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Abstract

We show how the “wilderness of non-rationality" posed for the policymaker may

be negotiated by designing a robust Taylor-type monetary rule across a RE NK

model and competing behavioural alternatives. The latter consist of a model with

“Euler learning" and a bounded rational one with myopia due to Gabaix (2020). For

the former expectations of endogenous variables take the form of a general heuristic

rule, encompassing simple adaptive expectations, that is supported by an experiment

study. This gives four competing NK models, the benchmark one with rational

expectations (model RE), Euler learning with a simple adaptive expectations heuristic

rule (model EL-SAE), Euler learning with the general rule (model EL-GAE) and

the Gabaix bounded rational model (model BR). In our novel forward-looking

approach, policymakers weight models based on relative forecasting performance

rather than Bayesian model averaging. Our main results are: first, three models

completely dominate model EL-SAE with weights wRE = 0.4, wEL−GAE = 0.32 and

wEL−BR = 0.28. Second, whereas Bayesian model averaging would design a welfare-

optimized rule that hits the ZLB with a probability solely based on the Gabaix model,

we find that our prediction pool using these weights choice has a significant impact

on the robust optimized rule. Third, there are significant differences between the

optimized rules for each model separately highlighting the need for seeking a robust

rule. Fourth, we find that robust optimized rule found using optimal pooling weights

is very close to the price level rule. This confirms good robustness properties of such

a rule found in other studies. Finally to achieve a probability of hitting the ZLB

constraint on the nominal interest rate of 5% per quarter, the robust optimal rule

requires a target (steady-state) net inflation annual rate of between 3% and 4%.

JEL Classification: C11; C18; C32; E32

Keywords: New Keynesian Model, Behavioural Macroeconomics, Optimized Rules,

Zero Lower Bound Constraint, Optimal Trend Inflation.
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1 Introduction

It was Sims (1980) who warned of the dangers that leaving the rational expectations

(RE) equilibrium concept sends us into a “wilderness”. Sargent (2008) followed this up by

pointing to a “ bewildering variety of ways to imagine discrepancies between objective and

subjective distributions and the “infinite number of ways to be wrong, but only one way to

be correct." He recommended cautious modifications of rational expectations theories and

rational expectations econometrics by virtue of the ways that we allow our adaptive agents

to use economic theory, statistics, and dynamic programming.

Models

The challenge posed by the wilderness is clearly demonstrated by the sheer size of literature

on behavioural macroeconomics and the huge number of equilibria proposed. Surveys

include Evans and Honkapohja (2009), Eusepi and Preston (2016), Branch and McGough

(2018) and Calvert Jump and Levine (2019). We focus on a small sub-set of this literature

and study three ’cautious’ departures from RE NK models where agents are individually

rational given expectations. The latter then take the form of adaptive learning, and one

model of inattention due to Gabaix (2020). In the first learning model, “Euler Learning

(EL)”, RE Etyt+1, where yt is a vector of endogenous variables in the model, is replaced

with E∗
t yt+1 which are expectations of the perceived law of motion (of whatever form). In

the seminal contribution by Evans and Honkapohja (2001) these expectations take the

form of statistical OLS, but subsequent forms of EL model then as heuristic forecasting

rules; see, for example, De Grauwe (2011), De Grauwe (2012b) and De Grauwe (2012a).

To formulate possible heuristic rules that encompass those in these papers, we draw

upon the general form studied Anufriev et al. (2019) in an experimental setting that takes

the log-linear form.

E∗
t (yt+1) = [E∗

t−1(yt)]1−λ1
y [yt]λ

1
y+λ2

y [yt−1]−λ2
y , 0 < λ1

y < 1, −1 < λ2
y < 1 (1)

This encompasses simple adaptive expectations (λ2
y = 0), ‘trend extrapolation’ (λ1

y = 0),

and a ‘fundamentalist’ rule (λ2
y = λ1

y = 0) for which E∗
t (yt+1) = E∗

t−1(yt) = the model’s

steady state. In Anufriev et al. (2019) parameters λ1
y, λ

2
y and λ1

y are modelled as changing

over time, as the agents repeatedly fine-tune the rule to adapt to the specific market



2

conditions. In their paper, this learning is embodied as a heuristic optimization with a

Genetic Algorithm procedure, and introduces the individual heterogeneity to the model.

In our paper (as in much of the behavioural macro-literature) we embody the rules with

fixed parameters into a representative agent DSGE NK model and allow the data to pin

down their values in the estimation of the model.

Our third bounded rationality model is from Gabaix (2020) and is a model where

agents are myopic with respect to future events concerning current outcomes. This is

closely related to a NK model with finite-time planning due to Woodford (2018).

To summarize: we restrict ourselves to four NK models, the benchmark one with

rational expectations (model RE), Euler learning with a simple adaptive expectations

heuristic rule (model EL-SAE), Euler learning with the general rule (model EL-GAE)

and the Gabaix bounded rational model (model BR).

Pooling and optimized Rules.

We follow the general methodology of Deak et al. (2020) to address the problem of designing

simple policy rules when all models are wrong yet every model could be useful. We consider

an environment with three forms of uncertainty. The first is standard and derives from

uncertain future shocks; the second is parameter uncertainty within each competing model,

which we refer to as “within-model uncertainty”; the third source of uncertainty is the

existence of multiple competing models, referred to as “across-model uncertainty.”

The novelty of our methodology lies in the way we handle this third form of uncertainty

in the design of simple policy rules. Specifically, following the procedure of Geweke and

Amisano (2011) and Geweke and Amisano (2012) we form prediction pools where weights

are assigned to models on the basis of their forecasting accuracy, rather than in-sample

data fit as in the common alternative, Bayesian Model Averaging (BMA). These weights

are then used to solve for the simple policy rule that is robust to all three forms of

uncertainty. Unlike BMA which assumes that one of the models is the true data generating

process, prediction pools allow us to consider that all models among a comparative set are

misspecified, but they all may be useful at different periods of time.

Road-Map

Section 3 first sets out the micro-foundations of a RE NK model, the consumption and

price-setting behaviour in particular, by deriving the decision rules. We then proceed from
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rational expectations to a number of bounded rationality models in stages. Section 4 gives

the structure of a monetary mandate with ZLB. Section 5 illustrates the algorithm to

derive the optimal pools. Section 6 provides details of estimation, pooling and results for

the robust monetary rule; Section 7 concludes the paper.

2 Other Related Literature

Apart from the area of behavioural macroeconomics already covered, this paper is related to

four further strands of literature. First, it is related to the extensive statistical literature on

Bayesian predictive methods for assessing, comparing and selecting models (see Vehtari and

Ojanen, 2012, for a survey). Within this literature model selection (including more than

one model) proceeds via maximization of an expected utility function using the predictive

distribution. A broad range of loss functions and various types of mis-specification errors

have been considered in the literature. Following Bernardo and Smith (1994), all methods

can be classified in accordance with two types of mis-specification error that the method

seeks to address. In their terminology, M-closed (or M-completed) refer to methods that

assume the true data generating process to be within the set of models that are considered.

Techniques that fall into these categories include BMA, and using an encompassing model.

The latter can be viewed as a more general version of the former with a continuous rather

than a discrete distribution over priors. On the other hand, our method which is based on

prediction pooling as in Geweke (2010a) and Geweke and Amisano (2011) falls into the

M-open category where the true data generating process is not assumed to be among the

candidate models.1

One particular criterion used in the literature is a scoring rule that measures forecast

accuracy. A particular form of selection then amounts to combining density forecast

estimates as a means of improving forecasting accuracy as measured by a scoring rule (see

for example Gneiting and Raftery, 2007; Hall and Mitchell, 2007). In Geweke and Amisano

(2011), the utility/loss function is a scoring rule that maximizes forecast accuracy, and

they compare BMA with linear combinations of predictive densities, so-called ‘opinion

pools’, where the weights on the component density forecasts are optimized to maximize
1In the language of Geweke (2010b), for BMA the model space is ‘complete’, i.e., the space includes the DGP
whereas for prediction pools the space is ‘incomplete’. See Section 5.1 for a rigorous treatment of this point.
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the score (typically the logarithmic score, of the density combination as suggested in Hall

and Mitchell (2007)).

Kapetanios et al. (2015) develop an extension of this method whereby the weights can

vary by region of the density to allow additional focus on the variable one is attempting to

forecast. We use the method proposed by Geweke and Amisano (2011) to combine the

forecasts from different models as it allows us to be agnostic about the variables that need

to be forecast, and also as it is straightforward to implement.

Second, our paper is also related to the current generation of Bayesian-estimated

micro-founded dynamic stochastic general equilibrium (DSGE) models. These models are

frequently employed in Central Banks and used for forecasting and for the computation of

optimal policy in the form of optimized Taylor-type rules (see, for example, Christiano

et al., 2005; Smets and Wouters, 2007; Schmitt-Grohe and Uribe, 2007; Levine et al., 2007).

Optimized constrained simple rules were first proposed by Levine and Currie (1987) in

a linear-quadratic framework. Woodford (2003, Chapter 7) discussed and modified the

welfare loss criterion in that paper so as to minimize only the stochastic component leading

to a time-consistent policy choice. We follow this approach in our computation of robust

optimized rules.

