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Abstract

This paper proposes a new strategy for the identification of monetary policy shocks

in structural vector autoregressions (SVARs). It combines traditional sign restric-

tions with external variable constraints on high-frequency monetary surprises and

central bank’s macroeconomic projections. I use it to characterize the transmission

of US monetary policy over the period 1965-2007. First, I find that contractionary

monetary policy shocks unequivocally decrease output, sharpening the ambiguous

implications of standard sign-restricted SVARs. Second, I show that the identified

structural models are consistent with narrative sign restrictions and restrictions on

the monetary policy equation. On the contrary, the shocks identified through these

alternative methodologies turn out to be correlated with the information set of the

central bank and to weakly comove with monetary surprises. Finally, I implement

an algorithm for robust Bayesian inference in set-identified SVARs, providing fur-

ther evidence in support of my identification strategy.
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1 Introduction and Related Literature

Starting with the seminal paper of Sims (1980), a large number of studies has employed

structural vector autoregressions (SVARs) to evaluate how monetary policy affects the

real economy. Coherently with theoretical predictions, early SVAR literature based on

short-run restrictions (e.g. Christiano et al., 1996) found that monetary tightenings have

contractionary effects on output. The soundness of contemporaneous zero restrictions,

however, has later been questioned by Uhlig (2005), who suggests to identify monetary

policy shocks through sign restrictions on the impulse responses (henceforth standard or

traditional sign restrictions). This methodology, that only achieves set-identification of

the structural model, has the advantage of hinging on rather uncontroversial identifying

assumptions. By adopting it, Uhlig (2005) finds that US monetary contractions do not

necessarily decrease output but might even have expansionary effects.

This paper proposes to sharpen the identification obtained through sign restrictions,

whose ability to identify monetary policy shocks has been recently called into question.

In particular, Wolf (2020) provides an insightful interpretation of the ambiguous results

achieved by Uhlig (2005). Using Smets and Wouters’s (2007) model as data-generating

process, he shows that sign restrictions may mistake positive demand and supply shocks

for ‘masquerading’ contractionary monetary policy shocks, which are thus misleadingly

found to increase output. Although theoretically sound, sign restrictions may therefore

not be enough to identify the dynamic effects of monetary policy. To address this issue,

I suggest to combine them with constraints on the relationship between monetary policy

shocks and additional identifying information that is external to the VAR. Specifically, I

only retain structural models which, in addition to satisfying standard sign restrictions,

deliver monetary policy shocks that exhibit a certain relation with Greenbook forecasts

and high-frequency monetary surprises. The latter measure the movements in the three-

month-ahead federal funds rate futures over 30-minute windows around Federal Open
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Market Committee (FOMC) announcements. They capture therefore the unpredictable

component of monetary policy and plausible measures of monetary policy shocks should

thus display a substantial positive correlation with them. Using the terminology of Wolf

(2020), shocks with such a feature are likely to be ‘true’ monetary policy shocks rather

than mere demand or supply shocks ‘masquerading’ as such. The Greenbook forecasts

represent instead a proxy of the information set of the Federal Reserve (Fed) about the

current and future state of the economy. Hence, only candidate monetary policy shocks

which are not correlated with them should be retained as solutions to the identification

problem. The effects of changes in monetary policy might otherwise be confounded with

those triggered by the release of central bank information and with the realization of the

expected future conditions to which the Fed is reacting. Importantly, once standard sign

restrictions are combined with external variable constraints, contractionary monetary

policy shocks are unequivocally found to decrease output. This result sheds light on the

ambiguous findings obtained by Uhlig (2005) and contributes to restore the conventional

wisdom about the transmission of US monetary policy in set-identified SVARs.

Similar evidence has been provided by two crucial contributions in the literature on

set-identification of monetary policy shocks, as Antoĺın-Dı́az and Rubio-Ramı́rez (2018)

and Arias et al. (2019). The former combines traditional sign restrictions with narrative

constraints around key historical episodes, while the latter imposes restrictions on the

coefficients of the monetary policy equation. I find that the structural models recovered

through my identification strategy meet their identifying assumptions and thus exhibit

two important features. First, the identified monetary policy shocks are consistent with

a narrative reading of the times and, second, the structural monetary policy equations

are reconcilable with Taylor-type monetary policy rules. On the contrary, a large share

of the shocks recovered by these two alternative methodologies is found to be correlated

with Greenbook projections and to weakly comove with monetary surprises. Moreover,
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narrative sign restrictions and restrictions on the monetary policy equation are imposed

through a uniform prior on the space of orthonormal matrices. As shown by Baumeister

and Hamilton (2015), such a uniform prior might however be informative about objects

of interest as impulse responses. It is worth emphasizing that the results obtained under

my identification strategy, unlike those derived by using these competing methods, still

apply when inference is performed through a prior-robust Bayesian algorithm based on

numerical optimization methods (Giacomini and Kitagawa, 2021; Volpicella, 2022).

The idea of resorting to central bank’s forecasts or high-frequency data to refine the

identification of monetary shocks is not new. Monetary surprises are typically used as

external instruments in proxy-SVARs (e.g. Gertler and Karadi, 2015), while Greenbook

projections have been for instance included as endogenous variables in the VAR (Barth

and Ramey, 2002). Miranda-Agrippino and Ricco (2021) have recently combined them

to construct a robust instrument for the identification of monetary policy shocks. Since

I employ the same information, this paper is inevitably related to theirs. However, my

approach is significantly different from the one they implement. First and foremost, my

identification strategy does not require any of the external variables to be an exogenous

and relevant instrument. Second, the use of external variable constraints does not yield

point-identification but is only aimed at sharpening set-identification.

My work also relates to Braun and Brüggerman (2022), who combine restrictions on

the monetary policy equation with a constraint on the relationship between monetary

policy shocks and Romer and Romer’s (2004) narrative series. This paper differs from

their work in several respects. First, they do not directly control for the information set

of the central bank and enforce the external constraint on a narrative series rather than

monetary surprises. Second, they do not impose restrictions on the impulse responses

but on the monetary policy equation, as in Arias et al. (2019). Third, they only perform

inference through a uniform, but informative, prior on the orthonormal matrices.
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The structure of this paper is as follows. Section 2 sets the econometric framework.

Section 3 presents my identification strategy and the main findings. Section 4 relates my

approach to narrative sign restrictions and restrictions on the monetary policy equation.

Section 5 evaluates if my identification scheme effectively controls for the central bank

information channel. Section 6 introduces the prior-robust inference algorithm and the

resulting impulse response functions. Section 7 draws conclusions. Finally, Appendix A

and Appendix B provide robustness checks and further technical details, respectively.

2 The Econometric Framework

This section sets the econometric framework and introduces the use of sign restrictions

(Uhlig, 2005) for the identification of monetary policy shocks.

