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INTRODUCTION 1
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• Convolutional neural networks (CNNs) have the capa-
bility to learn from examples or experience like humans.

• CNNs have shown state-of-the-art performance in audio
classification [1], image scene classification [2] etc.

• However, CNNs are resource hungry due to their large
size and heavy computations.

• This makes a bottleneck to deploy CNNs on resource-
constrained devices such as smart phones or IoTs.

• Moreover, CNNs may have redundancy in their param-
eters or feature maps [3] (See Slide 2).

• Training CNNs for more time generates more CO2, e.g.
running GTX 1080 Ti hardware for 2 days generates CO2
= 5.18 kg ≡ Driving an average car for 20Km.

ILLUSTRATION OF REDUNDANCY IN CNNS 2

What do we achieve after
eliminating redundancy???

• Less parameters.

• Low memory size.

• Low computations.

• Speed-up in inference.

• Reduced training time and less
CO2 emission.

PERFORMANCE ANALYSIS 4
Experiments are performed on DCASE 2021 Task1A baseline network for audio scene classification (ASC) [4].
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OBTAINING AN EFFICIENT CNN BY ELIMINATING FILTERS 3
Hypothesis: Similar filters produce similar output and hence, mostly contribute to redundancy and can be
eliminated.
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Steps: Unpruned CNN→ Eliminate one of the similar filters→ Pruned network→ Fine-tuning.

OPEN RESEARCH PRACTICES 5

[a] Openly available tool is used to estimate CO2 emission.
Link: https://mlco2.github.io/impact/##compute

[b] Experiments are performed on openly available ASC
dataset and CNN [4].

[c] Proposed code is openly available at Gitlab.
Link:https://gitlab.surrey.ac.uk/as0150/passive-pruning
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CONCLUSIONS 6
• Reduced 25% parameters and 27% MACs, with less than

1% drop in accuracy.

• Fine-tuning using few training examples improves the
performance of the pruned network significantly.

• Designing better similarity measure and reducing com-
plexity in fine-tuning is a future goal.


