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Motivating Examples: density fitting

Data 
Model

How to measure the distance between probability distributions?
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Motivating Examples: Bayesian inference

prior

particles

posterior

particles

How to transform between probability distributions efficiently?
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Optimal transport

Knowing point-to-point transport costs,
transport a source distribution µ to a target distribution ν
with minimum overall costs.

How to find the transport map?
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The optimal transport is illustrated by grey arrows.
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Monge’s formulation

Let µ and ν be probability measures defined on Ω,
and c : Ω× Ω→ [0,+∞) a distance metric.

Gaspard Monge
(1746-1818)

The Monge problem finds a transport map T : Ω→ Ω
minimising the expectation of cost function:

M(T ) :=

∫
Ω
c(x, T (x))µ(x) .
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Kantorovich’s formulation
Consider the distribution π defined on Ω× Ω
that satisfies π(A× Ω) = µ(A),
π(Ω×B) = ν(B), i.e. π is a joint distribution
with marginals µ and ν.

Leonid Kantorvich
(1912-1986)An illustration1 of the joint distribution π(x, y).

1Peyre et al., ”Computational Optimal Transport”, Now Publishers, 2019.
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Kantorovich’s formulation

Kantorovich’s formulation tries to find a joint distribution π that
minimises: ∫

Ω×Ω
c(x, y)dπ(x, y) .

8 / 51



Kantorovich’s formulation

Kantorovich’s formulation tries to find a joint distribution π that
minimises: ∫

Ω×Ω
c(x, y)dπ(x, y) .

π corresponds to a transport map:
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Distances between probability measures

Given two probability measures µ and ν, we want to measure the
discrepancy between them by computing a distance metric D(·, ·):

D(µ, ν) : P (Ω)× P (Ω)→ R,

where P (Ω) is the set of all Borel probability measures defined on Ω.

x

p(
x)

p (x)
pv(x) = p(x t)
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Examples of discrepancy measures

Denote by pµ and pν the densities of µ and ν, we can evaluate the
distance between µ and ν by computing the following discrepancy
measures:

I Lk-metrics (k ≥ 1): Lk(µ, ν) =
(∫

Ω
|pµ(x)− pν(x)|kdx

) 1
k

I KL-divergence: DKL(µ||ν) =
∫

Ω
pµ(x) log

(pµ(x)
pν(x)

)
dx

I JS-divergence: JSD(µ||ν) = 1
2DKL(µ||ν) + 1

2DKL(ν||µ)

I Hellinger distance: H2(µ, ν) = 1
2

∫
Ω

(√
pµ(x)−

√
pν(x)

)2
dx

I Wasserstein distance:

Wk(µ, ν) =

(
inf

π∈Ω(µ,ν)

∫
Ω×Ω c(x, y)kdπ(x, y)

) 1
k
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Comparisons between different discrepancy measures

x

p(
x)

p (x)
pv(x) = p(x t)
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captures the geometry of the
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Properties of Wasserstein distance

Wasserstein distance is a valid metric.

I Symmetry

I Triangular inequality

I Identity of indiscernibles

I Non-negativity

Wasserstein distance can capture the underlying geometry of the space.
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Limitations of Wasserstein distance

Computing the optimal transport plans is computationally intensive
when the sample size is large.

More specifically, denote by n the number of samples, the
computational complexity of computing the Wasserstein distance is:

O
(
n3 log(n)

)
.
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Wasserstein distance in one-dimensional space
In one-dimensional space, the optimal transport plan has
closed-form solution:

Wk(µ, ν) =

(∫ 1

0

c
(
F−1
µ (z), F−1

ν (z)
)k
dz

) 1
k

.
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The Wasserstein distance equals the area
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How to obtain 1-D distributions?

I Project high-dimensional distributions onto 1-dimensional spaces
through Radon transform Rµ( · ; θ) (linear projections via dot
product 〈x, θ〉).
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Sliced Wasserstein Distance2 (SWD)

Definition:

SWDk(µ, ν) =

(∫
Sd−1

W k
k

(
Rµ(·, θ),Rν(·, θ)

)
dθ

) 1
k

.

Intuitive interpretation:

I Obtain multiple one-dimensional distribution by using Radon
transform Rµ( · ; θ).

I Average the Wasserstein distances between projected
one-dimensional distributions.

