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Lecture 1 – Basic Concepts

1.1 Introducing decoherence

Classical physics has led us to the strategy of dealing with idealised
isolated systems. This has been very successful and got incorporated
into quantum mechanics without much scrutiny.

But isolated quantum systems have been an obstacle in
understanding the quantum-to-classical transition. We therefore
require open quantum systems, not as an add-on or a ‘fix’, but as an
essential and more complete description of many systems of interest
today, from quantum optics to quantum computing, and even (possibly)
quantum biology.

On locality

Quantum mechanics is a local theory (in the sense that all interactions are
local and so there is no physical action at a distance). But, the states that
can be generated by these local interactions are distinctly non-local due
to entanglement. We talk about this in terms of non-local correlations.

Entanglement means the outside environment no longer just perturbs
the system, but rather defines the observable physical properties of the
system.

Entanglement with an environment does two things:

1. It causes irreversible loss of coherence from the quantum system
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2. It limits/selects a small number of possible observables

Quantum decoherence (loss of information) is a separate process from

classical dissipation (loss of energy).

For macroscopic bodies, decoherence is incredible fast, and it happens
everywhere. Even the CMB will cause decoherence.

The first paper on decoherence was by Zeh [Zeh, H.D., ”On the
interpretation of measurement in quantum theory”, Found Phys 1,
69–76 (1970)]. That was over half a century ago and yet standard
textbooks on quantum mechanics still largely ignore the subject, claiming
(correctly) that the measurement of physical quantities (observables)
are represented by Hermitian operators, but that these somehow
instantaneously change the quantum state of the system into one of the
eigenstates of that operator. We will see in these lectures that that is not
the case, but rather that measurement involves several stages, and that it
is a dynamical process.

Decoherence does not destroy superpositions, it simply extends them
to include the environment. So, while decoherence is something that
happens to the system of interest, what is really going on is that
the environment is encoding, via quantum correlations, information
about the system.

1.2 Quantum entanglement

Consider a quantum system, S, described by state vector |Yy. It is
composed of two subsystems (so, it is called a bipartite quantum system):
S1 and S2, with state vectors |Y1y, |Y2y, respectively.

If S cannot be split into a tensor product of the states of S1 and S2, i.e.
if |Yy ‰ |yy1 b |yy2, then we say that S is entangled with respect to S1
and S2.

[Note: we will be using the shorthand notation |yy1 b |yy2 ” |yy1 |yy2.]

Consider for example that S1 and S2 are two spin-1
2 particles

described by basis states |0y and |1y.
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That is, |0y1 corresponds to particle 1 pointing in the spin up direction
with respect to some axis, say the z-axis, and |1y1 corresponds to particle
1 pointing spin down along the same axis. Thus,

sz |0y = |0y and sz |1y = ´ |1y , (1.1)

where sz is the Paul spin operator. If |yy1 and |yy2 are each in a
superposition of these spin states, then we can write

|yy1 = a1 |0y1 + b1 |1y1 , (1.2)
|yy2 = a2 |0y2 + b2 |1y2 . (1.3)

Note that we would normally write these two wave functions with the
subscripts inside the kets (that is, |y1y and |y2y), but I am keeping them
outside for clarity later on.

If the particles are not initially entangled, then their combined system
is

|Yy = |yy1 |yy2 =
⇣

a1 |0y1 + b1 |1y1

⌘⇣
a2 |0y2 + b2 |1y2

⌘
. (1.4)

Let us keep things simple and assume both particles are in 50/50
superpositions of being spin up and down. So,

|Yy = 1?
2

⇣
|0y1 + |1y1

⌘
¨ 1?