2.1 The Identification Problem

A reduced-form VAR(p) model takes the form:

yt =

p∑
j=1

BjL
jyt + et (1)

where L is the lag operator and p is the lag order; yt is a k × 1 vector of endogenous

variables; et is a k × 1 vector of reduced-form residuals and Bj , for j = 1, . . . , p, are

matrices of estimated coefficients. Let E(ete
′
t) = Σe be the variance-covariance matrix

of et and B = [B1, . . . , Bp]. If the reduced-form parameters ω = (Σe, B) are such that

the VAR(p) is stationary, the following infinite-order vector moving average (VMA)

representation does exist:

yt =
∞∑
h=0

Chet−h (2)

where Ch is the h-th coefficient matrix of (Ik −
∑p

j=1BjL
j)−1. For h = 0, . . . ,H, the

(i, l)-element of the k×k matrix Ch is the reduced-form impulse response at time t+h
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of the i-th variable in yt to a unit innovation to the l-th entry of et.

Importantly, Σe is non-diagonal and the elements of et are thus contemporaneously

correlated. Hence, the identification problem consists in finding a linear transformation

of et of the form

et = Pεt (3)

such that the variance-covariance matrix Σε of the resulting structural shocks εt is di-

agonal. Once the structural impact matrix P is defined, the structural impulse response

functions (IRFs) can then be computed, at each horizon h, as

Θh = ChP (4)

where the (i, l)-element of the k× k matrix Θh is the impulse response at time t+ h of

the i-th variable in yt to a unit structural shock to the l-th element of εt.

2.2 Set-Identification of SVAR Models

The crucial result behind set-identification is that there are infinitely many matrices P

such that Σε is diagonal. Let us define the following linear transformation of et,

et = Sηt (5)

where S is the unique lower-triangular Cholesky factor of Σe. From (5), it follows that

the shocks ηt are by construction mutually uncorrelated and have unit variance:

Ση = S−1Σe(S
−1)′ = I (6)

The above, however, is not the only solution to the identification problem. Consider

the following orthonormal transformation of ηt,

ε̂t = Q′ηt (7)

where Q′ is a square orthonormal matrix such that Q′Q = QQ′ = I. By exploiting the
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orthonormality of Q and equation (7), it follows that

et = SQQ′ηt = SQε̂t (8)

As shown in equation (9), such an orthonormal transformation succeeds in delivering a

diagonal structural variance-covariance matrix Σε,

Σε = Q−1S−1SS′(S−1)′(Q−1)′ = I (9)

There are therefore infinitely many solutions to the identification problem, one for each

orthonormal transformation of S. In this framework, an identification strategy can thus

be thought of as a set of identifying restrictions that restraints the admissible support

for the orthonormal matrices Q.

2.3 Identification by Sign Restrictions

For a certain orthonormal matrix Q and h = 0, . . . ,H, the k × k matrix of structural

impulse responses Θ̂h can be expressed as

Θ̂h = ChA (10)

where, to simplify the notation, I set A = SQ. The (i, l)-element of Θ̂h is the structural

impulse response at time t+h of the i-th variable in y to a unit structural shock to the

l-th element of ε̂t. Sign restrictions address the identification problem by constraining

the sign of some of the elements of Θ̂h. This approach was introduced by Uhlig (2005),

who implements it on the following vector yt of US monthly variables,

y′t =
[
gdpt pit fft cit trt nrt

]
(11)

where gdpt and pit are the log of real GDP and of the GDP deflator, constructed using

interpolation of the quarterly series as in Bernanke and Mihov (1998); fft is the federal

funds rate; cit is the log of the commodity price index from Global Financial Data; trt
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and nrt are the log of total and nonborrowed reserves, respectively.

The identification of monetary policy shocks is then achieved by retaining a large

number of structural impact matrices A such that the resulting shock ε̂mt (A) satisfies

the sign restrictions described in Restriction SR.

Restriction SR. A monetary policy shock εmt leads to a negative response of pit, cit

and nrt, and to a positive response of fft at horizons h = 0, . . . , 5.

3 Combining Sign Restrictions With External Variable Constraints

The soundness of the shocks recovered through Restriction SR has been recently called

into question. Specifically, Wolf (2020) shows that sign restrictions are likely to mistake

positive demand and supply shocks for ‘masquerading’ contractionary monetary policy

shocks, that are thus misleadingly found to increase output.

To deal with this issue, I combine sign restrictions with external variable constraints

on high-frequency monetary surprises and Greenbook forecasts. The latter express the

Fed’s information set about the current and future state of the economy and monetary

policy shocks should therefore be not correlated with them. If not, the effects of changes

in monetary policy might be confounded with those induced by the disclosure of central

bank information and by the realization of the expected conditions to which the Federal

Reserve is responding. On the contrary, monetary surprises measure the movements in

the three-month-ahead federal funds rate futures over 30-minute windows around FOMC

announcements and thus proxy the unpredictable component of monetary policy. Hence,

I suggest to retain only the shocks that display a strong positive correlation with them,

since, using the terminology of Wolf (2020), they are likely to be ‘true’ monetary policy

shocks rather than mere demand or supply shocks ‘masquerading’ as such.

My sample starts in January 1965 and ends in November 2007. This allows to extend

the time frame originally considered by Uhlig (2005) while excluding the unconventional
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monetary policy undertaken after the global financial crisis.1 The reduced-form VAR

specification includes 12 lags of the variables in (11) and, consistently with Uhlig (2005),

does not include any deterministic term. The estimation is performed by using Bayesian

methods with Jeffreys (flat) priors for Σe and B. This implies a normal-inverse-Wishart

posterior distribution for the reduced-form parameters, from which it is straightforward

to obtain independent draws (see, for instance, Del Negro and Schorfheide, 2011).

3.1 The Identification Strategy

In the first stage, I enforce Restriction SR by implementing the algorithm proposed by

Rubio-Ramı̀rez et al. (2010), described in Appendix B.

Restriction SR. A monetary policy shock εmt leads to a negative response of pit, cit

and nrt, and to a positive response of fft at horizons h = 0, . . . , 5.

I generate 105 draws of A satisfying the above restriction and I store them into the set

P. For i = 1, . . . , 105, let ε̂m,i
t (A) be the i-th monetary policy shock associated with the

i-th matrix A ∈ P. The set P is then sharpened by only retaining the matrices A ∈ P

such that ε̂m,i
t (A) meets the external variable constraints contained in Restriction ER.

Restriction ER. Over the period from 1990:M1 to 2007:M11, a monetary policy shock

εmt satisfies the following external variable constraints:

corr(εmt , FF4t) > τ (ER1)

corr(εmt , FIt) = 0 (ER2)

where FF4t is the change in the three-month-ahead federal funds rate futures in the 30-

minute window around the FOMC announcement and FIt is the Fed’s information set

in month t about current and future economic developments. The latter is proxied by

Greenbook forecasts for real GDP growth and CPI inflation rate for the previous quarter

1The findings discussed in the next few sections are still valid over Uhlig’s (2005) original sample.
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and up to three quarters ahead and by the Greenbook nowcast for the quarterly unemp-

ment rate.2 The parameter τ in (ER1) determines how strong the correlation between

monetary surprises FF4t and ε̂
m
t (A) must be for the latter to be accepted as a solution.

