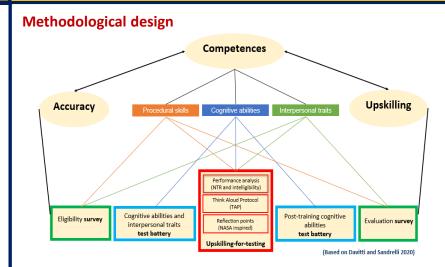


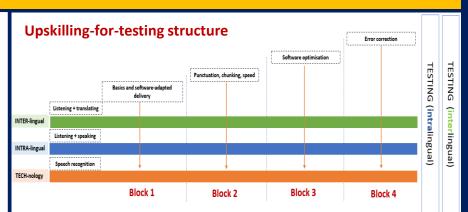
Shaping Multilingual Access Through Respeaking Technology (2020-2023, ES/T002530/1) Elena Davitti, Annalisa Sandrelli, Pablo-Romero Fresco, Tomasz Korybski, Zoe Moores, Anna-Stiina Wallinheimo

INTERLINGUAL RESPEAKING

Innovative method for real-time speech-to-text whereby respeakers listen to live input and simultaneously render it (with added oral punctuation, content labels and software-adapted delivery) in a target language to speech recognition software that turns it into written text displayed on screen



Process: 'simultaneous interpreting 2.0'


Product: live text in a different language

Complex form of human-Al interaction Hybrid, multimodal, human-centric, in-demand practice

STUDY DESIGN

- **Exploratory approach**
- Multi-staged experiment
- Mixed-methods
- Within-subjects design

- 25h course; online delivery across 5 weeks
- Blending and scaffolding approach (technique-specific)
- Dual purpose: collecting performance-related data and testing our approach to upskilling
- Final tests in both intralingual and interlingual respeaking across different scenarios (speed, planned/unplanned, multiple speakers)

OBJECTIVES AND RESEARCH QUESTIONS

PROCESS: To refine existing multifactorial models of competence - what human variables underly the performance of language professionals, what challenges arise during performance, and to what extent it can be sustained

PRODUCT: To explore what contributes to output accuracy how well do language professionals do after 25h of upskilling and what are the predictors of high accuracy

UPSKILLING: To optimise upskilling for language professionals - what challenges arise during skills acquisition and what are the **strengths** and **weaknesses** of the upskilling course

PARTICIPANTS

Fifty-one language professionals selected out of 250+ applicants **Professional backgrounds**: minimum 2,000h work experience in translation, interpreting and/or pre-recorded/live subtitling; majority with 3+ professions in their cluster (composite profiles) Languages: 17 between English and each romance language (French/Italian/Spanish); 32 English>Romance; 19 Romance>English **Demographics**: 8 males, 43 females; *Mage* = 40.12 years, *SD* = 10.97 years; from 11 countries (UK, Spain, Italy, France, Germany, Belgium, Australia, Argentina, New Zealand, USA, Peru)

SELECTED INSIGHTS INTO THE PROCESS

We investigated empirically (baseline) what cognitive abilities and interpersonal traits, underly interlingual respeaking performance.

Cognitive abilities: focus on executive functions (Miyake et al. 2000), particularly working memory (WM), shifting skills, and sustained attention (known effects on simultaneous interpreting as a closely related practice); six cognitive tasks (verbal fluency, plus-minus, digit span, reading span, N-back, sustained attention to response); repeatedmeasures ANOVA and multiple regressions.

- **WM**, F(1, 46) = 4.0, p = .05 (from M = .83, SE = .02 to M = .88, SE = .02.02) and shifting skills, F(1, 49) = 6.42, p = .02 (from M = 22.90 s, SE = 2.95 s to M = 14.55 s, SE = 1.85 s) were enhanced after the upskilling course, indicating that these skills are required for high interlingual respeaking performance. WM was found to predict high performance (β = .36, p =.01).
- Sustained attention did not improve as p > .05, so alternative forms of attention should be investigated (e.g., divided attention).

Interpersonal skills: eight scales used to measure different traits, namely trait anxiety, resilience, impulsivity, cognitive flexibility, innovativeness in IT, personality, work motivation and mindfulness.

• Conscientiousness (TIPI, $\beta = -.32$, p = .02) and integrated regulation (when 'work is part of you', WEIMS, $\beta = -.28$, p = .04) negatively predict accuracy. These findings can be linked to the real-time and cognitively demanding nature of this practice.

SELECTED INSIGHTS INTO THE PRODUCT

We used the NTR model (Romero-Fresco and Pöchhacker 2017) to measure the accuracy of 153 performances under different scenarios (speed, planned/unplanned, multiple speakers). We used an intelligibility scale (based on Tiselius 2009) for determining high and low performers, which was validated in the results obtained.

Accuracy - average NTR results

across all participants and testing scenarios: 95.37% *For reference: intralingual respeaking accuracy benchmark = 98% Interlingual respeaking benchmark yet to be established Per scenario

Per language directionality Romance into English: 96.16%

Speed: **94.76**%

Planned/unplanned: 95.83% English into Romance: 94.89% Multiple speakers: 95.51%

- Across all scenarios, **omissions** ($\beta = -1.12$, p < .001) were the strongest negative predictor of accuracy, followed by substitutions ($\beta = -.17$, p < .001) and recognitions ($\beta = -.34$, p < .001).
- **Effective editions**, changes in the target text which do not lead to a loss of information, were positive predictors of accuracy across all scenarios ($\beta = .31, p = .03$).
- **High performers** (n = 27) scored significantly higher (M = 96.3%, SE = 10.0%.2%) than low performers (n = 24, M = 94.4%, SE = .2%) across all scenarios, p < .001. They made significantly fewer omission and correctness errors and used effective editions significantly more than low performers.