2Bonnel et al., “Sliced and Radon Wasserstein barycenters of measures”, JMIV, 2015
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Generalized Sliced Wasserstein Distance3 (GSWD)

I Obtain 1-dimensional distributions through generalized Radon
transform Gµ( · , θ) (nonlinear projections via defining function
β(x, θ)).

Inner product Circular Polynomial
〈x, θ〉 ||x− r · θ||2

∑
α=m θαx

α

3Kolouri et al., “Generalized sliced Wasserstein distance”, NeurIPS, 2019
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Importance of flexible nonlinear projections

Nonlinear projections can have higher projection efficiency than
linear projections:
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Nonlinear projections can have higher projection efficiency than
linear projections:
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Generalized Sliced Wasserstein Distance3 (GSWD)

× Limited choice of defining function β(·), must satisfy non-trivial
conditions to guarantee a valid metric5.

3Kolouri et al., “Generalized sliced Wasserstein distance”, NeurIPS, 2019
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Generalized Sliced Wasserstein Distance3 (GSWD)

× Limited choice of defining function β(·), must satisfy non-trivial
conditions to guarantee a valid metric5.

× β(·) user-specified and not data-adaptive.

3Kolouri et al., “Generalized sliced Wasserstein distance”, NeurIPS, 2019
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Research questions

How to construct flexible hypersurfaces where the compared
distributions are projected onto?
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Spatial Radon transform (SRT)

I How does the spatial Radon transform Hµ(·, θ; g) construct
nonlinear projections?

Radon transform Generalized RT Spatial RT

〈x, θ〉 β(x, θ) 〈g(x), θ〉
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Augmented sliced Wasserstein distance (ASWD)4

Definition:

ASWDk(µ, ν; g) =

(∫
Sdθ−1

W k
k

(
Hµ(·, θ; g),Hν(·, θ; g)

)
dθ

) 1
k

I Averages the Wasserstein distances between 1-D distributions
obtained through spatial Radon transform.

4X. Chen, Y. Yang, and Y. Li. “Augmented Sliced Wasserstein Distances”, ICLR 2022
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ASWDk(µ, ν; g) =

(∫
Sdθ−1

W k
k

(
Hµ(·, θ; g),Hν(·, θ; g)

)
dθ

) 1
k

I Averages the Wasserstein distances between 1-D distributions
obtained through spatial Radon transform.

Is ASWD a valid metric?

Theorem 1
The augmented sliced Wasserstein distance (ASWD) of order
k ∈ [1,+∞) with a fixed mapping g(·) : Rd → Rdθ is a metric on
Pk(Rd) if and only if g(·) is injective.

4X. Chen, Y. Yang, and Y. Li. “Augmented Sliced Wasserstein Distances”, ICLR 2022
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Injectivity of spatial Radon transform

Lemma 1
The spatial Radon transform is an injection on Pk(Rd) if and only if
the mapping g(·) is an injection.
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Is ASWD a valid metric when g(·) is optimised?

Optimisation objective:

g∗(·) = argmax
g
{ASWDk(µ, ν; g)−λ(E

1
k
x∼µ
[
||g(x)||k2

]
+E

1
k
y∼ν
[
||g(y)||k2

]
)}

Corollary 1.1

The ASWD is a valid metric when λ ≥ 1.
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Experiment Results4

A simple injective mapping gω(x) = [x, φω(x)] adopted for all
experiments.

I Sliced Wasserstein flow (Section 5.1 and Appendix G);

I Generative modeling (Section 5.2 and Appendix H);

I Sliced Wasserstein autoencoders (Appendix I);

I Image color transferring (Appendix J);

I Sliced Wasserstein barycenter (Appendix K).