2

⇣
|0y2 + |1y2

⌘
. (1.5)

Clearly, here the two particles’ superpositions are not entangled and
they are each described by separate (uncorrelated) quantum states (wave
functions). The opposite extreme is if they are maximally entangled. This
is called a Bell state:

|Yy = 1?
2

⇣
|0y1 |0y2 + |1y1 |1y2

⌘
, (1.6)

which says that if particle 1 is spin up, then so is particle 2, and vice versa.
Note that they could also be maximally entangled such that they

always have opposite spin and the sign between them could be a plus
or a minus. These would still be Bell states:

|Fy˘ =
1?
2

⇣
|0y1 |1y2 ˘ |0y1 |1y2

⌘
. (1.7)
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The degree of entanglement between the two particles could be
anything between unentangled (Eq.(1.5)) and fully entangled (eqs.(1.6)
or (1.7)).

What is the difference between these two extremes when it comes to
measurement?

Answer:
If we measure the spin of particle 2 in a Bell state and find it to have spin
up (|0y2 then this immediately tells us the spin of particle 1. But for an
uncorrelated (unentangled) pair, measuring the spin of particle 2 tells us
nothing about particle 1 and just leaves it in its original superposition.

Now here is the subtlety: What if the quantum states of particles 1
and 2 are each in superpositions of different basis states t|yiyu and t|fiyu
, respectively, that do not necessarily form orthonormal sets like spin
states. We will assume that they are in a general entangled Bell state
defined as

|Yy = 1?
2

⇣
|y1y |f1y + |y2y |f2y

⌘
. (1.8)

Consider particle 2: if |f1y and |f2y are orthogonal – for example
eigenstates of an operator corresponding to some observable, A, and so
macroscopically distinguishable (such as their spin in a magnetic field
or their positions measured on a dial on a classical detector). Then a
measurement of A would yield an eigenvalue corresponding to one or
other of them: |f1y or |f2y. This will immediately tell us the state of
particle 1 because one of the two terms in Eq.(1.8) will disappear.

However, if |f1y2 and |f2y2 are not orthogonal – that is they have
non-zero overlap – then we will only get partial information on particle
1. In fact, if they overlap completely then this means that |f1y and |f2y
are the same and can be factorised out:

|Yy = 1?
2

⇣
|y1y + |y2y

⌘
|f1y , (1.9)

and so we learn nothing about particle 1.

Thus the more the elements of the superposition of particle 2 overlap,
the less distinguishable they are and the less information we get about
particle 1 by measuring particle 2.

4 DECOHERENCE – A SHORT COURSE
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1.3 The density matrix

For a pure state |Yy, the density matrix operator (or just ‘density matrix’)
is a very useful quantity if we wish to go beyond the unitary dynamics
of the Schrödinger equation to describe open quantum systems, mixed
states, ensembles and the measurement process. It is defined as

r̂ = |Yy xY| . (1.10)

If |Yy is expressed as a superposition states in some orthonormal basis

|Yy =
ÿ

i
ci |yiy , (1.11)

then

r̂ =
ÿ

ij
cic˚

j |yiy xyj| . (1.12)

Let us consider the simple case of i, j = 1, 2 (eg spin states of a spin-
1/2 particle or a particle in a superposition of two energy states) then we
can easily expand out the sums to get four terms:

r̂ = |c1|2 |y1y xy1| + |c2|2 |y2y xy2| + c1c˚
2 |y1y xy2| + c˚

1c2 |y2y xy1|loooooooooooooooooomoooooooooooooooooon
interference terms

.(1.13)

We can see here that we can write r̂ as a 2 ˆ 2 matrix in the t|yiyu basis
(which has matrix elements xyi| r̂ |yjy) to obtain (since xyi| yjy = dij):

0

@
|c1|2 c1c˚

2

c˚
1c2 |c2|2

1

A

In this sense you can see that the interference terms are the off-
diagonal ones in the matrix. Often, we talk about decoherence (or
measurement) destroying the interference terms in Eq.(1.13) or the off-
diagonal elements in the matrix, leaving just the diagonal elements. We
will see later that this is what is referred to as a mixed state density
matrix.

Note however that whether or not there is any interference (non-zero
off-diagonal elements in r̂) depends on our choice of basis. Just because

a density matrix is diagonal is some basis does not mean the system is

behaving classically.