Third, this paper is also related to a large literature on robust policy. Sims (2002, 2007,

2008) in particular has argued that policymakers are still very far from exploiting the full

richness of the Bayesian (or “probability models”) approach.2 A related literature compares

optimized constrained simple rules with their optimal unconstrained counterparts (see, for

example, Levine and Currie (1987), Schmitt-Grohe and Uribe 2007; Brock et al. 2007a;

Orphanides and Williams. 2008; a review is provided by Taylor and Williams 2010). A

common finding in this literature is that optimized simple rules can closely mimic optimal

policies and perform well in a wide variety of models. By contrast optimal policy can

perform very poorly if the policymaker’s reference model is mis-specified. The reason for
2Formally, a probability model is a mathematical representation of a stochastic phenomenon, defined by
its sample space (i.e., the set of all possible outcomes), events within the sample space, and probabilities
associated to each event, Ross (2006). He views the probability-models approach as reflecting policymaking
in practice by committees comprising individuals with separate views (models) of how the economy works
and of the likely outlook (in the context of that model). Each model (or outlook) has an estimated parameter
probability distribution which embodies its own measure of within-model uncertainty. Aggregating those
views mirrors and substantiates the probability-models approach. Although any model is imperfect, the
greater the uncertainty the more policymakers may benefit from pooling information across and within
models, as we do in this paper. Our paper follows Levin and Williams (2003); Orphanides and Williams
(2007); Ilbas et al. (2013) and Tetlow (2015) in focusing on simple, robust optimized Taylor-type rules.
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this is that optimal polices can be overly fine-tuned to the particular assumptions of the

reference model. If the model is the correct one all is well; but if not, the costs can be

high. In contrast, our chosen simple monetary policy rules are designed to take account of

only the most basic principle of monetary policy of leaning against the wind of inflation

and output movements. Because they are not fine-tuned to specific model assumptions,

they are more robust to mistaken assumptions regarding the parameters of the model

(‘within-model robustness’) or to basic modelling features (‘between-model robustness’).

Our methodological approach differs from the existing literature in several important

respects. A recent literature draws on Hansen and Sargent (2007) in assuming uncertainty

is unstructured, with malign Nature ‘choosing’ exogenous disturbances to minimize the

policymaker’s welfare criterion (“robust control”).3 Robust control may be appropriate

if little information is available on the uncertainty facing the policymaker. But are

policymakers ever in such a “Knightian” world? CBs devote considerable resources to

assessing the forecasting properties of the approximating model, those of rival models,

and estimates of parameter uncertainty gleaned from various estimation methods. In our

optimal pooling approach, policymakers fully utilize the fruits of such exercises. Also,

robust control pursues fully optimal rather than simple optimal rules. Yet Levine and

Pearlman (2010) show if one designs simple operational rules, that mimic the fully optimal

but complex one, then they take the form of highly unconventional Taylor Rules which

must respond to Nature’s malign interventions. Furthermore, robust control in general

satisfies a supremum condition rather than a maximum condition; this implies that the

supremum may well on be on the edge of being an unstable solution. Rules with these

properties may be very hard to sell to policymakers.4

Our approach also differs from studies that design robust rules across competing models,

but attach probabilities to models under the assumption that one of the models is the true

data generating process. For instance, the ‘rival models’ approach (e.g. Côté et al., 2004;

Levin et al., 2003; Adalid et al., 2005) arbitrarily calibrate the relative probabilities of

alternative models being true. They define a robust rule as one that “works well” across
3See, for example, Dennis et al. (2009) and Ellison and Sargent (2012). Variants of the Hansen-Sargent
approach are developed in Adam and Woodford (2012, 2020).

4As Svensson (2000) and Sims (2001) comment, the worst-case outcome is likely to represent a low probability
event and, from the Bayesian perspective, it would be inappropriate to design policy heavily conditioned by
it. Further Chamberlain (2000) shows the conditions under which a Bayesian and worst-case policymaker
would correspond are highly restrictive.



6

several (though not necessarily all) models. However, without accounting for how well

different models fit the data, it is difficult to assess the value of implementing a rule which

performs well in M − 1 models but poorly in the M th most data-compatible one.

Bayesian model averaging (e.g. Brock et al., 2007b; Cogley and Sargent, 2005; Levin

et al., 2006; Reiss, 2009; Levine et al., 2012; Binder et al., 2017, 2018) promotes models with

good in-sample fit over models with good forecasting performance by using estimated model

probabilities. However, modern monetary policy practices among the inflation-targeting

countries are forward-looking and rely heavily on forecasts. This is reflected in our approach

which uses a forecasting accuracy criterion to pool models. The main contribution of our

paper then is to exploit both within-model and across-model uncertainty as in Levine

et al. (2012) and Cogley et al. (2011), but using a forward-looking perspective based on

prediction pools, rather than a backward-looking perspective based on Bayesian model

averaging.

The final strand of literature relates to the benefits of price-level targeting; (see, for

example, Svensson, 1999; Schmitt-Grohe and Uribe, 2000; Vestin, 2006; Reiss, 2009; Gaspar

et al., 2010; Giannoni, 2014). These papers examine the good determinacy and stability

properties of price-level targeting. Holden (2016) shows these benefits extend to a ZLB

setting. A very recent literature describes these benefits in terms of “make-up" strategies

for central banks and in particular the Federal Reserve; see Powell (2020), Svensson (2020).

Under such strategies policymakers seek to redress past deviations of inflation from its

target. Assuming a make-up rule enjoys credibility, undershooting (overshooting) the

target will raise (lower) inflation expectations, lower (raise) the real interest rate and help

to stabilize the economy. Inertial Taylor rules have by design the make-up feature as

they commitment to a response of the nominal interest rate to a weighted average of past

inflation with the weights increasing with the degree of inertia. “Average inflation targeting”

is a variant that sets a rolling window of cumulative past deviations; a further variant sets

an asymmetric target whereby the central bank responds to average inflation above and

below the long-run target in a different way. Hebden et al. (2020) provide details of these

different makeup strategies and analyze their effectiveness using the Federal Reserve US

macroeconomic model. In our paper we study optimized inertial Taylor rules that are

parameterized so as to encompass a simple form of price-level targeting.
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3 Models

3.1 Rational Expectation Model (RE)

We first consider a standard NK workhorse model which consists of four sets of representative

agents: households, final goods producers, intermediate goods producers and a monetary

authority. The intermediate goods producers produce differentiated goods respectively

and, in each period of time, consist of a group that is locked into an existing contract and

another group that can re-optimize (price rigidity assumption).

3.1.1 Households

Household j chooses between work and leisure and therefore how much labour they supply.

Let Ct(j) and Ht(j) denote consumption and labour supply, respectively. The single-period

utility is given by

Ut(j) = U(Ct(j), Ht(j)) = log(Ct(j)) − κ
Ht(j)1+ϕ

1 + ϕ
(2)

In a stochastic environment, the value function of the representative household at time

t is given by

Vt(j) = Et

[ ∞∑
s=0

βsUt+s(j)
]

(3)

The household’s problem at time t is to choose paths for consumption {Ct(j)}, labour

supply {Ht(j)} and holdings of financial assets {Bt(j)} to maximize Vt(j) given by (35)

given its budget constraint in period t

Bt(j) = RtBt−1(j) +WtHt(j) + Γt − Ct(j) − Tt (4)

where Bt(j) is holdings of financial assets at the end of period t, Wt is the real wage rate,

Rt is the interest rate paid on assets held at the beginning of period t, Γt are profits from

wholesale and retail firms owned by households and Tt denote taxes. Wt, Rt, Γt and Tt are

all exogenous to household j.
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To solve the household problem we form a Lagrangian

L = Et

[ ∞∑
s=0

βs

{
Ut+s(j)

+ λt+s(j) [Rt+sBt+s−1(j) +Wt+sHt+s(j) + Γt+s − Ct+s(j) − Tt+s −Bt+s(j)]
}]

(5)

The first-order conditions with respect to {Ct+s(j)}, {Bt+s(j)} and {Ht+s(j)} are

{Ct+s(j)} : Etβ
sUC,t+s(j) + βsλt+s(j) = 0

{Bt+s(j)} : Et

[
βs+1λt+s+1(j)Rt+s+1

]
− βsλt+s(j) = 0

{Ht+s(j)} : Et [βsUH,t+s(j) + βsλt+s(j)Wt+s] = 0

Rearranging the first-order conditions we get:

1 = Et [Λt,t+1(j)Rt+1] (6)

Wt = −UH,t(j)
UC,t(j)

(7)

where

Λt,t+1(j) = β
UC,t+1(j)
UC,t(j)

(8)

UC,t = 1
Ct

(9)

UH,t = −κHϕ
t (10)

is the real stochastic discount factor for household j over the interval [t, t+ 1].