4X. Chen, Y. Yang, and Y. Li. “Augmented Sliced Wasserstein Distances”, ICLR 2022
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Sliced Wasserstein flow

Evolve a source distribution µ to a target distribution ν by minimizing
different distance metrics between µ and ν:

∂tµt = −∇SWD(µt, ν) ,
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Generative modelling

Train GAN models with different metrics on CELEBA and CIFAR10
datasets:

I The ASWD produced the lowest Fréchet Inception Distance
(FID) score compared with other evaluated metrics:
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Generative modelling

Train GAN models with different metrics on CELEBA and CIFAR10
datasets:

I The ASWD produced the lowest Fréchet Inception Distance
(FID) score compared with other evaluated metrics:

I The ASWD also has higher convergence rate in terms of the
FID score:
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Reinforcement learning (RL)

Standard Markov Decision Process

Often reward is unavailable or hard to defineI Instead, learn from demonstrations

I Inverse RL: Explicitly infer reward, optimise with RL (ill-posed,
computationally expensive)

I Imitation learning: Learn from demonstration directly, without
explicit reward inference
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Imitation learning

Demonstrator policy πE with occupancy measure ρπE :

Learner policy π with occupancy measure ρπ:

I Measure similarity with metric D(ρπ, ρπE )
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Imitation learning

Objective: Find π such that
D(ρπ, ρπE ) is minimised.
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Different similarity metrics D(ρπ, ρπE)

I Supervised learning: Behaviour Cloning (BC)

I Kullback-Leibler Divergence: Adversarial Inverse RL (AIRL)5

I Jensen-Shannon divergence: Generative Adversarial Imitation
Learning (GAIL)6

I ... and any f−divergence7

I Dual Wasserstein: Wasserstein Adversarial Imitation Learning8

I Bounded Wasserstein: Primal Wasserstein Imitation Learning9

5Fu et al., “Learning Robust Rewards with Adversarial Inverse Reinforcement Learning”, ICLR 2018
6Ho and Ermon ,“Generative adversarial imitation learning”, NIPS 2016
7Ghasemipour et al., “A Divergence Minimization Perspective on Imitation Learning”, CORL 2019
8Xiao et al., “Wasserstein Adversarial Imitation Learning”, arXiv 2019
9Dadashi et al., “Primal Wasserstein Imitation Learning”, ICLR 2021
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Different similarity metrics D(ρπ, ρπE)

Limitations:

I Do not account for the distributions’ metric space

I Not robust to disjoint measures

I Often solved with generative adversarial training, inheriting its
disadvantages such as training instability

I Intractable

I Locally Optimal
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Sinkhorn Distance10

Wβ
s (ρπ, ρπE )c = inf

ζβ∈Ωβ(ρπ ,ρπE )
Ex,y∼ζβ

[
c(x, y)

]
where Ωβ(p, q) denotes the set of all joint distributions in Ω(p, q)
with entropy of at least H(p) +H(q)− β.

I This entropy regularised optimal transport problem can be
solved by an algorithm called Sinkhorn-Knopp’s fixed point
iteration, and the solving process is differentiable.

10Cuturi. “Sinkhorn Distances: Lightspeed Computation of Optimal Transportation Distances”, NIPS 2013
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Sinkhorn Distance in Imitation Learning11

Sample transport cost:

11G. Papagiannis and Y. Li, “Imitation Learning with Sinkhorn Distances”, ECML-PKDD 2022
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Sinkhorn Distance in Imitation Learning11

−vcw per sample reward proxy in reinforcement learning

I Cost learned using a neural network (NN) parameterised by w.

I Cosine distance between the output of the NN for each
state-action pair.

11G. Papagiannis and Y. Li, “Imitation Learning with Sinkhorn Distances”, ECML-PKDD 2022
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Sinkhorn Distance in Imitation Learning11

SIL’s Optimisation Objective:

min
π

max
w
Wβ
s (ρπ, ρπE )cw

Repeat to convergence:

Step 1: Optimise w parameterised as a NN to maximize Wβ
s (ρπ, ρπE )cw

Step 2: Optimise π to minimise Wβ
s (ρπ, ρπE )cw using −vcw as reward.

11G. Papagiannis and Y. Li, “Imitation Learning with Sinkhorn Distances”, ECML-PKDD 2022

39 / 51



Results Overview

Successful imitation learning with various numbers of
demonstrations.
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Results Overview

Best performance on each experiment against benchmarks

Environments Trajectories BC GAIL AIRL SIL
Hopper-v2 2 × × X ×

4 × × X ×
8 × × X ×

16 × × X ×
32 × X × ×

HalfCheetah-v2 2 × × × X
4 × × × X
8 × × × X

16 × X × ×
32 × × × X

Walker2d-v2 2 × × X ×
4 × × X ×
8 × × X ×

16 × × X ×
32 × × X ×
2 × × × X

Trajectories BC GAIL AIRL SIL
Ant-v2 4 × × × X

8 × × × X
16 × × × X
32 × × X ×

Humanoid-v2 8 X × × ×
16 × × × X
32 × X × ×

SIL performs SOTA against benchmarks on some environments; on
par on the rest.
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Index Tracking