Restriction ER ensures therefore the identification of monetary policy shocks that are

substantially correlated with monetary surprises and exogenous to the information set

of the policymaker.3 In particular, I enforce constraint (ER2) by running the following

regression at the monthly frequency and requiring the coefficients ϑ0, ψp and λp, for

p = −1, . . . , 3, to be jointly not significant at the 5% level:

ε̂m,i
t = αi

m +

3∑
p=−1

λipG
gdp
t,p +

3∑
p=−1

ψi
pG

π
t,p + ϑi0G

u
t,0 + uim,t (12)

ε̂m,i
t , with i = 1, . . . , 105, is the i-th candidate shock satisfying Restriction SR; Gj

t,p, for

j = {gdp, π}, denotes the p-quarters ahead Greenbook forecast for variable j in month

t, and Gu
t,0 is the nowcast for the unemployment rate. I consider three alternative cali-

brations for the parameter τ in (ER1), that is set at the 75th, 90th or 99th percentile of

the set of correlation coefficients between the 105 shocks ε̂mt (A) obtained from A ∈ P

and FF4t. The structural impact matrices A generating shocks ε̂mt (A) that satisfy Re-

striction SR and ER are then stored, respectively, into the sets of solutions P∗
75th, P∗

90th

and P∗
99th. It is worth mentioning that the frequency of the dependent variable in (12)

is originally different from the one of the regressors: the shocks ε̂m,i
t are monthly series

while the Greenbook projections are released eight times a year. The latter are in fact

prepared by the Federal Reserve Board staff prior to each FOMC meeting, typically in

2In this, I follow Romer and Romer (2004). The inclusion of backcast, nowcast and all the forecasts
of the unemployment rate would not bring any additional information, while creating collinearity issues
with the output growth series in regression (12).

3Restriction ER can only be imposed over the period 1990:M1-2007:M11, since the FF4t series is
available from January 1990. This limitation is common to the entire literature on high-frequency
identification of monetary policy shocks, as Gertler and Karadi (2015) and Miranda-Agrippino and
Ricco (2021). The latter, for instance, estimate the reduced-form over the period 1979:M1-2014:M12
but only run the 2SLS regression that delivers the structural parameters from January 1990 onward.
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the first and third month of each quarter. Consistently with Barth and Ramey (2002),

I convert Greenbook variables to monthly frequency by using the initial forecasts of the

quarter to approximate the information set of the Fed in the first two months, while the

projections produced for the second meeting are used to update the series in the third

month. This amounts to saying that the information set of the Fed does not change in

months without FOMC meetings and probably assumes slightly less information than

the Fed actually has.4

Finally, note that identification by external variable constraints significantly differs

from that achieved in proxy-SVARs. The latter point-identify the structural model by

assuming exogeneity and relevance of the external instrument. Conversely, the method

I propose only delivers set-identification and, most importantly, does not assume any

of the external variables to be a valid instrument. This is a major advantage since it is

hard to build credibly exogenous instruments for monetary policy shocks. Several pop-

ular instruments in the empirical literature on monetary policy have been in fact found

to be correlated with the information set of the Fed (as Gertler and Karadi’s monetary

surprises) or predictable by past information (as Romer and Romer’s narrative series).

3.2 Impulse Response Functions

This subsection compares the IRFs derived by imposing standard sign restrictions with

those obtained using the sets of solutions recovered through my identification strategy.

In Appendix A, I show instead the IRFs obtained using only Restriction ER and in the

case in which constraints (ER1) and (ER2) are alternatively released.

Figure 1 displays the IRFs under Restriction SR and those formed from A ∈ P∗
75th.

This set contains 5171 structural impact matrices A (out of the 105 matrices stored in

4In Appendix A, I drop this assumption by imposing (ER2) at the FOMC meeting frequency. This
alternative approach delivers very similar results and has the advantage of not requiring any frequency
conversion. However, it largely reduces the number of observations used to estimate regression (12).
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P) delivering monetary policy shocks uncorrelated with the Greenbook and that show

a correlation with high-frequency surprises higher than 0.09 (the 75th percentile of the

set of correlation coefficients between FF4t and the 105 shocks associated with A ∈ P).

Figure 1: Responses to contractionary monetary policy shocks formed from A ∈ P∗
75th (in

blue) and under Restriction SR (in red).
Notes: Monetary policy shocks normalized to induce a 25 basis points rise in fft . The solid line is the point-wise
posterior median response. The shaded bands are the 68% equal-tailed point-wise posterior probability bands.

Importantly, once I discard the candidate shocks correlated with the Fed’s information

set or that weakly comove with FF4t, expansionary effects of monetary tightenings are

entirely ruled out. Figure 2 illustrates instead the IRFs obtained from A ∈ P∗
90th. The

Figure 2: Responses to contractionary monetary policy shocks formed from A ∈ P∗
90th (in

blue) and under Restriction SR (in red).
Notes: Monetary policy shocks normalized to induce a 25 basis points rise in fft . The solid line is the point-wise
posterior median response. The shaded bands are the 68% equal-tailed point-wise posterior probability bands.
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correlation between monetary policy shocks and FF4t is in this case constrained to be

greater than 0.13 and the number of solutions drops to 2166. At odds with the results

induced by traditional sign restrictions, US monetary contractions are found to trigger

significantly negative effects on output in the short and medium-term.

Figure 3: Responses to contractionary monetary policy shocks formed from A ∈ P∗
99th (in

blue) and under Restriction SR (in red).
Notes: Monetary policy shocks normalized to induce a 25 basis points rise in fft . The solid line is the point-wise
posterior median response. The shaded bands are the 68% equal-tailed point-wise posterior probability bands.

Finally, Figure 3 shows the IRFs formed from A ∈ P∗
99th. As a result of the stricter

restrictions, P ∗
99th consists of only 227 elements. The associated monetary policy shocks

are uncorrelated with Greenbook projections and exhibit a correlation with FF4t larger

than 0.21. Compared to the previous cases, US monetary tightenings lower output in a

shorter time and with a larger magnitude. External variable constraints appear thus to

greatly mitigate the ambiguity surrounding Uhlig’s (2005) findings: when Restriction

SR is combined with Restriction ER, monetary contractions are unequivocally found to

reduce output. Consistently with the point raised by Wolf (2020), the results obtained

by Uhlig (2005) seem to be driven by a misidentification of the monetary policy shocks.

As will be discussed in Section 4, 73% of the shocks identified through Restriction SR

are in fact correlated with the Fed’s information set, while about 24% of them negatively

comove with FF4t.
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4 Relationship With Alternative Set-Identification Strategies

This section relates my approach to narrative sign restrictions (Antoĺın-Dı́az and Rubio-

Ramı́rez, 2018) and to restrictions on the monetary policy equation (Arias et al., 2019).

These methods, similarly to the one I propose, build on traditional sign restrictions and

are therefore based on the same model specification described in Section 3.