3.1.2 Firms in the Wholesale

Wholesale firms employ a Cobb-Douglas production function to produce a homogeneous

output

Y W
t = F (At, Ht) = AtH

α
t (11)
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where At is total factor productivity. Profit-maximizing demand for labour results in the

first order condition

Wt = PW
t

Pt
FH,t = α

PW
t

Pt

Y W
t

Ht
(12)

3.1.3 Firms in the Retail Sector

The retail sector uses a homogeneous wholesale good to produce a basket of differentiated

goods for aggregate consumption

Ct =
(∫ 1

0
Ct(m)(ζ−1)/ζdm

)ζ/(ζ−1)
(13)

where ζ is the elasticity of substitution. For each m, the consumer chooses Ct(m) at a

price Pt(m) to maximize (13) given total expenditure
∫ 1

0 Pt(m)Ct(m)dm. This results in a

set of consumption demand equations for each differentiated good m with price Pt(m) of

the form

Ct(m) =
(
Pt(m)
Pt

)−ζ

Ct ⇒ Yt(m) =
(
Pt(m)
Pt

)−ζ

Yt (14)

where Pt =
[∫ 1

0 Pt(m)1−ζdm
] 1

1−ζ . Pt is the aggregate price index. Ct and Pt are Dixit-Stigliz

aggregates – see Dixit and Stiglitz (1977).

For each variety m the retail good is produced from wholesale production according to

an iceberg technology

Yt(m) = Y W
t = AtHt(m)α (15)

Following Calvo (1983), we now assume that there is a probability of 1 − ξ at each

period that the price of each retail good m is set optimally to P 0
t (m). If the price is not

re-optimized, then it is held fixed.5 For each retail producer m, given its real marginal

cost MCt, the objective is at time t to choose {P 0
t (m)} to maximize discounted profits

Et

∞∑
k=0

ξk Λt,t+k

Pt+k
Yt+k(m)

[
P 0

t (m) − Pt+kMCt+kMSt+k

]
(16)

subject to (14). Where MSt is a mark-up shock which follows a AR(1) process. The
5Thus we can interpret 1

1−ξ
as the average duration for which prices are left unchanged.
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solution to this is

Et

∞∑
k=0

ξk Λt,t+k

Pt+k
Yt+k(m)

[
P 0

t (m) − 1
(1 − 1/ζ)Pt+kMCt+kMSt+k

]
= 0

which leads to

P 0
t (m)
Pt

= 1
1 − 1/ζ

Et
∑∞

k=0 ξ
kΛt,t+k(Πt,t+k)ζYt+kMCt+kMSt+k

Et
∑∞

k=0 ξ
kΛt,t+k(Πt,t+k)ζ−1Yt+k

(17)

where k periods ahead inflation is defined by

Πt,t+k ≡ Pt+k

Pt
= Pt+1

Pt

Pt+2
Pt+1

· · Pt+k

Pt+k−1
= Πt+1Πt+2 · ·Πt+k

Note that Πt,t+1 = Πt+1 and Πt,t = 1.

Let us define

Jt = 1
1 − 1

ζ

Et

∞∑
k=0

ξkΛt,t+kΠζ
t,t+kYt+kMCt+kMSt+k

= 1
1 − 1

ζ

YtMCtMSt + ξEtΛt,t+1Πζ
t,t+1Jt+1 (18)

JJt = Et

∞∑
k=0

ξkΛt,t+kΠζ−1
t,t+kYt+k

= Yt + ξEtΛt,t+1Πζ−1
t,t+1JJt+1 (19)

Then (17) can be written as
P 0

t (m)
Pt

= Jt

JJt
(20)

By the law of large numbers the evolution of the price index is given by

P 1−ζ
t+1 = ξP 1−ζ

t + (1 − ξ)(P 0
t+1)1−ζ

which can be written as

1 = ξΠζ−1
t + (1 − ξ)

(
Jt

JJt

)1−ζ

(21)

Price dispersion is defined as ∆t =
∫

(Pt(m)/Pt)−ζ . Assuming that the number of firms
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is large, we obtain the following dynamic relationship:

∆t = ξ

∫
not optimize

(
P 0

t−1(m)
Pt−1

Pt−1
Pt

)−ζ

+ (1 − ξ)
∫

optimize

(
P 0

t (m)
Pt

)−ζp

= ξΠζ
t ∆t−1 + (1 − ξ)

(
P 0

t (m)
Pt

)−ζ

= ξΠζ
t ∆t−1 + (1 − ξ)

(
Jt

JJt

)−ζ

(22)

3.1.4 Profits

Total profits from retail and wholesale firms, Γt, are remitted to households. This is given

in real terms by

Γt = Yt − PW
t

Pt
Y W

t︸ ︷︷ ︸
retail

+ PW
t

Pt
Y W

t −WtHt︸ ︷︷ ︸
Wholesale

= Yt − α
PW

t

Pt
Y W

t (23)

using the first-order condition (12).

3.1.5 Closing the Model

The model is closed with a resource constraint

Yt = Ct +Gt (24)

and the government’s budget constraint

Gt = Tt

Market clearing in the goods market requires

∫ 1

0
Yt(m)dm =

∫ 1

0

(
Pt(m)
Pt

)−ζ

Ytdm = Yt∆t (25)

using (14). Hence in a symmetric equilibrium

Y W
t = Yt∆t (26)
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A monetary policy rule for the nominal interest rate is given by the following Taylor-type

rule

log
(
Rn,t

Rn

)
= ρr log

(
Rn,t−1
Rn

)
+ (1 − ρr)

(
θθ log

(Πt

Π

)
+ θy log

(
Yt

Y

))
+ logMPSt, (27)

where MPSt is a monetary policy shock. The ex ante nominal gross interest rate Rn,t set

at time t and the ex post real interest rate, Rt are related by the Fischer equation

Rt = Rn,t−1
Πt

(28)

Exogenous processes evolve according to:

logAt − logA = ρA(logAt−1 − logA) + ϵA,t

logMPSt − logMPS = ρMP S(logMPSt−1 − logMPS) + ϵMP S,t

logGt − logG = ρG(logGt−1 − logG) + ϵG,t

logMSt − logMS = ρms(logMSt−1 − logMS) + ϵMS,t

3.2 Euler Learning Model (EL)

We follow Evans and Honkapohja (2009) and adopt a statistical rational learning. This

introduces a specific form of bounded rationality in which utility-maximizing agents make

forecasts in each period based on standard econometric techniques called the generalized

adaptive expectation.

Because we study mandate framework under welfare analysis, it is insufficient to

linearize the model. Therefore, Euler learning in this paper will be implemented within a

non-linear setup. The model represented above is written in a compacted from as follows:

E∗
t [f(yt+1, yt, yt−1, wt)] = 0 (29)

where yt is a vector of the endogenous variables. And wt is a vector of 4 exogenous variables:

MSt, Ac
t , MPSt, Gc

t . So that:

wt = g(wt−1, ϵt) (30)

We assume that agents are boundedly rational and use a generalized adaptive expecta-
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tion approach agents to forecast the forward-looking variables:

E∗
t (yt+1) = [E∗

t−1(yt)]1−λ1
y [yt]λ

1
y+λ2

y [yt−1]−λ2
y , 0 < λ1

y < 1, −1 < λ2
y < 1 (31)

This encompasses simple adaptive expectations (λ2
y = 0) giving us two competing models

EL-GAE and EL-SAE. yt+1 is partitioned into 2 sets of endogenous variables: the first set

is household’s subjective forward-looking variables, namely the marginal utility, UCc
t+1, and

the inflation, Πt+1. Secondly, price-setting firms have their own subjective forward-looking

variables to forecast, Πt+1, Jc
t+1, and JJc

t+1. Finally, E∗
t (yt+1) is the subjective forecast.

In particular, household subjective forecast of marginal utility and inflation are:

E∗
t (UCc

t+1) = [E∗
t−1(UCc

t )]1−λ1
h,uc [UCc

t ]λ
1
h,uc+λ2

h,uc [UCc
t−1]−λ2

h,uc

E∗
t (Πt+1) = [E∗

t−1(Πt)]1−λ1
h,π [Πt]λ

1
h,π+λ2

h,π [Πt−1]−λ2
h,π

and similarly, we have subjective forecast for firms:

E∗
t (Πt+1) = [E∗

t−1(Πt)]1−λ1
f,π [Πt]λ

1
f,π+λ2

f,π [Πt−1]−λ2
f,π

E∗
t (Jc

t+1) = [E∗
t−1(Jc

t )]1−λ1
J [Jc

t ]λ1
J +λ2

J [Jc
t−1]−λ2

J

E∗
t (JJc

t+1) = [E∗
t−1(JJc

t )]1−λ1
JJ [JJc

t ]λ1
JJ +λ2

JJ [JJc
t−1]−λ2

JJ

3.3 Myopia Formation Model (BR)

As indicated above there are a large number of different ways of modelling bounded

rationality in NK macroeconomic models.6 In this and the final chapter of the thesis

we choose to focus on the model of Gabaix (2020) for a number of reasons. First it is

a parsimonious generalization of the widely used work-horse NK model as for example

set out in the Gali (2015) recent text-book. Second, it is encompassed by another recent

and influential paper, Woodford (2018). Finally, two important paradoxes are resolved:

forward guidance is much less powerful than in the standard RE NK model resolving the

“forward guidance puzzle" and a permanent rise in the nominal interest rate cases inflation

to fall in the short-run, and rise in the long-run resolving the “Fisher paradox".
6See Calvert Jump and Levine (2019) for a recent survey.
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The rest of this section first describes the idea of a sparse agent that lies at the centre

of the Gabaix model, subsection 3.3.1. Then in sub-sections 3.3.2 and 3.3.3 we use this

concept to derive the behavioural household decisions of the household and the price-setting

firm. Sub-section B.3 then sets out the linearized model about a zero net inflation steady

state that recovers the linear model of Gabaix (2020). It is important here to emphasize

that we employ a non-linear set-up with a non-zero net inflation rate in the steady state

with a ZLB constraint, features that are essential for the optimized simple rules that follow.

