Estimated

SW Model
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Figure 24: Estimated SVAR(1) Model using Artificial Data (Solid) and Estimated
SW Models (Dashed): Invertible Case 1 – Government Spending Shock

5 10 15 20
-0.8

-0.6

-0.4

-0.2

0

0.2
GDP to MonPol

SVAR Model (PI)
SVAR 95% Bands
SW Model (PI)

5 10 15 20
-0.6

-0.4

-0.2

0

0.2
Consumption to MonPol

5 10 15 20
-1.5

-1

-0.5

0

0.5
Investment to MonPol

5 10 15 20
-0.4

-0.3

-0.2

-0.1

0

Real Wage to MonPol

5 10 15 20
-0.6

-0.4

-0.2

0

0.2

0.4
Hours to MonPol

5 10 15 20
-0.2

-0.15

-0.1

-0.05

0

0.05
Inflation to MonPol

5 10 15 20
-0.2

-0.1

0

0.1

0.2

0.3
Interest Rate to MonPol

5 10 15 20
-1

-0.8

-0.6

-0.4

-0.2

0

Tobins Q to MonPol

5 10 15 20
-0.2

-0.15

-0.1

-0.05

0
Real MC to MonPol

Figure 25: Estimated SVAR(1) Model Identified using Sign Restrictions (Solid) and
Estimated SW Models (Dashed): Invertible Case 1 – Monetary Policy Shock
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Figure 26: Estimated SVAR(1) Model Identified using Sign Restrictions (Solid) and
Estimated SW Models (Dashed): Invertible Case 1 – Preference Shock
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Figure 27: Estimated SVAR(1) Model Identified using Sign Restrictions (Solid) and
Estimated SW Models (Dashed): Invertible Case 1 – Investment Shock
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Figure 28: Estimated SVAR(1) Model Identified using Sign Restrictions (Solid) and
Estimated SW Models (Dashed): Invertible Case 1 – Price Markup Shock
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Figure 29: Estimated SVAR(1) Model Identified using Sign Restrictions (Solid) and
Estimated SW Models (Dashed): Non-invertible Case 2 – Government Spending
Shock (FIIg = 0.0194, ρg = 0.90, εg = 0.43)
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Figure 30: Estimated SVAR(1) Model Identified using Sign Restrictions (Solid) and
Estimated SW Models (Dashed): Non-invertible Case 2 – Monetary Policy Shock
(FIIr = 0.0036, ρr = 0.25, εr = 0.25)
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Figure 31: Estimated SVAR(1) Model Identified using Sign Restrictions (Solid) and
Estimated SW Models (Dashed): Non-invertible Case 2 – Preference Shock (FIIb =
0.9526, ρb = 0.40, εb = 0.18)
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Figure 32: Estimated SVAR(1) Model Identified using Sign Restrictions (Solid)
and Estimated SW Models (Dashed): Non-invertible Case 2 – Investment Spe-
cific Shock (FIIi = 0.5085, ρi = 0.77, εi = 0.37)
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Figure 33: Estimated SVAR(1) Model Identified using Sign Restrictions (Solid) and
Estimated SW Models (Dashed): Non-invertible Case 2 – Price Markup Shock
(FIIp = 0.6655, ρp = 0.89, εp = 0.09)
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Figure 34: Estimated SVAR(1) Model Identified using Sign Restrictions (Solid) and
Estimated SW Models (Dashed): Non-invertible Case 2 – Inflation Objective Shock
(FIIt = 0.9989, ρt = 0.60, εt = 0.08)
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F.4 Comparison of SVAR Identified using Sign-Restricted Robust Prior and

Estimated SW Model
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Sign−restricted SVAR and SW Model: Invertible Case 1 − Government Spend Shock

Figure 35: Impulse Response Identified Set: Estimated SVAR(1) Model Identified
using Sign-Restricted Robust Prior (Solid) and Estimated SW Models (Dashed):
Invertible Case 1 – Government Spending Shock
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Sign−restricted SVAR and SW Model: Invertible Case 1 − Monetary Policy Shock

Figure 36: Impulse Response Identified Set: Estimated SVAR(1) Model Identified
using Sign-Restricted Robust Prior (Solid) and Estimated SW Models (Dashed):
Invertible Case 1 – Monetary Policy Shock
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Sign−restricted SVAR and SW Model: Invertible Case 1 − Preference Shock

Figure 37: Impulse Response Identified Set: Estimated SVAR(1) Model Identified
using Sign-Restricted Robust Prior (Solid) and Estimated SW Models (Dashed):
Invertible Case 1 – Preference Shock
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Sign−restricted SVAR and SW Model: Invertible Case 1 − Investment Shock