First, I show that the structural models recovered through my identification scheme

meet their identifying assumptions. This is a key result, since it implies that Restriction

SR and ER guarantee narrative consistency of monetary policy shocks and Taylor-rule

consistency of monetary policy equations. On the contrary, the monetary policy shocks

recovered through these alternative approaches are found to not satisfy Restriction ER.

This finding seems to call into question their validity, since uncorrelation with the Fed’s

information set and large correlation with monetary surprises should characterize any

plausible measure of monetary shock, no matter how it is recovered. For a comparison

between the IRFs, the reader is instead referred to Section 6.

4.1 Identification by Narrative Sign Restrictions

Narrative sign restrictions were introduced by Antoĺın-Dı́az and Rubio-Ramı́rez (2018).

They combine Restriction SR with constraints on the sign of the monetary policy shocks

εmt and on the magnitude of their contribution to the unexpected changes in the federal

funds rate fft during crucial episodes in the US monetary history.

In order to describe this approach, first note that the structural VMA representation

can be truncated and approximated, at any t, as

yt =

t−1∑
h=0

Θhεt−h (13)

where Θh = ChP and εt = P−1et. Let fft and εmt be, respectively, the third and first
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entry of yt and εt. The contribution of εmt to the unexpected movement in fft , denoted

by Hff
m,t, is then given by

Hff
m,t = Θ0,31ε

m
t (14)

The two main identifying restrictions are imposed on the observation corresponding

to October 1979, when Fed’s chairman Paul Volcker started his anti-inflationary policy.

Restriction NR1. The monetary policy shock εmt for the observation corresponding

to October 1979 must be of positive value.

Restriction NR2. In October 1979, the absolute value of Hff
m,t is larger than the sum

of the absolute value of the contributions of all other structural shocks.

Alternatively, they impose Restriction NR3 and NR4 on a wider set of events for which

there is a reasonable agreement that an important monetary policy shock occurred.

Restriction NR3. The monetary policy shock εmt must be positive for the observa-

tions corresponding to April 1974, October 1979, December 1988, and February 1994,

and negative for December 1990, October 1998, April 2001, and November 2002.

Restriction NR4. For the periods specified in Restriction NR3, the absolute value of

Hff
m,t is larger than the absolute value of the contribution of any other structural shock.

4.2 Narrative Consistency of Monetary Policy Shocks

Below, I derive the percentages of monetary policy shocks formed from A ∈ P∗
99th that

satisfy Restriction NR1, NR2, NR3 and NR4. By doing so, I can evaluate whether my

identification strategy recovers shocks that are consistent with the historical reading of

the times performed by Antoĺın-Dı́az and Rubio-Ramı́rez (2018).

As a benchmark, I first perform this analysis for the shocks identified through sign

restrictions only. As reported in Table 1, despite almost 88% of the shocks are positive

in October 1979, only a small percentage of them satisfies Restriction NR2. Moreover,
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their sign is reconcilable with only few of the constraints in Restriction NR3, while the

vast majority of them fails in satisfying the requirements of Restriction NR4.

Restriction 1974:4 1979:10 1988:12 1990:12 1994:2 1998:10 2001:4 2002:11

NR1 - 87.9% - - - - - -

NR2 - 9.6% - - - - - -

NR3 96.3% 87.9% 36.0% 98.4% 21.0% 46.2% 42.2% 57.5%

NR4 47.3% 21.2% 14.8% 53.8% 19.3% 12.7% 9.1% 14.2%

Table 1: % of εmt formed from A ∈ P satisfying Restriction NR1, NR2, NR3 and NR4

On the other hand, as displayed in Table 2, all the monetary policy shocks recovered

through my method are positive on October 1979 and more than 90% of them are also

found to be the overwhelming driver of unexpected movements in the federal funds rate

on the same date. This result is crucial, since Antoĺın-Dı́az and Rubio-Ramı́rez (2018)

Restriction 1974:4 1979:10 1988:12 1990:12 1994:2 1998:10 2001:4 2002:11

NR1 - 100.0% - - - - - -

NR2 - 90.3% - - - - - -

NR3 99.6% 100.0% 40.0% 94.3% 68.8% 100.0% 100.0% 100.0%

NR4 96.5% 97.4% 32.6% 71.8% 45.0% 99.1% 95.1% 88.6%

Table 2: % of εmt formed from A ∈ P∗
99th satisfying Restriction NR1, NR2, NR3 and NR4

consider the Volcker reform as the clearest example of exogenous shock in the postwar

period. Overall, the monetary policy shocks formed from A ∈ P∗
99th are also consistent

with the broader set of episodes in Restriction NR3 and NR4. However, the December

1988 and February 1994 events are two exceptions that is worth investigating in more

detail. A scrutiny of Greenbook forecasts and FOMC meetings minutes suggests that,

rather than exogenous shocks, the federal funds rate hikes occurred on these two dates

may indeed represent the endogenous response of the Fed to positive news about future
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economic developments. The rise in the interest rate in December 1988 is in fact paired

with upward revisions in the nowcast and one-quarter ahead forecast for output growth.

The minutes of the FOMC meeting that took place in February 1994 mention instead

that this policy intervention was undertaken based on confidential access to ‘optimistic’

employment data that were not available when the Greenbook was prepared.5

4.3 Identification by Restrictions on the Monetary Policy Equation

The use of restrictions on the coefficients of the monetary policy equation was proposed

by Arias et al. (2019). Denoting by dil the (i, l)-element of the k× k matrix D = A−1,

the structural monetary policy equation can be expressed as follows,

fft = ϕgdpgdpt + ϕpipit + ϕcicit + ϕtrtrt + ϕnrnrt + σεmt (15)

where ϕgdp = −d11
d13

, ϕpi = −d12
d13

, ϕci = −d14
d13

, ϕtr = −d15
d13

, ϕnr = −d16
d13

and σ = d13.

Supported by a large literature on Taylor-type rules, they achieve set-identification

by imposing the following zero and sign restrictions on the coefficients in equation (15).

Restriction TR1. The federal funds rate is the monetary policy instrument and only

reacts contemporaneously to output, prices and commodity prices. Thus, ϕtr, ϕnr = 0.

Restriction TR2. The contemporaneous reaction of the federal funds rate to output

and prices is positive, that is ϕgdp, ϕpi > 0.

4.4 Taylor-Rule Consistency of Monetary Policy Equations

In this subsection, I compute the monetary policy equations associated with A ∈ P∗
99th

and check if they satisfy Restriction TR1 and TR2. This allows to assess whether they

5This argument is also outlined in Antoĺın-Dı́az and Rubio-Ramı́rez’s (2018) Appendix C. However,
given the magnitude of the increase in the federal funds rate, they nevertheless consider these two events
as associated with monetary policy shocks.
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are reconcilable or not with the principles underpinning Taylor-type policy rules.