3.3.1 The Sparse Agent

Gabaix (2020) generalizes the max operator in economics by assuming less than fully

attentive agents. The general idea is as follows: The traditional agent will solve a standard

maximization problem: i.e.:

Maxau(a, z) subject to b(a, z) ≥ 0 (32)

where u is the utility function and b is a constraint.

The “sparse agent” will then solve an attention augmented maximization problem as

following:

SMaxau(a, z,m) subject to b(a, z,m) ≥ 0 (33)

where m ∈ [0, 1] is a vector of agent’s attention degree. The idea of a “sparse agent” is that

she has a low-dimensional sub-model of the world. Hence, first she pays attention only to a

few dimensions of the world - which is usually endogenously determined by assuming that

attention creates a psychic cost function - or the attention vector is sparse, and second she

takes decisions by optimizing her sub-model of the world.

In the concept of this chapter, we assume that the agent’s attention degree level is

exogenously determined, or the attention parameter vector, m, is given, which means the

Sparsemax operator is simplified as the standard maximization operator while the only

difference is in the attention vector of parameter m. This attention parameter vector will

then be matched with the data by standard Bayesian estimation.

In the Section B.3 we show that with an exact households’ utility function and firms’
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production function, we can derive log-linearized version of the IS and Phillips curves by

solving the model forward and then directly apply this inattentive vector m into households’

and firms’ decision rules.

3.3.2 Household Decisions

In this section, there are three distinct features compared to the one in Gabaix (2020). First,

we employ the log form in consumption of the utility function (or γ = 1). Second, instead

of assuming that households are only inattentive to their total income, we distinguish

between wage’s and government transfer’s incomes. Therefore, households’ inattentive

levels to these different income sources would end up being unequal. Third, we employ

a non-linear set-up (which is essential for the computation of the optimized rule) with a

non-zero net trend inflation rate.

Household j chooses between work and leisure and therefore how much labour they

supply and how much she consumes today. Let Ct(j) and Ht(j) denote consumption and

labour supply, respectively. The single-period utility is given by

Ut(j) = U(Ct(j), Ht(j)) = log(Ct(j)) − κ
Ht(j)1+ϕ

1 + ϕ
(34)

In a stochastic environment, the value function of the representative household at time

t is given by

Vt(j) = Et

[ ∞∑
s=0

βsUt+s(j)
]

(35)

The household’s problem at time t is to choose paths for consumption {Ct(j)}, labour

supply {Ht(j)} and holdings of financial assets {Bt(j)} to maximize Vt(j) given by (35)

given its budget constraint in period t

Bt(j) = RtBt−1(j) +WtHt(j) + Γt − Ct(j) − Tt (36)

where Bt(j) is holdings of financial assets at the end of period t, Wt is the real wage rate,

Rt is the interest rate paid on assets held at the beginning of period t, Γt are profits from

wholesale and retail firms owned by households and Tt denote taxes. Wt, Rt, Γt and Tt are

all exogenous to household j.
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To solve the household problem we form a Lagrangian which is presented in the

Appendix where the full rational expectation model is also solved and presented.

For households, aggregating over j, we stationarize the non-stationary variables as

follows:
Bt

Āt
= Rt

Bt−1

Āt−1

Āt−1

Āt
+ WtHt

Āt
+ Γt

Āt
− Tt

Āt
− Ct

Āt

Solving it forward in time and imposing the transversality condition we can write:

Bc
t−1 = EBR

t

∞∑
i=0

(1 + g)i+1Cc
t+i

Rt,t+i
+ EBR

t

∞∑
i=0

(1 + g)i+1T c
t+i

Rt,t+i

− EBR
t

∞∑
i=0

(1 + g)i+1W c
t+iHt+i

Rt,t+i
− EBR

t

∞∑
i=0

(1 + g)i+1Γc
t+i

Rt,t+i
(37)

where Rt,t+1 ≡ RtRt+1Rt+2 · · ·Rt+i is the real interest rate over the interval [t, t+ i]. And

the variables with superscript c are the stationary version of the endogenous variables,

Xc
t = Xt

Āt
.

The forward-looking budget constraint (37) holds for the representative household. In

aggregate there is no net debt so Bt−1 = 0. Then in a symmetric equilibrium, substituting

for

W c
t+iHt+i =

(W c
t+i)

1+ 1
ϕ

(κCc
t+i)

1
ϕ

which is the first order condition on the household’s supply decision with the following

utility function:

U(Ct, Ht) = log(Ct) − κ
H1+ϕ

t

1 + ϕ

From (37), substituting (3.3.2) and multiplying both sides by Rt/(1 + g) we have

EBR
t

∞∑
i=0

(1 + g)iCc
t+i

Rt+1,t+i
= (W c

t )1+ 1
ϕ

(κCc
t )

1
ϕ

+ EBR
t

∞∑
i=1

(1 + g)i(W c
t+i)

1+ 1
ϕ

(κCc
t+i)

1
ϕRt+1,t+i

+ Γc
t + EBR

t

∞∑
i=1

(1 + g)iΓc
t+i

Rt+1,t+i
− EBR

t

∞∑
i=0

(1 + g)iT c
t+i

Rt+1,t+i
(38)

Solving the Euler equation 1
Cc

t
=
(

β
1+g

)
EBR

t

[
Rt+1
Cc

t+1

]
forward in time we have for i ≥ 1

1
Cc

t

=
(

β

1 + g

)i

EBR
t

[
Rt+1,t+i

Cc
t+i

]
; i ≥ 1 (39)
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We assume point expectations, i.e. Etf(Xt) ≈ f(Et(Xt)) and Etf(XtYt) ≈ f(Et(Xt)Et(Yt)).

For instance, agents are only able to make single variable expectation rather than the

expectation of the complicated functions. The concert of BR studied in this chapter is

about the limited cognitive capacities of the agents. This additional point expectation

assumption is crucial to the result of the non-linear set-up, but it is in line with the agents’

cognitive discounting assumption. Notice that, up to the first order Taylor approximation,

this assumption is equivalent to using linear approximation as shown in the appendices,

where the linear approximation set-up is equivalent to the linear set-up in Gabaix (2020).

We now rearrange (39) to obtain

EBR
t Cc

t+i = Cc
t

(
β

1 + g

)i

EBR
t Rt+1,t+i ; i ≥ 1 (40)

Using it on the the left-hand side of (38) we get

∞∑
i=0

(1 + g)iEBR
t Cc

t+i

EBR
t Rt+1,t+i

=
∞∑

i=0

(1 + g)iCc
t

(
β

1+g

)i
EBR

t Rt+1,t+i

EBR
t Rt+1,t+i

= Cc
t

1 − β
(41)

Using it on the right-hand side of (38) we get

∞∑
i=1

(1 + g)i(EBR
t W c

t+i)
1+ 1

ϕ

(κEBR
t Cc

t+i)
1
ϕEBR

t Rt+1,t+i

=
∞∑

i=1

(1 + g)i(EBR
t W c

t+i)
1+ 1

ϕ(
κCc

t

(
β

1+g

)i
EBR

t Rt+1,t+i

) 1
ϕ

EBR
t Rt+1,t+i

=
( 1
κCc

t

) 1
ϕ

∞∑
i=1

β
− i

ϕ (1 + g)i
(

1+ 1
ϕ

)
(EBR

t W c
t+i)

1+ 1
ϕ

(EBR
t Rt+1,t+i)1+ 1

ϕ

(42)

Substituting back into the forward-looking household budget constraint we arrive at

Cc
t

1 − β
= (W c

t )1+ 1
ϕ

(κCc
t )

1
ϕ

+
( 1
κCc

t

) 1
ϕ

∞∑
i=1

β
− i

ϕ (1 + g)i
(

1+ 1
ϕ

)
(EBR

t W c
t+i)

1+ 1
ϕ

(EBR
t Rt+1,t+i)1+ 1

ϕ

+ Γc
t +

∞∑
i=1

(1 + g)iEBR
t Γc

t+i

EBR
t Rt+1,t+i

− T c
t −

∞∑
i=1

(1 + g)iEBR
t T c

t+i

EBR
t Rt+1,t+i

(43)

=
(W c

t )1+ 1
ϕ +∑∞

i=1

(
(1+g)1+ 1

ϕ

β
1
ϕ

)i (
EBR

t W c
t+i

EBR
t Rt+1,t+i

)1+ 1
ϕ

[κCc
t ]

1
ϕ
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+ Γc
t +

∞∑
i=1

(1 + g)iEBR
t Γc

t+i

EBR
t Rt+1,t+i

− T c
t −

∞∑
i=1

(1 + g)iEBR
t T c

t+i

EBR
t Rt+1,t+i

(44)

Notice that from the (43) to (44), we use the notation such that Rt+1,t = 1.