Index tracking is a popular form of passive investing, aiming to
replicate the performance of a given index by constructing a
portfolio which contains some constituents of the index.
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Index Tracking

The objective is regression, minimising the tracking error
min
w
‖Xw − y‖22:

I X ∈ RN×D are the return of assets

I y ∈ RN is the target index (benchmark)

I N is the number of timesteps (e.g., N = 750 trading days)

I D is the number of assets (e.g., D = 500 stocks)

I w ∈ RD is the weight of each asset to hold in order to
approximate the index y
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Some Constraints

Beyond the simplest form, some constraints exist in this study

I long-only, i.e., wi ≥ 0, ∀i
I the capital is fully utilised, i.e.,

∑
iwi = 1

With the constraints, our objective becomes

I min
w≥0,

∑
i wi=1

‖Xw − y‖22

I A non-negative regression problem with sum-to-one constraint
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Cardinality Constraint

It becomes much harder if we want to control how many assets to
buy

I Reduces transaction costs

I Makes the portfolio more manageable

min
w≥0,

∑
i wi=1,‖w‖0=K

‖Xw − y‖22

I ‖w‖0 is the `0 norm, which is the number of non-zero
elements in w

I This suggests that we will buy exactly K assets

46 / 51



Our contribution12

Why is it hard to find min
w≥0,

∑
i wi=1,‖w‖0=K

‖Xw − y‖22?

I Asset selection (which elements in w are non-zero) is a
discrete optimisation problem

I Capital allocation (what values of those non-zero elements) is
a continuous optimisation problem

I If we want to optimise them jointly, gradient-based methods
are not feasible because of asset selection part

We propose a reparametrisation for this problem, so it can
approximate the gradient of asset selection, therefore we call it
differentiable asset selection.

12Y. Zheng, Y. Li, Q. Xu, T. Hospedales, Y. Yang, “Index Tracking with Differentiable Asset Selection”, ICAIF
2020
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Reparameterisation

min
w̃,s
‖Xw(w̃, s)− y‖22

I wi = 1∑
i exp(w̃i)zi

exp(w̃i)zi

I [z1, z2, . . . , zD] = TopK(s)

TopK : RD → {0, 1}D

I s = [−0.5, 1.7, 0.3, 0.8, 1.1] −→ z = Top3(s) = [0, 1, 0, 1, 1]
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Reparameterisation

min
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‖Xw(w̃, s)− y‖22

I wi = 1∑
i exp(w̃i)zi

exp(w̃i)zi

I [z1, z2, . . . , zD] = TopK(s)

TopK : RD → {0, 1}D

I s = [−0.5, 1.7, 0.3, 0.8, 1.1] −→ z = Top3(s) = [0, 1, 0, 1, 1]

Note that w̃ ∈ RD and s ∈ RD, thus we just need to find a
smoothed version of TopK(·).

I This can be done by formulating the TopK operator as an
optimal transportation problem.
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TopK via OT

0 1-0.5 0.3 0.8 1.1 1.7

Recall that this (entropy regularised) OT problem can be solved by
an algorithm called Sinkhorn-Knopp’s fixed point iteration, and the
solving process is differentiable.
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Stochasticity Analysis

I Out-of-sample performance of 100 runs when K = 50.
Orange line: mean; shadow area: 1 standard deviation.

I The proposed method is consistently effective. Errors are
accumulated so the shadow area becomes larger as time
progresses.
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Summary

I Augmented Sliced Wasserstein distances: a data-adaptive
distance metric with high projection efficiency.

I Achieved through novel incorporation of injective neural
networks to learn nonlinear projections.

I The Sinkhorn algorithm can be used to in distance
minimisation and differentiable top-K/sorting functions with
applications in RL, finance, image retrieval etc.

Link to code:

I Augmented sliced Wasserstein distances:
https://github.com/xiongjiechen/Normalizing-Flows-DPFs.

I Imitation learning with Sinkhorn Distances:
https://github.com/gpapagiannis/sinkhorn-imitation

I Index tracking with differentiable asset selection: available upon
request.
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