As a benchmark, I first derive the posterior median estimates and the 68% probabil-

ity intervals for the coefficients of equation (15) when identification is obtained through

sign restrictions only. As shown in Table 3, the results are rather puzzling. In constrast

with Restriction TR2, the median estimate for ϕgdp is negative. Moreover, the posterior

Coefficient ϕgdp ϕpi ϕci ϕtr ϕnr

Median -0.38 1.90 0.11 0.09 0.04

68% Prob. Interval [-2.42;0.82] [-0.03;6.00] [0.00;0.35] [-0.44;0.64] [-0.40;0.65]

Table 3: Coefficients in the monetary policy equations formed from A ∈ P.

Notes: The entries are the posterior median estimates of the coefficients in the monetary policy equations (15)
formed from A ∈ P. The 68% equal-tailed posterior probability interval is reported in brackets.

estimates for ϕtr and ϕnr do not exclude large values: even though the median is close

to zero, the 68% interval is quite wide and ranges up to about 0.65. The median for ϕpi

is instead positive and hence consistent with Restriction TR2. However, the estimates

are quite imprecise and negative values cannot be completely ruled out.

Table 4 reports the coefficients of the monetary policy equation for the case in which

Restriction SR is combined with Restriction ER. As required by Restriction TR2, the

Coefficient ϕgdp ϕpi ϕci ϕtr ϕnr

Median 0.30 1.04 0.03 0.03 -0.03

68% Prob. Interval [0.11;0.55] [0.61;1.57] [0.00;0.06] [-0.07;0.11] [-0.10;0.07]

Table 4: Coefficients in the monetary policy equations formed from A ∈ P∗
99th.

Notes: The entries are the posterior median estimates of the coefficients in the monetary policy equations (15)
formed from A ∈ P∗

99th. The 68% equal-tailed posterior probability interval is reported in brackets.

median estimates for ϕgdp and ϕpi are positive and the 68% probability intervals entirely

exclude negative values. This result is in line with the conduct of an inflation-targeting

central bank that rises the interest rate to prevent an overheating economy or dampen

17



inflationary pressures. Finally, note that ϕtr and ϕnr are narrowly concentrated around

zero and are thus consistent with Restriction TR1, that assumes the federal funds rate

to not respond to changes in total and nonborrowed reserves.

4.5 Alternative Set-Identification Strategies and the Fed’s Information Set

Any truly exogenous measure of monetary policy shock should be uncorrelated with the

Fed’s information set about current and future economic conditions. Below, I identify

1000 shocks εmt through narrative sign restrictions (Restriction SR, NR1 and NR2) and

restrictions on the monetary policy equation (Restriction TR1 and TR2) and I project

them on the Greenbook by running regression (12) over the period 1990:M1-2007:M11.

I then test the null of joint nonsignificance of the estimated coefficients at the 5% level.6

As a benchmark, I perform the same analysis on a set of 1000 shocks identified through

standard sign restrictions (Restriction SR).

Table 5 reports the percentages of acceptance and rejection. More than 73% of the

monetary policy shocks identified by Restriction SR are correlated with the Greenbook.

F-test result SR SR+NR1+NR2 TR1+TR2

Rejection 73.1% 64.0% 51.4%

Acceptance 26.9% 36.0% 48.6%

Table 5: % of acceptances and rejections of the null of joint nonsignificance of the coefficients
of equation (12), 1990:M1-2007:M11.

In other words, they incorporate the endogenous response of the Fed to future economic

conditions and their exogeneity is thus called into question. The additional imposition

of Restriction NR1 and NR2 partly helps in alleviating this issue and, as a result, the

rejection rate falls to 64%. The use of Restriction TR1 and TR2 turns out to outperform

6I could perform this test on a larger sample since Greenbook forecasts for CPI inflation are available
from 1980. I run it from 1990 to 2007 to ensure consistency with the period on which constraint (ER2)
is imposed. Increasing the sample size does not alter the results displayed in Table 5.
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these two methodologies but, also in this case, the results are far from being satisfactory.

About half of the shocks is in fact explained by the macroeconomic projections on which

the FOMC bases its monetary policy decisions.

4.6 Alternative Set-Identification Strategies and Monetary Surprises

In this subsection, I verify whether monetary policy shocks identified by narrative sign

restrictions and restrictions on the monetary policy equation display a strong positive

comovement with monetary surprises. To this end, I derive the correlation coefficients

ρm between the 1000 shocks recovered by each identification scheme and FF4t. Then,

I check if they are higher than 0 and 0.2, that is the minimum correlation required for

A to be accepted in the set of solutions P∗
99th. By defining it as a threshold, I can thus

evaluate whether these methods deliver monetary policy shocks whose correlation with

FF4t is comparable to that ensured by the approach I implement.

As displayed in Table 6, 24% of the shocks recovered by Restriction SR negatively

comoves with FF4t. Even when positive, the correlation is weak and larger than 0.2 in

ρm SR SR+NR1+NR2 TR1+TR2

> 0 76.2% 100.0% 99.9%

> 0.2 1.1% 8.9% 10.3%

Table 6: % of monetary policy shocks such that ρm is larger than 0 and 0.2,
1990:M1-2007M11

only 1% of the cases. The additional imposition of Restriction NR1 and NR2 seems to

be quite effective in mitigating this issue and all the identified shocks positively comove

with FF4t. However, the correlation is overall low and only 8.9% of the shocks would

meet the threshold implied by constraint (ER1). Similar findings hold for the monetary

policy shocks retrieved through Restriction TR1 and TR2.
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5 Am I Controlling for the Central Bank Information Channel?

This section assesses whether the use of Restriction SR and ER is effective in controlling

for the central bank information channel. The rationale behind the analyses I perform

is that ‘true’ contractionary monetary policy shocks should be accompanied by a drop

in the stock market (Jarociński and Karadi, 2020). The comovement should be instead

positive if the increase in the federal funds rate is associated with the disclosure of good

news about future economic developments.

First, I compute the correlation coefficients ρs between monetary policy shocks and

stock market surprises SPIhft , that measure the changes in the S&P 500 over 30-minute

windows around FOMC announcements. Importantly, shocks recovered by Restriction

SR and ER negatively comove with SPIhft . Despite improvements over sign restrictions,

large shares of shocks recovered by narrative restrictions or restrictions on the monetary

policy equation exhibit instead a positive comovement with the stock market surprises.

ρs SR SR+NR1+NR2 TR1+TR2 SR+ER

< 0 45.7% 81.2% 85.6% 100.0%

> 0 54.3% 18.8% 14.4% 0%

Table 7: Percentages of shocks whose correlation with S&P 500 surprises is < 0 and > 0,
1990:M1-2007:M11.

Secondly, I use local projections to characterize the impulse responses of US stock prices

to contractionary monetary policy shocks. Denoting by ε̂m,i
t the i-th shock formed from

A ∈ P∗
99th, I estimate the following regression at the monthly frequency:

SPIt+h = γ
(h)
i +

2∑
l=1

α
(h)
l,i SPIt−l +

5∑
j=0

β
(h)
j,i ε̂

m,i
t−j + ut+h,i (16)

where h = 0, . . . , 48 and i = 1, . . . , 227. I denote by SPIt the log of the US share price
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index produced by the OECD (computed as average of daily closing data) and I include

2 and 5 lags of SPIt and ε̂
m,i
t as controls, respectively. The parameter of interest is β̂

(h)
0,i ,

that measures the impulse response of SPIt at time t+ h to the i-th identified shock.