Employing the Fisher relation, we obtains:

EBR
t Rt+1,t+i = EBR

t [Rt+1Rt+2 · · ·Rt+i] = EBR
t

[
Rn,t,t+i−1
Πt+1,t+i

]
(45)

Substituting equation (45) into equation (44) to yields:

Cc
t

1 − β
=

(W c
t )1+ 1

ϕ +∑∞
i=1

(
(1+g)1+ 1

ϕ

β
1
ϕ

)i
 EBR

t W c
t+i

EBR
t

[
Rn,t,t+i−1

Πt+1,t+i

]1+ 1
ϕ

[κCc
t ]

1
ϕ

+ Γc
t +

∞∑
i=1

(1 + g)iEBR
t Γc

t+i

EBR
t

[
Rn,t,t+i−1
Πt+1,t+i

] − T c
t −

∞∑
i=1

(1 + g)iEBR
t T c

t+i

EBR
t

[
Rn,t,t+i−1
Πt+1,t+i

] (46)

Hence, we can rewrite equation (46) as follows:

Cc
t

1 − β
= Zt

[κCc
t ]

1
ϕ

+ ZZt (47)

Where Zt and ZZt are expressed as follows:

Zt = (W c
t )1+ 1

ϕ +
∞∑

i=1

(1 + g)1+ 1
ϕ

β
1
ϕ

i EBR
t W c

t+i

EBR
t

[
Rn,t,t+i−1
Πt+1,t+i

]
1+ 1

ϕ

(48)

ZZt = Γc
t − T c

t +
∞∑

i=1

(1 + g)iEBR
t Γc

t+i

EBR
t

[
Rn,t,t+i−1
Πt+1,t+i

] −
∞∑

i=0

(1 + g)iEBR
t T c

t+i

EBR
t

[
Rn,t,t+i−1
Πt+1,t+i

] (49)

We can now write equations (48) and (49) in a recursive form as follows:

Zt = (W c
t )1+ 1

ϕ +

(1 + g)1+ 1
ϕ

β
1
ϕ


 EBR

t Zt+1[
Rn,t

EBR
t Πt+1

]1+ 1
ϕ

 (50)

ZZt = Γc
t − T c

t + (1 + g)E
BR
t ZZt+1[

Rn,t

EBR
t Πt+1

] (51)

We now follow Gabaix (2020) to assume that the behavioural agent perceives reality with
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some myopia, which is associated with deviations from the steady state, say EBR
t Xt+1 =

m̄hf(Xt). Note that, we assume that households do not have inattentive level on the

individual aggregate variables because the parameter 0 < m̄h < 1 already takes into

account for the inattention. Hence, rewriting equations (50) and (51) yields:

Zt = (W c
t )1+ 1

ϕ +

(1 + g)1+ 1
ϕ

β
1
ϕ


 Et

(
Z + m̄hẐt+1

)
Et

(
Rn,t

Π+m̄hΠ̂t+1

)1+ 1
ϕ

 (52)

ZZt = (Γc
t − T c

t ) + (1 + g)

Et

(
ZZ + m̄hẐZt+1

)
Et

(
Rn,t

Π+m̄hΠ̂t+1

)
 (53)

The three equations (47),(52), and (53) then constitute a nonlinear behavioural con-

sumption function which also nests the fully rational expectation one when the vector of

inattentive parameters, m, is equal to a vector of ones. In general, equations (52), and

(53) are the future discounted values of the proportioned wages and net transfers from

the government to households. Hence, equation (47) shows that consumption today is an

increasing function of future discounted values of household’s incomes, but it is decreasing

in the central bank’s policy rates, Rnt

Π+m̄hΠ̂t+1
. Since these variables are exogenous to the

atomistic household we therefore have an ’anticipated utility’ form of household behaviour

suitable for either our behavioural or RE models.

3.3.3 Price-setting Firms

The homogeneous production technology in the economy is:

Y c
t = Ac

tH
α
t (54)

There is a probability of 1 − ξ at each period that the price of each retail good i is set

optimally to P 0
t (i); otherwise it is held fixed.

Retail behavioural producer i, given the common real marginal cost MCt(i) = MCt

chooses {P 0
t (i)} to maximize discounted real profits

EBR
t

∞∑
k=0

ξk Λt,t+k

Pt+k
Y c

t+k(i)
[
P 0

t (i) − Pt+kMCt+k

]
(55)
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where Λt,t+k ≡ βk UC,t+k

UC,t
is the stochastic discount factor over the interval [t, t+ k], subject

to

Y c
t+k(i) =

(
PO

t (i)
Pt+k

)−ζ

Y c
t+k (56)

The solution to this is

EBR
t

∞∑
k=0

ξkΛt,t+kY
c

t+k(i)
[
P 0

t (i)
Pt+k

− 1
(1 − 1/ζ)MCt+k

]
= 0 (57)

which leads to

P 0
t (m)
Pt

= 1
1 − 1/ζ

EBR
t

∑∞
k=0 ξ

kΛt,t+k(Πt,t+k)ζY c
t+kMCt+k

EBR
t

∑∞
k=0 ξ

kΛt,t+k(Πt,t+k)ζ−1Y c
t+k

(58)

where k periods ahead inflation is defined by

Πt,t+k ≡ Pt+k

Pt
= Pt+1

Pt

Pt+2
Pt+1

· · Pt+k

Pt+k−1
= Πt+1Πt+2 · ·Πt+k

Note that Πt,t+1 = Πt+1 and Πt,t = 1.

Let us define

Jc
t = 1

1 − 1
ζ

EBR
t

∞∑
k=0

ξkΛt,t+kΠζ
t,t+kY

c
t+kMCt+k

= 1
1 − 1

ζ

Y c
t MCt + ξEBR

t Λt,t+1Πζ
t,t+1J

c
t+1 (59)

JJc
t = EBR

t

∞∑
k=0

ξkΛt,t+kΠζ−1
t,t+kY

c
t+k

= Y c
t + ξEBR

t Λt,t+1Πζ−1
t,t+1JJ

c
t+1 (60)

Then (58) can be written as
P 0

t (m)
Pt

= Jt

JJt
(61)

By the law of large numbers the evolution of the price index is given by

P 1−ζ
t+1 = ξP 1−ζ

t + (1 − ξ)(P 0
t+1)1−ζ (62)
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which can be written as

1 = ξΠζ−1
t + (1 − ξ)

(
Jc

t

JJc
t

)1−ζ

(63)

We first transform the equations (59), (60) to the expectations of the behavioural

agents, where we also utilise the relation EBR
t Λt,t+k = 1

EBR
t Rt+1,t+k

= 1
EBR

t

[
Rn,t,t+k−1

Πt+1,t+k

] , and

employing the assumption about the firms’ myopia about the future state such that:

EBR
t (Xt+1 − X) = m̄fEt(Xt+1 − X). In addition, firms are inattentive to the market’s

variables which are exogenous to them. Hence, we can re-write the equations (59) and (60)

in a recursive form as follows:

Jc
t = 1

1 − 1
ζ

Y c
t MCt + ξEt

(Π + m̄f Π̂t+1)ζ

Et

(
Rn,t

Π+m̄f Π̂t+1

)(Jc + m̄f Ĵ
c
t+1) (64)

JJc
t = Y c

t + ξEt
(Π + m̄Π̂t+1)ζ−1

Et

(
Rn,t

Π+m̄f Π̂t+1

) (JJc + m̄f ĴJ
c
t+1) (65)

As for the household, price-setting is now expressed in terms of real marginal cost and

aggregate demand, variables that are exogenous to the atomistic firm. Again we therefore

have an ’anticipated utility’ form of firm behaviour suitable for either our behavioural or

RE models.

4 A Mandate Framework for Imposing the ZLB

Recall the nominal interest rate rule in ‘implementable form’:

log
(
Rn,t

Rn

)
= ρr log

(
Rn,t−1
Rn

)
+ (1 − ρr)

(
θπ log

(Πt

Π

)
+ θy log

(
Yt

Y

)
+ θdy log

(
Yt

Yt−1

))
(66)

which for optimal policy purposes we re-parameterize as

log
(
Rn,t

Rn

)
= ρr log

(
Rn,t−1
Rn

)
+ απ log

(Πt

Π

)
+ αy log

(
Yt

Y

)
+ αdy log

(
Yt

Yt−1

)
(67)

which allows for the possibility of an integral rule with ρr = 1

Let ρ ≡ [ρr, απ, αy, αdy] be the policy choice of feedback parameters that defines the

form of the rule. The equilibrium is solved by backward induction in the following two-stage
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delegation game.

1. Stage 1: The policymaker (the leader) chooses a per period probability of hitting

the ZLB, a trend inflation rate and designs the optimal loss function in the mandate.

2. Stage 2: The CB receives the mandate in the form of a welfare criterion and rule of

the form (67). Welfare is then optimized with respect to ρ resulting in an optimized

rule.

The equilibrium of this ZLB delegation mandate is solved by backward induction in the

following two-stage game.