DECOHERENCE – A SHORT COURSE 5
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The Trace of r̂

Unlike the above statement in bold, the trace of density matrix is
independent of the basis chosen when we write it as an actual matrix
(rather than just an operator). To see this, let’s do a simple example:

Consider a state that is in a superposition of spin up and down with
respect to the z-axis:

|Yy = a |0yz + b |1yz . (1.14)

Clearly, our density matrix operator is similar to that in Eq.(1.13):

r̂ = |Yy xY|
= |a|2 |0yz x0|z + |b|2 |1yz x1|z + ab˚ |0yz x1|z + a˚b |1yz x0|z .(1.15)

But we can always write our two eigenvector |0yz and |1yz in terms of
superpositions of eigenstates of sx:

|0yz =
1?
2

⇣
|0yx + |1yx

⌘
, (1.16)

|1yz =
1?
2

⇣
|0yx ´ |1yx

⌘
. (1.17)

Substituting these into Eq.(1.14),

|Yy =
a?
2

⇣
|0yx + |1yx

⌘
+

b?
2

⇣
|0yx ´ |1yx

⌘
(1.18)

=
1?
2

h
(a + b) |0yx + (a ´ b) |1yx

i
(1.19)

and the density matrix is then

r̂ = |Yy xY| = 1
2


|a + b|2 |0yx x0|x + |a ´ b|2 |1yx x1|x

+ (a + b)(a ´ b)˚ |0yx x1|x
+ (a + b)˚(a ´ b) |1yx x0|x

�
.(1.20)

Now let us evaluate the trace of the density matrix in the two bases:

In the basis of sz eigenstates, it is trivial:

Tr(r̂) = x0|z r̂ |0yz + x1|z r̂ |1yz = |a|2 + |b|2 . (1.21)

6 DECOHERENCE – A SHORT COURSE
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And in the basis of sx eigenstates:

Tr(r̂) = x0|x r̂ |0yx + x1|x r̂ |1yx

=
1
2

|a + b|2 + 1
2

|a ´ b|2

=
1
2

|a|2 + 1
2

|b|2 +@
@
@

1
2

ab˚ +
@
@
@

1
2

a˚b

+
1
2

|a|2 + 1
2

|b|2 ´@
@
@

1
2

ab˚ ´@
@
@

1
2

a˚b

= |a|2 + |b|2 (1.22)

A simpler way to see that Tr(r̂) is basis independent is look at what its
diagonal elements represent: they are simply the probabilities of getting
the different outcomes (eigenvalues) of a particular observable whose
eigenstates make up that particular basis, and their sum must add up
to 1. It doesn’t matter what basis we choose the trace is just a sum of
probabilities and we have

Tr(r̂) = 1 (1.23)

The trace as an expectation value

Consider some observable, O, with corresponding operator Ô, and let
us derive the quantity Tr(r̂Ô). We choose an orthonormal basis for the
matrix corresponding to the product r̂Ô as the basis of eigenstates t|yiyu
of Ô:

Ô |yiy = ai |yiy . (1.24)

Thus,

Tr(r̂Ô) =
ÿ

i
xyi| r̂Ô |yiy =

ÿ

i
xyi| r̂ ai |yiy

=
ÿ

i
xyi| |Yy xY| ai |yiy =

ÿ

i
ai| xyi| |Yy |2 . (1.25)

However, imagine expanding the wave function |Yy in the basis of
|yiy: (|Yy =

∞
i ci |yiy). Then the coefficients, ci, are just the overlap

DECOHERENCE – A SHORT COURSE 7
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amplitude xyi| |Yy, and |ci|2 is just the probability of finding a system
described by |Yy with eigenvalue ai (that is, in the eigenstate |yiy) if we
were to measure observable O.