Figure 4: Response of SPIt to contractionary monetary policy shocks formed from A ∈ P∗
99th

(in blue) and under Restriction SR (in red)

Notes: The solid line is the median response and the shaded bands are the 68% equal-tailed probability bands.
For each horizon h, they are computed point-wise by using the set of impulse responses estimated from (16).

For each horizon h, I then compute the median response and the 68% credibility interval

by deriving the appropriate percentiles of the set of impulse responses {β̂(h)0,1 , . . . , β̂
(h)
0,227}.

In Figure 4, I compare these results with those obtained when only sign restrictions are

binding. In the latter case, the response of US stock prices is not statistically significant.

On the other hand, when both Restriction SR and ER are enforced, the SPIt turns out

to considerably drop after a monetary contraction. The effect is negative on impact and

reaches its minimum a few months after the shock. These findings seem to be consistent

with the propagation of ‘true’ contractionary monetary policy shocks, rather than with

the disclosure of Fed’s positive information about the future economic outlook.

6 Robust Bayesian Inference

So far, in line with Antoĺın-Dı́az and Rubio-Ramı́rez (2018) and Arias et al. (2019), I

have imposed Restriction SR and ER through Rubio-Ramı̀rez et al.’s (2010) algorithm.
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As detailed in Appendix B, it is based on the QR decomposition and assumes a uniform

distribution of Q (the so-called Haar prior) on the space of orthonormal matrices O(k).

However, this does not imply that the elements of Q are uniformly distributed over the

identified set (Baumeister and Hamilton, 2015). The likelihood does not in fact depend

on Q and this prior is thus not updated by the data. Although uniform, it may therefore

be informative for objects of interest as impulse response function, even asymptotically.

In this section, I address this issue by combining numerical methods for constrained

optimization with standard sampling from the posterior to calculate the infimum and

supremum of the impulse responses over all admissible rotation matricesQ. Specifically,

I build on Volpicella (2022) and extend his algorithm to the cases where identification is

achieved by: (i) standard sign restrictions and external variable constraints (Restriction

SR and ER); (ii) standard sign restrictions and narrative sign restrictions (Restriction

SR, NR1 and NR2); (iii) restrictions on the monetary policy equation (Restriction TR1

and TR2). If restrictions are imposed through the uniform Haar prior, these approaches

lead to similar implications about the real effects of US monetary contractions. Below, I

demonstrate that my findings, unlike those obtained through alternative methodologies,

are still valid when impulse responses do not depend on a specific prior for Q. For the

rest of this section, let the monetary policy shock εmt be the first entry of the k×1 vector

εt and let g′ih(ϕ) represent the i-th row of the k×k matrix Gh = ChS, where Ch denotes

the reduced-form impulse responses at horizon h and S is the unique lower-triangular

Cholesky factor.

6.1 Algorithm 1: Sign Restrictions and External Variable Constraints

Algorithm 1 describes the procedure to obtain the prior-robust set of impulse responses

of variable i to contractionary monetary policy shocks under Restriction SR and ER.7

7Computational details are provided in Appendix B.
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Algorithm 1

1. Draw ω = (Σe, B) from the posterior distribution of the reduced-form VAR.

2. Given ω, check the non-emptiness of the set of solutions by verifying whether there

exists an orthonormal matrix Q̄ such that the restrictions imposed in Step 3 are

satisfied. The detection of non-emptiness is executed by considering a maximum

of 3000 candidate Q̄, generated through the QR decomposition. If none of them

satisfies the identifying restrictions, go back to Step 1.

3. By using Q̄ as starting value, check if the following optimization problems have

solutions Q∗ at any horizon h:

min
Q

and max
Q

g′ih(ϕ)q1 subject to:

(i) S1(ϕ)q1 ≥ 0

(ii) corr(ε̂mt (A), FF4t) > τ

(iii) corr(ε̂mt (A), FIt) = 0

(iv) Q′Q = I

where S1(ϕ)q1 ≥ 0 denotes the sign restrictions in Restriction SR.

4. If Step 3 is satisfied, store the impulse response functions derived using the solu-

tions Q∗ in the sets Ω̂min
i,h and Ω̂max

i,h . Otherwise, go back to Step 1.

5. Repeat Steps 1-4 M times.

Below, I implement Algorithm 1 by drawing from the posterior of the reduced-form

VAR detailed in Section 3. I narrow my focus on the output response and setM = 1000.

To ensure comparability, the parameter τ is calibrated at the 99th percentile of the set

of correlation coefficients between FF4t and the monetary policy shocks obtained from

A ∈ P. In Figure 5, I compare the 68% equal-tailed credibility region obtained under

23



a uniform prior for Q and robust Bayesian inference. Unlike Section 3, monetary shocks

are in this case not normalized to generate a 25 basis points increase in fft . The resulting

intervals may in fact be unbounded when the structural parameter Θ̂0,31 = g′30q
∗
1 is not

bounded away from zero for all ω and Q∗. The findings achieved under my identification

strategy, importantly, are still valid when inference is performed through Algorithm 1:

despite the blue bands on the right panel are wider than those on the left one, monetary

Figure 5: 68% equal-tailed credibility interval for output response using Restriction SR and
ER (in blue) and using Restriction SR (in red).

contractions are in fact still found to induce a significant drop in output. When the uni-

form prior on Q is released, standard sign restrictions deliver instead impulse responses

with even more contradictory implications and are thus completely uninformative about

the transmission of US monetary policy.

6.2 Algorithm 2: Sign Restrictions and Narrative Sign Restrictions

Algorithm 2 describes the procedure to obtain the prior-robust set of impulse responses

of variable i to contractionary monetary policy shocks under Restriction SR, NR1, NR2.

Algorithm 2

In Algorithm 1, replace Step 3 with the following.

3. By using Q̄ as starting value, check if the following optimization problems have

solutions Q∗ at any horizon h:
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min
Q

and max
Q

g′ih(ϕ)q1 subject to:

(i) S1(ϕ)q1 ≥ 0

(ii) εmt (A) > 0 for t=1979:10

(iii) Hff
1,t(A) >

∑k
j=2H

ff
j,t(A) for t=1979:10

(iv) Q′Q = I

where S1(ϕ)q1 denotes the sign restrictions described in Restriction SR and Hff
i,t,

for j = 1, . . . , k, denotes the contribution of shock j in explaining the historical

decomposition of fft for observation t.