This delegation game is solved by backwards induction as follows:

4.1 Stage 2: The CB Choice of Rule

Given a steady state inflation rate target, Π, the Central Bank (CB) receives a mandate to

implement the rule (67) and to maximize with respect to ρ a modified welfare criterion

Ωmod
t ≡ Et

[ ∞∑
τ=0

βτ
(
Ut+τ − wr (Rn,t+τ −Rn)2

)]
=

(
Ut − wr (Rn,t −Rn)2

)
+ β(1 + g)1−σEt

[
Ωmod

t+1

]
(68)

One can think of this as a mandate with a penalty function P = wr (Rn,t −Rn)2, penalizing

the variance of the nominal interest rate with weight wr.7

Following Den Haan and Wind (2012), an alternative mandate that only penalizes the

zero interest rate in an asymmetric fashion is P = P (at) where the OBC is at ≡ Rn,t −1 ≥ 0

with

P = P (at) = exp(−wrat)
wr

(69)

and chooses a large wr. P (at) then has the property

lim
wr→∞

P (at) = ∞ for at < 0

= 0 for at > 0
7This closely follows the approximate form of the ZLB constraint of Woodford (2003) and Levine et al.
(2008).
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Thus P (at) enforces the ZLB approximately but with more accuracy as wr becomes large.

Stages 2–1 then proceed as before, but we now confine ourselves to a large wr which will

enable Π to be close to unity.

Both the symmetric and asymmetric forms of a ZLB mandate result in a probability of

hitting the ZLB

p = p(Π, ρ∗(Π, wr)) (70)

where ρ∗(Π, wr) is the optimized form of the rule given the steady state target Π and the

weight on the interest rate volatility, wr.

4.2 Stage 1: Choice of the Steady State Inflation Rate Π and Design of

the Mandate

The policymaker first chooses a per period probability p̄ of the nominal interest rate hitting

the ZLB (which defines the tightness of the ZLB constraint). Then given a target low

probability p̄ and given wr, Π = Π∗ is chosen so satisfy

p(Rn,t ≤ 1) ≡ p(Π∗, ρ∗(Π∗, wr)) ≤ p̄ (71)

This then achieves the ZLB constraint

Rn,t ≥ 1 with high probability 1 − p̄ (72)

where Rn,t is the nominal interest rate.

The mandate is then designed to maximize the actual household intertemporal welfare

Ωt = Et

[ ∞∑
τ=0

βτUt+τ

]
= Ut + β(1 + g)1−σEt [Ωt+1] (73)

with respect to wr.

This two-stage delegation game defines an equilibrium in choice variables w∗
r , ρ∗ and

Π∗ that maximizes the true household welfare subject to the ZLB constraint (72).
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5 Methodology: Designing a Robust Mandate

The goal of the policymaker is to choose the parameters of a Taylor-type monetary policy

rule ρ∗, an optimal long-run inflation level Π̄∗ and an optimal delegated mandate w∗
r to

maximize the actual welfare and satisfy the ZLB on the nominal interest rate, we denote

these parameters as the parameter set defining the mandate δ = [ρ, Π̄, wr], that are robust

to both within- and across-model uncertainty. We use the expected lifetime utility of

households

Ωi(δ, ψ) = E0

[ ∞∑
t=0

βtUt(δ, ψ)
]

ψ ∈ Ψi (74)

in model Mi as our welfare measure, where β is the discount factor, Ψi is the parameter

space for Mi and Ut(δ, ψ) denotes utility in period t given the vector of estimated parameters

ψ ∈ Ψi, policy rule ρ, long-term inflation level and the optimal formation of the delegated

mandate wr. We allow the parameter space Ψi to differ, but require the policy rule ρ,

long-term inflation level and the optimal formation of the delegated mandate wr to be the

same across models.

We use the estimated posterior distribution from the Bayesian estimation of the model

to account for within-model uncertainty. We denote the mandate parameter set is δ, welfare

in model Mi is given by

Ωi(δ) =
∫

Ψi

Ω(ψ, δ)p(ψ|Yo
i,T ,Mi)dψ (75)

where p(ψ|Yo
i,T ,Mi) is the joint posterior probability distribution of the model parameters

estimated for model Mi given observations Yo
i,T = {yo

i,1, . . . ,yo
i,T }. Notice that, unlike

BMA, prediction pools do not require the models to have the same vector of observed

variables.

We attach weights to each model to account for across-model uncertainty. Given

weights w = {wi}m
i=1, the policymaker seeks a common mandate δ∗ across every model

that maximizes

Ω̄(δ, w) =
m∑

i=1
wiΩi(δ),

a welfare measure that incorporates both within- and across-model uncertainty and sub-
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jected to the ZLB constraint on the nominal interest rate

Pzlb(δ, w) =
m∑

i=1
wiPzlb,i(δ) ≤ P̄

where P̄ is a given unconditional probability of hitting the ZLB of the nominal interest

rate. Given the weights the chosen optimal mandate with δ = δ∗ is our optimal robust

mandate.

The novelty of our methodology lies in the way the weights are constructed for the

above policy problem. We use forecasting performance as a criterion for assessing the value

of different models. Specifically, we follow the procedure of Geweke and Amisano (2012) to

form prediction pools where weights are assigned to models on the basis of the accuracy of

their k-period ahead forecasts. Unlike the case of Bayesian model averaging which assumes

that one of the models is the true data generating process, prediction pools allow us to

consider that all models among a comparative set are misspecified, but they all may be

useful at different periods of time.

Let p(yf
T +k|Yo

i,T ,Mi) be the k-period ahead predictive density of model Mi for a

vector of model variables yf
T +k given observationsYo

i,T :

p(yf
T +k|Yo

i,T ,Mi) =
∫

Ψi

p(yf
T +k|Yo

i,T , ψ,Mi)p(ψ|Yo
i,T ,Mi)dψ, (76)

where p(yf
T +k|Yo

i,T , ψ,Mi) is the density of k-period ahead predictions of the model given

a parameter vector ψ ∈ Ψi. Notice that we require all models to share the same vector of

forecast variables yf
T +k, but not the observables used for estimation. The predictive density

characterizes out of sample observations that have not been used to estimate the posterior

density of the parameter vector ψ. Furthermore, the predictive density is independent

of the parameter vector ψ which we have integrated over using the posterior. As such

this provides predictions about future observations that fully incorporate the information

regarding within-model uncertainty in the data.

We assess each model using the log predictive score function. Given a sample Yf
T =

{yf
1 , . . . ,y

f
T } of forecast variables, the log predictive score of model Mi is given by

LS(Yf
T ,Mi) =

T −K∑
t=h

K∑
k=1

log p(yf
t+k|Yo

i,t,Mi) (77)



26

where 1 ≤ h ≤ T ensures that there are enough observations in the first subsample

to estimate the model. The log predictive score function measures the track record of

out-of-sample predictive performance of a model.

We use linear prediction pools to assess the predictive performance of a combination of

models.8 Given a sample Yf
T and a model pool M = {M1, . . . ,Mm}, the log predictive

score of the pool is given by

LS(Yf
T ,M) =

T −K∑
t=h

K∑
k=1

log
[

m∑
i=1

wip(yf
t+k|Yo

i,t,Mi)
]

;
m∑

i=1
wi = 1; wi ≥ 0. (78)

The log predictive score function measures the out-of-sample predictive performance of

a convex linear combination of the models in the pool. The optimal prediction pool has

weights chosen such that the log predictive score of the pool is maximized9

w∗
i = arg max

wi
LS(Yf

T ,M) (79)

Before we turn to our empirical analysis to demonstrate the methodology in practice,

let us highlight the differences between prediction pools and BMA (Table 1). First, BMA

attaches weights to each model based on their marginal data density. These weights can

be interpreted as the posterior probability that a given model is the true data generating

process. Prediction pools however, assume that all models are misspecified and attach

weights to each model by choosing the prediction pool with the best forecasting accuracy

out of all possible convex linear combinations of these models. Second, BMA requires all

models to have the same set of observable variables while prediction pools require them

only to share the same set of forecast variables. Finally, it is unlikely that a single model

Mi ∈ M will consistently produce the best forecasts. Thus, non-zero weights are typically

assigned to several models since there will be less tendency for one model to dominate all

the others (some w∗
i → 1) as in the case of BMA.

8Del Negro et al. (2016) use the terminology static pools to reflect the fact that weights are time invariant.
9Logs are used in general since they make the densities globally concave, making the maximization easier.
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BMA Prediction Pools

Attaches weights to each model based on their
marginal data density.

Attach weights to each model by choosing the pre-
diction pool with the best forecasting accuracy.

Assumes a complete model space - one of the models
is the true DGP.

Assumes an incomplete model space - all models
are misspecified.

Same set of observable variables Same set of forecast variables only

Tendency to assign all weight to a single model Less of a tendency that a single model dominates

Table 1: BMA versus Optimal Pooling

6 Results

This section reports our numerical results starting with a description of the data and the

measurement equations, then proceeding to identification tests, Bayesian estimation and

the computation of the optimal pooling weights. Finally the latter are used to compute

the optimal robust rule with a soft ZLB constraint.