So we can instead write our trace as

Tr(r̂Ô) =
ÿ

i
ai|ci|2 . (1.26)

But you should recall (yes, you really should) that this is simply
the definition of the expectation value of an operator (the average of
all the eigenvalues, each weighted by the probability of getting it on
measurement).


xÔy= xY| Ô |Yy=∞
ij c˚

i xyi| Ô cj |yjy=
∞

ij c˚
i cj xyi| aj |yjy=

∞
i ai|ci|2

�
.

We have shown the very useful relation involving the density matrix:

xÔy = Tr(r̂Ô) (1.27)

8 DECOHERENCE – A SHORT COURSE



2

Lecture 2 – Mixed States

2.1 Defining mixed states

Consider a system that is prepared in a pure state (i.e. one that is
described by a single wave function), but we don’t know what this pure
state is. It might be |Y1y or it might be |Y2y with (let us assume) equal
probability (where here the probability reflects our ignorance rather than
a property of the system itself). We express this ignorance as a mixed
state density matrix

r̂ =
1
2

|Y1y xY1|loooomoooon
r̂1

+
1
2

|Y2y xY2|loooomoooon
r̂2

, (2.1)

where the factors of 1
2 are classical probabilities. This is a true mixed

state density matrix (to be compared with an ‘improper’ mixed state
density matrix we will encounter in the next lecture). Note we can also
use it to describe an ensemble of systems rather than just one, where half
of them are in pure state |Y1y and other half are in pure state |Y2y.

In general, we can write a density matrix as

r̂ =
ÿ

i
pi |Yiy xYi| , (2.2)

which can now describe a mixed state. Again, this can either describe a
single particle/system that is in some pure state |Yiy, but we just don’t
know which one (and the pis reflect our ignorance), or of an ensemble
of many particles/systems, some of which are in one pure state while

9
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others are in different pure states, where the pis now reflect the fraction
of the ensemble population in any given pure state.

Note that if r̂ is a pure state density matrix then there is just one
value of p that is unity and we just have r̂ = |Yy xY| (see Eq.(1.10)).

What about the expectation value of some operator xÔy now that we
are dealing with the more general case of mixed states?
That is, can we still write it as the trace of the product of a mixed density
matrix and Ô? Does Eq.(1.28) still hold for mixed states?

It turns out that the answer is yes, and this is quite straightforward to
prove:

Consider the mixed state density matrix in Eq.(2.1). If it is really in
state |Y1y then the expectation value of an operator, Ô is

xÔy1 = xY1| Ô |Y1y = Tr(r̂1Ô) . (2.3)

But likewise if it is actually in state |Y2y then the expectation value is

xÔy2 = xY2| Ô |Y2y = Tr(r̂2Ô) . (2.4)

Since we don’t know which state it is in, the classical probabilities of
Eq.(2.1) are reflected in the average expectation value

xÔy = 1
2xÔy1 +

1
2xÔy2

= 1
2
�
Tr(r̂1Ô) + Tr(r̂2Ô)

�

= Tr
�1

2 r̂1Ô) + Tr(1
2 r̂2Ô

�

= Tr
�
(1

2 r̂1 +
1
2 r̂2)Ô

�

= Tr(r̂Ô) . (2.5)

So, yes, even though r̂ here is a mixed state density matrix, the
expectation value formula still works.


Similarly, even for a mixed r̂, Tr(r̂) = 1, since Tr(r̂1) = Tr(r̂2) = 1.
�

10 DECOHERENCE – A SHORT COURSE
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2.2 Mixed states as ensembles

We’ve said that the definition of a general density matrix in Eq.(2.2)
means it may have been prepared in some pure state but we just don’t
know which one. However, if we have an ensemble of identical systems
(particles) with some of them prepared in pure state |Y1y and some in
pure state |Y2y, etc, then the ‘pi’s are now no longer probabilities, but tell
us what fraction of the ensemble is in state |Yiy. Often, this ensemble
interpretation is what is assumed when we talk about density matrices.

