Efficient Audio-based Convolutional Neural Networks via Filter Pruning
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ILLUSTRATION OF REDUNDANCY IN CNNS -
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PERFORMANCE ANALYSIS
Experiments are performed on DCASE 2021 Task1A baseline network for audio scene classification (ASC) [4].

OBTAINING AN EFFICIENT CNN BY ELIMINATING FILTERS

Hypothesis: Similar filters produce similar output and hence, mostly contribute to redundancy and can be
eliminated.
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X OPEN RESEARCH PRACTICES " 58l CONCLUSIONS

Selected filter representatives .
_ e Reduced 25% parameters and 27% MACs, with less than
a] Openly available tool is used to estimate CO, emission. 1% drop in accuracy.

Steps: Unpruned CNN — Eliminate one of the similar filters — Pruned network — Fine-tuning. Link: https:/ /mlco2.github.io/impact/##compute

e Fine-tuning using few training examples improves the

b] Experiments are performed on openly available ASC performance of the pruned network significantly.
dataset and CNN [4].
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