6.1 Measurement Equations and Data

Our observables used in the estimation are: GDP per capita growth (dyobs), percentage

deviation of hours worked per capita from mean (labobs), monetary policy rate (robs) which

we employ both the nominal FED short-term rate and the shadow rate from inflation rate

(pinfobs). The corresponding measurement equations expressed in terms of stationarized

variables are:

dyobs = log
(

(1 + g) Yt

Yt−1

)
labobs = Hd

t −Hd

Hd

robs = Rn,t − 1

pinfobs = log (Πt)

The steady state values of the observables are dyobs=log(1 + g), labobs=0, robs=Rn − 1,

and pinfobs=log(Π).

The original data are taken from the FRED Database available through the Federal

Reserve Bank of St.Louis. The data consists of 7 quarterly time series, namely log output
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growth (dyobs), labour hours supply (labobs), the net inflation (pinfobs), and finally

the policy rate measurement (robs). Since our focus on the ZLB we also provide a new

estimation with the Wu-Xia Shadow interest rate replacing the FED rate, robs - see Wu

and Xia (2016). The sample period is 1958:1-2017:4. There is a pre-sample period of 4

quarters so the observations actually used for the estimation go from 1959:1-2017:4, 240

observations.

6.2 Identification

We use DYNARE implementation to check for the identification of the models. Iskrev

(2010) follows Ratto (2008) in using the information matrix derived from the Jacobian

(mean and covariance matrix), Komunjer and Ng (2011) provide a difference route to the

local identification of a linear state space, they examine directly the relationship between

the coefficients of the state-space representation of the DSGE model and the parameter

vector θ. In addition, the setup also accounts for the condition of left-invertablity (or the

number of structural shocks is different from the that of the observables). However, in our

setup, we always have the ”squared matrix”, so the full-rank condition on the coefficients

matrix and on the Jacobian matrix as in Ratto (2008) is sufficient for local identification.

Qu and Tkachenko (2012) work in the frequency domain, i.e., whether the mean and

spectrum of observables is uniquely determined by the deep parameters at all frequencies?

Using a frequency domain approximation of the likelihood function and utilizing the

information matrix equality, they express the Hessian as the outer product of the Jacobian

matrix of derivatives of the spectral density with respect to θ. However, this approach has

to be implemented numerically. For each conjectured θ0 we have to compute the rank of the

spectral density matrixy. Because in a typical implementation the computation of the matrix

relies on numerical differentiation (and integration) over the subset frequency domains,

there might arise discordant results in the matrix rank. For instance, if two parameters

jointly enter the model and play a very similar role in the model after linearization (i.e.,

stickiness level of price parameter and the rate of substitution jointly determine the speed of

adjustment of prices through the Calvo probability), thus they are separately unidentifiable.

Qu and Tkachenko (2012) procedure tests the identification over a subset of estimated

parameters, so the model fails to pass the test over each subset of parameters.
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Identification Criteria RE BR EL (SAE) EL (GAE)
REDUCED-FORM satisfied satisfied satisfied satisfied
MINIMAL SYSTEM (KOMUNJER AND NG, 2011) satisfied satisfied satisfied satisfied
SPECTRUM (QU AND TKACHENKO, 2012) unsatisfied unsatisfied satisfied satisfied
MOMENTS (ISKREV, 2010) satisfied satisfied satisfied satisfied

Table 2: Identification results

6.3 Bayesian Estimation

Parameters Prior Post. RE Post. BR Post. EL(SAE) Post. EL(GAE)
pdf Mean Std Mean s.d Mean s.d Mean s.d Mean s.d

(ϵa) IG 0.001 0.02 0.0065 0.0003 0.0065 0.0003 0.0066 0.0003 0.0065 0.0003
(ϵms) IG 0.001 0.02 0.0370 0.0036 0.0297 0.0035 0.0889 0.0369 0.0285 0.0033
(ϵmps) IG 0.001 0.02 0.005 0.0004 0.0050 0.0004 0.0023 0.0001 0.0035 0.0003
(ϵg) IG 0.001 0.02 0.0518 0.0045 0.0434 0.0037 0.0246 0.0011 0.0456 0.0040
(ρa) IG 0.50 0.20 0.9897 0.0050 0.9919 0.0039 0.9854 0.0065 0.9840 0.0072
(ρms) IG 0.50 0.20 0.9560 0.0124 0.9633 0.0120 0.7667 0.0892 0.9728 0.0108
(ρmps) IG 0.50 0.20 0.5994 0.0377 0.6175 0.0364 0.3871 0.0681 0.7941 0.0433
(ρg) IG 0.50 0.20 0.9088 0.0106 0.9475 0.0132 0.9843 0.0061 0.9761 0.0096
(ξ) B 0.50 0.10 0.7552 0.0175 0.6962 0.0290 0.7955 0.0194 0.5503 0.0468
(ϕ) N 2 0.75 4.6626 0.4918 3.7243 0.5046 1.2257 0.4632 3.7331 0.5167
(α) B 0.50 0.10 0.8861 0.0369 0.9092 0.0319 0.9734 0.0101 0.8882 0.0358

pdf Mean Std Mean s.d Mean s.d Mean s.d Mean s.d
(ρr) B 0.75 0.10 0.3015 0.0513 0.3343 0.0531 0.8808 0.0239 0.4400 0.0618
(θπ) N 1.50 0.25 2.4474 0.1551 2.6075 0.1567 1.4193 0.1724 2.0188 0.1848
(θy) N 0.12 0.05 0.0597 0.0189 0.0417 0.0236 0.1132 0.0307 0.0480 0.0286
(θdy) N 0.12 0.05 0.1092 0.0300 0.1739 0.0348 0.1905 0.0485 0.0601 0.0369

Myopic parameters
(m̄h) B 0.50 0.20 0.9379 0.0156
(m̄f ) B 0.50 0.20 0.5405 0.2801
Euler Learning parameters
(λ1

h,uc) B 0.50 0.20 0.1195 0.0393 0.0344 0.0166
(λ1

h,π) B 0.50 0.20 0.0678 0.0059 0.0556 0.0247
(λ2

h,uc) B 0.0 0.25 0.8036 0.0296
(λ2

h,π) B 0.0 0.25 -0.7315 0.0872
(λ1

f,π) B 0.50 0.20 0.2608 0.0036 0.2386 0.0690
(λ1

j ) B 0.50 0.20 0.2285 0.0476 0.8861 0.0593
(λ1

jj) B 0.50 0.20 0.5448 0.0579 0.6522 0.1584
(λ2

f,π) B 0.0 0.25 0.1345 0.0739
(λ2

j ) B 0.0 0.25 0.6223 0.1068
(λ2

jj) B 0.0 0.25 0.1073 0.1996

Table 3: Estimation results - Parameters

Estimated results show that there is a significant difference in the general myopia levels

about the future state between households and firms. Moreover, the estimated learning

parameters of the EL model are also statistically significant.

Smets and Wouters (2003) and Smets and Wouters (2007) have shown that rational
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models with a rich set of frictions and a general stochastic structure can explain the data

relatively well. However, these models require an implausibly high level of price and wage

stickiness and exogenous shocks to explain the observed persistence in the data.10 My

estimated results show that the boundedly rational expectation models reduce the scale of

structural price-stickiness friction, ξ, and the magnitude of estimated shocks, which, most

importantly, improves the marginal log likelihood relative to the RE model.

RE Gabaix EL (SAE) EL (GAE)
LogDataDensity (Nominal rate) 3813.00 3805.60 3766.64 3817.98
LogDataDensity (Shadow rate) 3750.70 3750.80 3715.47 3772.25

Table 4: Log data density, based on the Modified Harmonic Mean Estimator (Full sample Q1-1958 to
Q4-2017 with Shadow rate). The preference parameter, β, is calibrated of 0.9995 at the data
sample. The usual procedure before was that we calibrated the mean of inflation and nominal
interest rate over the data sample then we calculated the preference parameter, β, accordingly.

• Based on the marginal log likelihood, the estimated rational expectation model

outperform the models under BR and EL at fitting with the data if we use the

nominal interest rate as the observable.11

10Smets and Wouters (2007) resolve this problem by introducing Kimball rather than Dixit-stiglitz preferences.
However, for Kimball preference to have a significant impact requires a huge super-price elasticity which is
inconsistent with empirical evidence, Deak et al. (2020). Hence, BR and EL are the alternative approaches
to explain the persistence in observed data.

11Log data density. based on the Modified Harmonic Mean Estimator (Full sample 1959 to 2017 with Fed
interest rate as nominal interest rate).
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6.4 Optimal Pools

We estimate our models repeatedly with an increasing window of data, and compute

log predictive scores (77) and (78) for predictions made by our estimated models. Each

estimation sample starts at 1966:1. The first sample ends at 1970:4 (h = 20). We assess

our models based on how well they predict all seven observable variables jointly up to eight

quarters ahead (K = 8).12 We increase the sample size by four quarters each time and

repeat the same steps.13 Our last sample ends at 2016:4 (T = 208) as to allow for the

computation of predictive densities using data up to 2017:4.

First consider a pool of all four models model RE,model EL-SAE), model EL-GAE

and model BR in Figure 1. The top panel shows the log predictive score function for each

model. These are similar across models throughout most of our sample period, indicating

that the predictive performance of all models is roughly the same in most periods.