2.3 The difference between pure and mixed

states

Recall that if a system described by |Yy is made up of two entangled
subsystems then we cannot write them as a tensor product: |Y1y b |Y2y.
Similarly, we cannot write their density matrices as r̂1 b r̂2.

Thus, if we start off at t = 0 with r̂(0) = r̂1(0) b r̂2(0), then we
say that subsystems 1 and 2 are initially uncorrelated (not entangled).
Also, both r̂1(0) and r̂2(0) describe pure states and the overall r̂(0) will
also be a pure state. But, as systems 1 and 2 become entangled with each
other they will individually become mixed states in the sense that we
can no longer define either of them by a state vector (wave function).
However, there is no reason why the overall combined system described
by r̂(t) cannot remain in a pure state.

If the combined system’s state vector is expanded in some basis
(repeating Eq.(1.11)):

|Yy =
ÿ

i
ci |yiy , (2.6)

then the corresponding, pure, density matrix (Eq.1.12) is

r̂pure = |Yy xY| =
ÿ

ij
cic˚

j |yiy xyj| . (2.7)

See how the right hand side above differs from the sum in Eq.(2.2).
Here we are summing over two indices and cic˚

j is not necessarily a real

DECOHERENCE – A SHORT COURSE 11
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probability. In fact, we can rewrite (2.7) as

r̂pure =
ÿ

i
|ci|2 |yiy xyi|

loooooooomoooooooon
diagonal

+
ÿ

j‰i
cic˚

j |yiy xyj|
loooooooomoooooooon

offdiagonal

. (2.8)

You can now see that the first term (corresponding to just the diagonal
terms in the density matrix) looks like a mixed state, whereas the second
term is the interference and gives the off-diagonal elements. It is this
second term that disappears during decoherence, turning a pure state
(quantum) with off-diagonal elements present to a mixed state (classical)
with diagonal elements only.

For a pure state

r̂2 =
�

|Yy xY|
�2

= |Yy xY| Yy xY| = |Yy xY| = r̂ , (2.9)

(provided of course that |Yy is normalised).

In fact, r̂2 = r is a definition of a pure state.

But this relation does not hold for a mixed state,

r2 =
�ÿ

i
pi |Yiy xYi|

�2
=

ÿ

ij
pi pj |Yiy xYi| Yjy xYj| . (2.10)

We have two options:

(a) if xYi| Yjy ‰ 0 (and why should they be orthogonal?) then
Eq.(2.10) cannot be simplified and we cannot have r̂2 = r;

(b) Even if xYi| Yjy = dij then

r2 =
ÿ

i
p2

i |Yiy xYi| , (2.11)

which is compared with our definition from earlier:

r =
ÿ

i
pi |Yiy xYi| . (2.12)

So, again, r̂2 ‰ r

Therefore, r̂2 ‰ r for a mixed state .

12 DECOHERENCE – A SHORT COURSE
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2.4 Quantifying ‘mixedness’

There are two simple measures of purity (or mixedness) of a density
matrix. Both of these quantities measure the amount of entanglement
between the system and the environment as the system progressively
decoheres and evolves from an initially pure state to a final mixed state:

1. Purity: z = Tr(r̂2)

For a pure state, clearly

z = Tr(r̂2) = Tr(r̂) = 1 . (2.13)

The opposite extreme is a maximally mixed state of the form of
Eq.(2.2) in which the different states t|Yiyu form an orthonormal
basis in the system’s Hilbert space, then from Eq.(2.11) we see that

z =
Nÿ

i
p2

i , (2.14)

and it can easily be shown that the minimum value the purity can
be is 1

N .

Proof:

Since
Nÿ

i
pi = 1

then for maximum mixing (minimum purity in Eq.(2.14)) we would
want to distribute the probabilities equally

p1 = p2 = p3 = ¨ ¨ ¨ = pN =
1
N

Therefore

z = N ˆ
� 1

N
�2

=
1
N

.