Figure 38: Impulse Response Identified Set: Estimated SVAR(1) Model Identified
using Sign-Restricted Robust Prior (Solid) and Estimated SW Models (Dashed):
Invertible Case 1 – Investment Shock
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Sign−restricted SVAR and SW Model: Invertible Case 1 − Price Markup Shock

Figure 39: Impulse Response Identified Set: Estimated SVAR(1) Model Identified
using Sign-Restricted Robust Prior (Solid) and Estimated SW Models (Dashed):
Invertible Case 1 – Price Markup Shock
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Sign−restricted SVAR and SW Model: Non−Invertible Case 2 − Government Spend Shock

Figure 40: Impulse Response Identified Set: Estimated SVAR(1) Model Identified
using Sign-Restricted Robust Prior (Solid) and Estimated SW Models (Dashed):
Non-invertible Case 2 – Government Spending Shock (FIIg = 0.0194, ρg = 0.90, εg =
0.43)
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Sign−restricted SVAR and SW Model: Non−Invertible Case 2 − Monetary Policy Shock

Figure 41: Impulse Response Identified Set: Estimated SVAR(1) Model Identified
using Sign-Restricted Robust Prior (Solid) and Estimated SW Models (Dashed):
Non-invertible Case 2 – Monetary Policy Shock (FIIr = 0.0036, ρr = 0.25, εr = 0.25)

71



5 10 15 20

−
0.

2
0.

2
0.

6

GDP to Preference

horizon(quarterly)

SVAR Model (II) set
SVAR 95% Bands
SW Model (II)
SW Model (PI) with II Est

5 10 15 20

0.
0

0.
2

0.
4

0.
6

Consumption to Preference

horizon(quarterly)

5 10 15 20

−
0.

5
0.

5
1.

5

Investment to Preference

horizon(quarterly)

5 10 15 20

−
0.

1
0.

1
0.

3
0.

5

Real Wage to Preference

horizon(quarterly)

5 10 15 20

−
0.

6
−

0.
2

0.
2

0.
6

Hours to Preference

horizon(quarterly)

5 10 15 20

0.
00

0.
10

0.
20

0.
30

Inflation to Preference

horizon(quarterly)

5 10 15 20

0.
00

0.
10

0.
20

Interest Rate to Preference

horizon(quarterly)

5 10 15 20

0.
0

1.
0

2.
0

Tobins Q to Preference

horizon(quarterly)

5 10 15 20

0.
00

0.
06

0.
12

Real MC to Preference

horizon(quarterly)

Sign−restricted SVAR and SW Model: Non−Invertible Case 2 − Preference Shock

Figure 42: Impulse Response Identified Set: Estimated SVAR(1) Model Identified
using Sign-Restricted Robust Prior using Artificial Data (Solid) and Estimated SW
Models (Dashed): Non-invertible Case 2 – Preference Shock (FIIb = 0.9526, ρb = 0.40,
εb = 0.18)
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Sign−restricted SVAR and SW Model: Non−Invertible Case 2 − Investment Shock

Figure 43: Impulse Response Identified Set: Estimated SVAR(1) Model Identified
using Sign-Restricted Robust Prior (Solid) and Estimated SW Models (Dashed):
Non-invertible Case 2 – Investment Specific Shock ((FIIi = 0.5085, ρi = 0.77, εi = 0.37)
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Sign−restricted SVAR and SW Model: Non−Invertible Case 2 − Price Markup Shock

Figure 44: Impulse Response Identified Set: Estimated SVAR(1) Model Identified
using Sign-Restricted Robust Prior (Solid) and Estimated SW Models (Dashed):
Non-invertible Case 2 – Price Markup Shock (FIIp = 0.6655, ρp = 0.89, εp = 0.09)
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Sign−restricted SVAR and SW Model: Non−Invertible Case 2 − Inflation Objective Shock

Figure 45: Impulse Response Identified Set: Estimated SVAR(1) Model Identified
using Sign-Restricted Robust Prior (Solid) and Estimated SW Models (Dashed):
Non-invertible Case 2 – Inflation Objective Shock (FIIt = 0.9989, ρt = 0.60, εt = 0.08)
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F.5 Comparison of SVAR Identified using FEV Bounds and Estimated SW
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FEV−bounded SVAR and SW Model: Invertible Case 1 − Government Spend Shock

Figure 46: Impulse Response Identified Set: Estimated SVAR(1) Model Identified
using FEV Bounds (Solid) and Estimated SW Models (Dashed): Invertible Case 1
– Government Spending Shock
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FEV−bounded SVAR and SW Model: Invertible Case 1 − Monetary Policy Shock