Below, I use Algorithm 2 by drawing from the posterior distribution of the reduced-

form VAR described in Section 3. Figure 6 plots, in red, the resulting 68% robust equal-

tailed credibility region for output response as well as the interval implied by a uniform

prior for Q. To facilitate comparison with my approach, I contrast them with the bands

obtained through Restriction SR and ER. The effects of contractionary monetary policy

shocks on output are significantly negative when inference is performed by following the

Figure 6: 68% equal-tailed credibility interval for output response using Restriction SR and
ER (in blue) and using Restriction SR, NR1 and NR2 (in red).

standard procedure. Compared to those derived by my identification scheme, the effects

are smaller and statistically significant with a greater delay. Furthermore, they seem to
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vanish when the uniform prior on Q is replaced by Algorithm 2. The robust credibility

interval, in fact, includes zero at any horizon.

6.3 Algorithm 3: Restrictions on the Monetary Policy Equations

Algorithm 3 describes the procedure to obtain the prior-robust set of impulse responses

of variable i to contractionary monetary policy shocks under Restriction TR1 and TR2.

Algorithm 3

In Algorithm 1, replace Step 3 with the following.

3. By using Q̄ as starting value, check if the following optimization problems have

solutions Q∗ at any horizon h:

min
Q

and max
Q

g′ih(ϕ)q1 subject to:

(i) ϕgdp(A) > 0, ϕπ(A) < 0, ϕtr(A) = ϕnr(A) = 0

(ii) Q′Q = I

where ϕj , with j = {gdp, π, tr, nr}, denotes the coefficients of equation (15).

After sampling from the posterior distribution of the reduced-form VAR introduced

in Section 3, I derive the 68% equal-tailed credibility region for output response through

Algorithm 3 and contrast it with the one obtained under a uniform prior for Q. Figure 7

Figure 7: 68% equal-tailed credibility interval for output response using Restriction SR and
ER and (in blue) and using Restriction TR1 and TR2 (in red).
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plots them, in red, and runs a comparison with those derived using Restriction SR and

ER. Under standard inference, contractionary monetary policy shocks turn out to have

significant negative effects on output. If compared with the results achieved through my

identification strategy, they are however quite short-lived and peak about eight months

after the shock. Furthermore, differently from what happens by using the methodology

I propose, the impact of monetary contractions is far more ambiguous when the uniform

prior on Q is replaced by the robust Bayesian inference algorithm.

7 Conclusion

In this paper, I refine the identification achieved through sign restrictions (Uhlig, 2005)

by combining them with external variable constraints on central bank’s macroeconomic

forecasts and high-frequency monetary surprises.

I employ this approach to evaluate the transmission of US monetary policy over the

period 1965:M1-2007:M11. The use of external variable constraints markedly mitigates

the ambiguity surrounding Uhlig’s (2005) findings. In line with theoretical predictions,

contractionary monetary policy shocks are uncontroversially found to decrease output.

Importantly, these effects are still valid when inference is ran by using a robust Bayesian

algorithm and are larger than those derived through narrative sign restrictions (Antoĺın-

Dı́az and Rubio-Ramı́rez, 2018) and restrictions on the monetary policy equation (Arias

et al., 2019). Moreover, the shocks recovered by these two identification strategies turn

out to be correlated with the Fed’s information set and to poorly comove with monetary

surprises. On the other hand, the use of external variable constraints delivers monetary

policy shocks and monetary policy equations that are consistent with, respectively, an

historical readings of the time and Taylor-type rules.
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A Robustness Checks

A.1 Imposing the Greenbook Constraint at the FOMC Meeting Frequency

As discussed in Section 3, enforcing constraint (ER2) at the monthly frequency requires

inevitable assumptions about the timing with which the Fed updates its information set.

In this section, I show the results obtained when constraint (ER2) is instead imposed at

the FOMCmeeting frequency. This approach does not involve any frequency conversion

but considerably reduces the number of observations used to estimate regression (12).

Figure A.1: Response to contractionary monetary policy shocks formed from A ∈ P∗,mf
99th (in

blue) and under Restriction SR (in red)
Notes: Monetary policy shocks normalized to induce a 25 basis points rise in fft . The solid line is the point-wise
posterior median response. The shaded bands are the 68% equal-tailed point-wise posterior probability bands.

Figure A.1 compares the IRFs derived under Restriction SR and those formed from

the set of solutions P ∗,mf
99th , that collects the 429 matrices A satisfying Restriction SR

and ER when constraint (ER2) is imposed at the FOMC meeting frequency. Crucially,

the output response is almost unchanged compared to that in Figure 3. Table A.1 shows

instead the percentages of shocks formed from A ∈ P ∗,mf
99th that satisfy the restrictions

imposed by Antoĺın-Dı́az and Rubio-Ramı́rez (2018). Again, results are consistent with

those in Section 3, thus showing that monetary shocks are reconcilable with a narrative

reading of the times regardless of the frequency with which constraint (ER2) is enforced.
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Restriction 1974:4 1979:10 1988:12 1990:12 1994:2 1998:10 2001:4 2002:11

NR1 - 100.0% - - - - - -

NR2 - 90.0% - - - - - -

NR3 99.5% 100.0% 47.5% 96.5% 57.3% 100.0% 99.8% 99.3%

NR4 94.6% 96.7% 37.7% 78.5% 44.8% 94.6% 89.7% 87.7%

Table A.1: % of εmt formed from A ∈ P∗,mf
99th satisfying Restriction NR1, NR2, NR3 and NR4

As shown in Table A.2, a similar conclusion holds for the Taylor-rule consistency of the

monetary policy equations. The coefficients obtained from A ∈ P∗,mf
99th are in fact overall

reconcilable with Restriction TR1 and TR2.

Coefficient ϕgdp ϕpi ϕci ϕtr ϕnr

Median 0.21 1.06 0.03 0.03 -0.02

68% Prob. Interval [-0.02;0.46] [0.65;1.59] [0.01;0.06] [-0.07;0.12] [-0.10;0.06]

Table A.2: Coefficients in the monetary policy equations formed from A ∈ P∗,mf
99th .

Notes: The entries in the table are the posterior median estimates of the coefficients in the monetary equations

(15) formed from A ∈ P∗,mf
99th . The 68% equal-tailed posterior probability interval is reported in brackets.
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A.2 IRFs Using Only Restriction ER

This section shows the IRFs obtained when Restriction SR is dropped and identification

is achieved through Restriction ER only.

Figure A.2: Response to contractionary monetary policy shocks formed from A ∈ P̄∗
99th (in

blue) and under Restriction SR (in red).
Notes: Monetary policy shocks normalized to induce a 25 basis points rise in fft . The solid line is the point-wise
posterior median response. The shaded bands are the 68% equal-tailed point-wise posterior probability bands.