2. Von Neumann entropy: S(r̂)

DECOHERENCE – A SHORT COURSE 13
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This is defined as

S(r̂) = ´Tr
�
r̂ log2 r̂

�
. (2.15)

It can also be written in the form:

S(r̂) = ´
ÿ

i
li log2 li , (2.16)

where li are the eigenvalues of r̂. Note that this is a non-trivial
statement. It follows from the fact that the trace of any matrix, A, is
equal to the sum of its eigenvalues. We will not prove that here as it
would take a little longer than these lectures have time for. Suffice
it to say that it relies on properties of matrices involving what are
called upper triangular matrices and the Schur decomposition.
You can look it up if you want.

Anyway, if a pure state density matrix, r̂ = |Yy xY|, acts on
the state vector |Yy, then trivially

r̂ |Yy = |Yy xY| Yy = |Yy , (2.17)

which is an eigenvalue equation with eigenvalue of r̂ being l = 1.

Therefore

S(r̂pure) = ´1 log2 1 = 0 . (2.18)

That is, the von Neumann entropy of a pure state is zero.

But for the maximally mixed case, with t|Yiyu forming an
orthonormal set, we can see that they are the eigenvectors of r̂:

r̂ |Yiy =
ÿ

j
pj |Yjy xYj| Yiy = pi |Yiy , (2.19)

and in this basis, r̂ will be a diagonal matrix whose eigenvalues, li,
are just the classical probabilities, pi:

0

BBBBBB@

p1
p2 �

p3
� ‚

‚
‚

1

CCCCCCA

14 DECOHERENCE – A SHORT COURSE
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Therefore, using the definition of the entropy in Eq.(2.16)

S(r̂mixed) = ´
ÿ

i

1
N

log2

✓
1
N

◆

= ´N ˆ 1
N
�

log2 1 ´ log2 N
�
= log2 N . (2.20)

Thus the von Neumann entropy ranges from zero (for a pure state)
up to a maximum of log2 N for a mixed state. For just two mixed
states, S = 1, for three, S = 1.58, for four, S = 2, and so on. The
more states make up r̂, the more scope for entanglement and the
higher the entropy.

So far, we’ve said that the probabilities in the definition of r̂mixed are
just a measure of our ignorance regarding which pure state, |Yiy, the
system is really in. But, just writing our mixed-state density matrix in

the form of Eq.(2.2) does not mean that it is actually in one of those

pure states. We also need to know that it was indeed prepared in one

of those states.

Example
Consider a spin state that has previously been measured by a detector
(prepared) along the z-axis. It is thus in a pure state of either |0yz or |1yz.
If we don’t know which of the states it is in, we must describe it by a
mixed state,

r̂ = 1
2 |0yz x0|z + 1

2 |1yz x1|z . (2.21)

But, as we said in the last lecture in Eqs.(1.16) and (1.17), each of |0zy and
|1zy can itself be written as a linear superposition of eigenstates of sx.
Therefore

r̂ =
1
2

.
1?
2

⇣
|0yx + |1yx

⌘
.

1?
2

⇣
x0|x + x1|x

⌘
+

1?
2

⇣
|0yx ´ |1yx

⌘
.

1?
2

⇣
x0|x ´ x1|x

⌘

=
1
4

h
|0yx x0|x +XXXXX|0yx x1|x +⇠⇠⇠⇠⇠|1yx x0|x + |1yx x1|x

+ |0yx x0|x ´XXXXX|0yx x1|x ´⇠⇠⇠⇠⇠|1yx x0|x + |1yx x1|x
i

=
1
2

|0yx x0|x +
1
2

|1yx x1|x . (2.22)

This looks just like Eq.(2.21), but now it no longer reflects our ignorance
of which pure state the system is in. A mixed-state density matrix can
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be written in any number of ways and its partition into a set of states
is arbitrary. So, unless we know the physical axis along which the
spin state has been prepared, then the density matrix alone can only
give us probabilities of different sets of pure states. Thus, interpreting
a mixed-state density matrix simply as a measure of our ignorance of
what pure state the system is not reliable.
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