Figure 47: Impulse Response Identified Set: Estimated SVAR(1) Model Identified
using FEV Bounds (Solid) and Estimated SW Models (Dashed): Invertible Case 1
– Monetary Policy Shock
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FEV−bounded SVAR and SW Model: Invertible Case 1 − Preference Shock

Figure 48: Impulse Response Identified Set: Estimated SVAR(1) Model Identified
using FEV Bounds (Solid) and Estimated SW Models (Dashed): Invertible Case 1
– Preference Shock
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FEV−bounded SVAR and SW Model: Invertible Case 1 − Investment Shock

Figure 49: Impulse Response Identified Set: Estimated SVAR(1) Model Identified
using FEV Bounds (Solid) and Estimated SW Models (Dashed): Invertible Case 1
– Investment Shock
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FEV−bounded SVAR and SW Model: Invertible Case 1 − Price Markup Shock

Figure 50: Impulse Response Identified Set: Estimated SVAR(1) Model Identified
using FEV Bounds (Solid) and Estimated SW Models (Dashed): Invertible Case 1
– Price Markup Shock
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FEV−bounded SVAR and SW Model: Non−Invertible Case 2 − Government Spend Shock

Figure 51: Impulse Response Identified Set: Estimated SVAR(1) Model Identified
using FEV Bounds (Solid) and Estimated SW Models (Dashed): Non-invertible
Case 2 – Government Spending Shock (FIIg = 0.0194, ρg = 0.90, εg = 0.43)
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FEV−bounded SVAR and SW Model: Non−Invertible Case 2 − Monetary Policy Shock

Figure 52: Impulse Response Identified Set: Estimated SVAR(1) Model Identified
using FEV Bounds (Solid) and Estimated SW Models (Dashed): Non-invertible
Case 2 – Monetary Policy Shock (FIIr = 0.0036, ρr = 0.25, εr = 0.25)

82



5 10 15 20

0.
0

0.
2

0.
4

0.
6

GDP to Preference

horizon(quarterly)

SVAR Model (II) set
SVAR 95% Bands
SW Model (II)
SW Model (PI) with II Est

5 10 15 20

0.
0

0.
2

0.
4

Consumption to Preference

horizon(quarterly)

5 10 15 20

0.
0

0.
5

1.
0

Investment to Preference

horizon(quarterly)

5 10 15 20

0.
00

0.
10

0.
20

Real Wage to Preference

horizon(quarterly)

5 10 15 20

−
0.

2
0.

2
0.

6

Hours to Preference

horizon(quarterly)

5 10 15 20

0.
00

0.
04

0.
08

Inflation to Preference

horizon(quarterly)

5 10 15 20

0.
00

0.
04

0.
08

0.
12

Interest Rate to Preference

horizon(quarterly)

5 10 15 20

0.
0

1.
0

2.
0

Tobins Q to Preference

horizon(quarterly)

5 10 15 20

0.
00

0.
06

0.
12

Real MC to Preference

horizon(quarterly)

FEV−bounded SVAR and SW Model: Non−Invertible Case 2 − Preference Shock

Figure 53: Impulse Response Identified Set: Estimated SVAR(1) Model Identified
using FEV Bounds (Solid) and Estimated SW Models (Dashed): Non-invertible
Case 2 – Preference Shock (FIIb = 0.9526, ρb = 0.40, εb = 0.18)
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FEV−bounded SVAR and SW Model: Non−Invertible Case 2 − Investment Shock

Figure 54: Impulse Response Identified Set: Estimated SVAR(1) Model Identified
using FEV Bounds (Solid) and Estimated SW Models (Dashed): Non-invertible
Case 2 – Investment Specific Shock ((FIIi = 0.5085, ρi = 0.77, εi = 0.37)
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FEV−bounded SVAR and SW Model: Non−Invertible Case 2 − Price Markup Shock

Figure 55: Impulse Response Identified Set: Estimated SVAR(1) Model Identified
using FEV Bounds (Solid) and Estimated SW Models (Dashed): Non-invertible
Case 2 – Price Markup Shock (FIIp = 0.6655, ρp = 0.89, εp = 0.09)
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FEV−bounded SVAR and SW Model: Non−Invertible Case 2 − Inflation Objective Shock

Figure 56: Impulse Response Identified Set: Estimated SVAR(1) Model Identified
using FEV Bounds (Solid) and Estimated SW Models (Dashed): Non-invertible
Case 2 – Inflation Objective Shock (FIIt = 0.9989, ρt = 0.60, εt = 0.08)
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