As in Section 3, I generate 105 structural impact matrices A that are stored into the

set of solutions P̄. In this case, importantly, they are not required to meet Restriction

SR but only to guarantee that the resulting monetary policy shock ε̂mt (A) has a positive

impact effect on fft. In the following step, I only retain the matrices A ∈ P̄ such that

ε̂mt (A) meet Restriction ER. For the sake of comparability, I set the parameter τ equal

to the 99th percentile value of the set of correlation coefficients between FF4t and the

shocks ε̂mt (A) formed from A ∈ P̄ (that implies τ = 0.23). The matrices A that deliver

monetary policy shocks ε̂mt (A) satisfying Restriction ER are finally collected into the set

P̄∗
99th. The resulting IRFs are displayed in Figure A.2, where I compare them with the

ones obtained under Restriction SR. Consistently with the results in Section 3, output

is found to negatively react in response to contractionary monetary policy shocks. This

confirms that external variable constraints drive most of the identification.
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A.3 IRFs Using Minimal External Variable Constraints

This section shows the IRFs obtained by keeping Restriction SR binding and by alter-

natively imposing constraints (ER1) and (ER2).

Figure A.3: Responses to contractionary monetary policy shocks formed from A ∈ P∗
f (in

blue) and under Restriction SR (in red).
Notes: Monetary policy shocks normalized to induce a 25 basis points rise in fft . The solid line is the point-wise
posterior median response. The shaded bands are the 68% equal-tailed point-wise posterior probability bands.

Figure A.3 plots the IRFs derived if only constraint (ER2) is added to Restriction

SR. The resulting set of solutions is denoted by P∗
f and counts 27508 elements. Despite

Figure A.4: Responses to contractionary monetary policy shocks formed from A ∈ P∗
m (in

blue) and under Restriction SR (in red).
Notes: Monetary policy shocks normalized to induce a 25 basis points rise in fft . The solid line is the point-wise
posterior median response. The shaded bands are the 68% equal-tailed point-wise posterior probability bands.
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it shifts towards negative values, the set of output responses is similar to that obtained

under only Restriction SR. Figure A.4 plots instead the IRFs obtained if only constraint

(ER1) (with the parameter τ set at the 99th percentile) is added to Restriction SR. The

effects on output of the contractionary shocks formed from the resulting set of solutions

P∗
m are negative in the medium and long-run but more ambiguous in the shorter-term.

Figure A.5: Responses to contractionary monetary policy shocks formed from A ∈ P∗,info
m (in

blue) and under Restriction SR (in red).
Notes: Monetary policy shocks normalized to induce a 25 basis points rise in fft . The solid line is the point-wise
posterior median response. The shaded bands are the 68% equal-tailed point-wise posterior probability bands.

Although not statistically significant, the contemporaneous response is in fact positive

on impact. This finding might lend itself to the following interpretation. If constraint

(ER2) is not binding, the identified set also contains shocks which are correlated with

the Fed’s information set. The rise in output is thus consistent with a scenario in which

the Fed discloses good news about future economic conditions and, given its reaction

function, tightens monetary policy to partly offset the expansionary effects of the news

and prevent an inflationary pressures. This argument emerges more clearly from Figure

A.5, that shows the IRFs formed from the set P∗,info
m . The latter contains 773 matrices

A generating monetary policy shocks that satisfy constraint (ER1) (with τ set at the

99th percentile) but are correlated with the Greenbook. The output response is positive

and, even though only weakly, statistically significant in the first few months after the
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shock. Hence, constraints (ER1) and (ER2) are both necessary to obtain conventional

effects of contractionary monetary policy shocks. Specifically, the exclusion of shocks

correlated with the Fed’s information set is crucial to rule out structural models whose

short-run implications are compatible with the information channel of monetary policy.
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A.4 Imposing Restriction SR and ER on a Different Model Specification

In this section, I check whether imposing Restriction SR and ER on a different system

of variables delivers similar results. Specifically, I consider the same model specification

as Miranda-Agrippino and Ricco (2021), that covers the period 1979:M1-2014:M12 and

includes a constant as well as 12 lags of the following vector of US monthly series,

y′t =
[
ipt pit fft cit ut ebpt

]
(A.1)

where ipt is the log of industrial production, pit is the log of the consumer price index,

fft is the federal funds rate, cit is the log of a commodity price index, ut denotes the

unemployment rate and ebpt is Gilchrist and Zakraǰsek’s (2012) excess bond premium.

I impose the following restrictions and adopt the same procedure detailed in Section 3.

Restriction SR. A monetary policy shock εmt leads to a negative response of pit and

cit and to a positive response of fft at horizons h = 0, . . . , 5.

Restriction ER. Over the period from 1990:M1 to 2007:M11, a monetary policy shock

εmt satisfies the following external variable constraints:

corr(εmt , FF4t) > τ (ER1)

corr(εmt , FIt) = 0 (ER2)

Specifically, I focus on the case where τ is set equal to the 99th percentile value of the

set of correlation coefficients between FF4t and the shocks ε̂mt (A) formed from A ∈ P.

Out of the 105 elements in P, the set of solutions P∗
99th retains 566 matrices A which

deliver monetary policy shocks that are uncorrelated with the Greenbook and display

a correlation with monetary surprises larger than 0.20 (the value of the 99th percentile).

As displayed in Figure A.6, coherently with the findings presented in Section 3, contrac-

tionary monetary policy shocks turn out to trigger negative real effects: the unemploy-
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Figure A.6: Response to contractionary monetary policy shocks formed from A ∈ P∗
99th using

Miranda-Agrippino and Ricco’s (2021) model
Notes: Monetary policy shocks normalized to induce a 25 basis points rise in fft . The solid line is the point-wise
posterior median response. The shaded bands are the 68% equal-tailed point-wise posterior probability bands.

ment rate is found to increase after a monetary tightening, while industrial production

experiences a sharp decline.
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B Technical Appendix

B.1 Rubio-Ramı̀rez et al.’s (2010) Algorithm

In Section 3, I impose sign restrictions through Rubio-Ramı̀rez et al.’s (2010) algorithm,

based on the QR decomposition. For a certain draw of ω = (Σe, B) from the posterior

distribution of the reduced-form VAR, I iterate the following procedure.

1. Draw from a N (0k×1, Ik) and run a QR decomposition of the matrix, that delivers

a k×k matrix R with positive diagonal entries and a k×k orthonormal matrix Q.

2. Let S denote the lower-triangular Cholesky factor of Σe. I compute the candidate

impulse responses Θ̂h = ChA, where Ch are the reduced-form impulse responses,

for h = 0, . . . ,H. If Θ̂h satisfy the sign restrictions, I store them. If not, I discard

them and go back to the first step.

3. I repeat step 1 and 2 until M = 105 responses are obtained.

Once I obtain 105 draws, I compute the point-wise posterior median and 68% equal-

tailed posterior probability bands at each horizon h.

B.2 Computational Details

The optimization problems in Section 6 are solved by using the Sequential Quadratic

Programming (SQP) algorithm in MATLAB’s Optimization Toolbox. Specifically, the

fmincon solver is implemented by specifying the following optimization options.

Option Description Calibration

OptimalityTolerance Termination tolerance on the first-order optimality measure 1e-6

ConstraintTolerance Tolerance on the constraint violation 1e-6

MaxFunctionEvaluations Maximum number of function evaluations allowed 3000

MaxIterations Maximum number of iterations allowed 1000
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