Importantly, we employ prediction pooling to aggregate these relative predictive perfor-

mance differences over time. The middle panel of Figure 1 shows the optimal prediction

pool weights over the sample period 1970:4-2017:4. To obtain these weights we solve the

optimization problem (79) recursively. At each point in time we use the log predictive

scores up to that point to determine the weights as if our full sample ended there. It is

clear that the RE, EL-GAE and BR models provide far better predictions than EL-SAE.

Weights of approximately 0.40, 0.32 and 0.28 are assigned to these dominant models,

by the end of the sample period.

The bottom panel of Figure 1 shows an interesting and important contrast to the

middle panel. It shows how the Bayesian odds evolve over our sample, given a uniform

prior belief of the policymaker over the competing models. Had the policymaker used BMA

to attach weights to the models, she would have put most of her faith in the BR while

ignoring the other two models entirely. In fact, with the exception of the years in the early

1990’s, BMA have the tendency to assign almost zero weight to at least one model in our

model pool. Moreover, the optimal prediction pool weights change slowly over time while

large changes in Bayesian odds can be brought by adding only a handful of observations to
12We modify Dynare’s estimation routine to calculate the predictive densities.
13We re-estimate the models only every four quarters to reduce the computational complexity of the task.

This way we need to estimate each model only 47 times, and our forecasting periods do not overlap each
other.
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the sample.

Figure 2 increases the prediction period to 8 periods with a the similar result that

model EL-SAE is dominated by the other two. We therefore focus on the three empirically

relevant models model RE, model EL-GAE and model BR in figures 3 and 4. For

the optimal policy exercise we choose the 8-period end-of-sample weights of approximately

0.40, 0.32 and 0.28.
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Figure 1: (4 models) 4-period ahead forecasting optimal weights (Shortest sample from
1958Q1 to 1963Q1, longest sample from 1958Q1 to 2014Q4)
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Figure 2: (4 models) 8-period ahead forecasting optimal weights(Shortest sample from 1958Q1
to 1963Q1, longest sample from 1958Q1 to 2014Q4)
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Figure 3: (3 models) 4-period ahead forecasting optimal weights (Shortest sample from
1958Q1 to 1963Q1, longest sample from 1958Q1 to 2014Q4)
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Figure 4: (3 models) 8-period ahead forecasting optimal weights(Shortest sample from 1958Q1
to 1963Q1, longest sample from 1958Q1 to 2014Q4)

6.5 The Robust ZLB Mandate

6.5.1 Optimized Simple Rules

Before turning to the ZLB mandate, Table 5 computes the optimized rules ρ∗ = [ρ∗
r , α

∗
π, α

∗
y, α

∗
dy]

in the absence of any ZLB considerations. First the steady-state gross inflation rate is set

at its welfare-optimal Π = 1 (zero net inflation) and then at the empirical average level of

the period of estimation Π = 1.008 (an annual rate 3.24%).

Clearly there is a significant difference of the equilibrium points between models in

terms of ρ∗ for all elements except α∗
y = 0. For Π = 1 we see a very high probability of

hitting the nominal interest rate ZLB for each model individually and for the optimal pool

as well. A higher steady-state empirical gross inflation rate mitigates the problem for rules

chosen for each model individually and more so for the pool.14

14The consumption equivalent variations (CEV) is calculated as follows:CEV =
Ω∗

Mi
−Ω∗

Mi,OSR,Π=1
CE

, where
CE = 19.9 is the estimated steady state value of the consumption equivalence in the common deterministic
steady of the three models.
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Figure 5: The impulse-response to the technology shock of the key variables at the optimized
simple rule
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Figure 6: The impulse-response to the Marginal cost shock of the key variables at the
optimized simple rule
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Optimized Simple Rule Across Models (Π̄ = 1.0)
Models ρ∗

r α∗
π α∗

y α∗
dy Π∗ Act welfare CEV p_zlb w∗

r

RE 0.99 8.4 0.00 0.46 1.0 -2312.45 0 0.194 0
BR 0.34 16.0 0.04 0.6 1.0 -2624.06 0 0.308 0
EL(GAE) 0.88 65.9 0.0 0.98 1.0 -2601.12 0 0.344 0
Pool of models 0.8 14.06 0.01 0.6 1.0 -2456.57 0 0.262 0

Optimized Simple Rule Across Models (Π̄ = 1.005)
Models ρ∗

r α∗
π α∗

y α∗
dy Π∗ Act welfare CEV p_zlb w∗

r

RE 0.47 65.18 0.07 2.67 1.005 -2315.04 -0.1302 0.0431 0
BR 1.0 18.6 0.12 0.62 1.005 -2625.56 -0.0754 0.1385 0
EL(GAE) 0.99 38.65 0.35 0.48 1.005 - 2601.59 -0.0236 0.198 0
Pool of models 0.96 38.89 0.1 1.46 1.005 -2458.33 -0.0884 0.105 0

Optimized Simple Rule Across Models (Π̄ = 1.00799)
Models ρ∗

r α∗
π α∗

y α∗
dy Π∗ Act welfare CEV p_zlb w∗

r

RE 0.73 12.98 0.02 0.68 1.00799 -2319.77 -0.3678 0.0115 0
BR 1.0 27.17 0.19 0.59 1.00799 -2628.19 -0.2075 0.0775 0
EL(GAE) 0.99 60.42 0.85 0.69 1.00799 -2602.38 -0.0633 0.133 0
Pool of models 0.95 77.8 0.24 2.89 1.00799 -2461.52 -0.2487 0.06 0

Table 5: Optimized Rules without a ZLB

6.5.2 The ZLB Mandate

Now consider the imposition of a ZLB constraint that sets the probability of hitting

the lower bound first at p̄ = 0.05 and then at the empirical value over the sample of

p̄ = 0.096. The p̄ = 0.096 is calibrated from the sample of the shadow rate, by using

the sample from 1957Q1 to 2017Q4, the ZLB episode is from 2010Q1 to 2015Q4 when

the shadow rate experienced negative values. Figures 8, 9 and 10 show Stage 1 of the

optimal robust ZLB mandate that imposes a probability of hitting the ZLB of p̄ = 0.05

for the RE, Gabaix bounded rationality (BR), Euler Learning (EL) models respectively.15

Each figure shows how the choice of the penalty weight on nominal interest rate variability

wr drives down the steady-state target gross inflation rate Π from Stage 1 necessary

to hit the probability constraint by lowering the standard deviation of the Rn,t in the

stochastic steady state (computed in a second-order perturbation solution). Also shown is

actual welfare Ωt converted to consumption equivalent variations (CEV) and the optimized

parameter feedback on the inflation απ from Stage 2. The optimal robust rule then picks

the maximum value of CEV.

The full results for the optimized are set out in Table rule 6. Again there is a significant
15The corresponding results for the Anticipated Utility learning model (AU) is work in progress.
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Figure 7: The impulse-response to the Government spending shock of the key variables at
the optimized simple rule

difference of the equilibrium points between rules for individual models and the robust

rule, but they all share the feature that ρ∗ = 1.

Optimal ZLB Mandate Across Models (p̄ = 0.05)
Models ρ∗

r α∗
π α∗

y α∗
dy Π∗ Act welfare CEV p_zlb w∗

r

RE 1.0 0.8317 0.00 0.016 1.0026 -2313.38 -0.0467 0.05 50
BR 1.0 0.50 0.0 0.0 1.0083 -2629.27 -0.2618 0.05 70
EL(GAE) 1.0 98.87 1.1 0.02 1.014 -2605.14 -0.2020 0.05 30
Pool of models 1.0 2.17 0.0 0.0 1.0084 -2462.26 -0.2859 0.05 50

Optimal ZLB Mandate Across Models (p̄ = 0.096)
Models ρ∗

r α∗
π α∗

y α∗
dy Π∗ Act welfare CEV p_zlb w∗

r

RE 1.0 1.59 0.00 0.06 1.0016 -2312.76 -0.0156 0.096 20
BR 1.0 0.965 0.0 0.03 1.006 -2626.49 -0.1221 0.096 30
EL(GAE) 1.0 97.15 1.22 0.24 1.01 -2602.89 -0.0889 0.096 10
Pool of models 1.0 1.56 0.0 0.0 1.0048 -2458.29 -0.0864 0.096 70

Table 6: Optimized Rules with a ZLB

This leads us to consider the case where the monetary policymaker commits to a rule

with ρr = 1 and αy = αdy = 0. Then integrating (67) and putting Πt
Π = Pt/Pt−1

P̄t/P̄t−1
where P̄t
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Figure 8: ZLB results for a single RE model. p̄ = 0.05
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Figure 9: ZLB results for a single BR model. p̄ = 0.05
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Figure 10: ZLB results for a single EL model with GAE. p̄ = 0.05
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Figure 11: ZLB results for the pooled model (with four-period-ahead forecast. p̄ = 0.05
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is the price trend in the constant inflation rate steady state, we arrive at the rule

Rn,t

Rn
=
(
Pt

P̄t

)απ

(80)

which is a price-level rule that adjusts the deviation of the nominal interest rate to changes

in the price level relative to its long-run trend.

We have described the literature on the benefits of price-level targeting versus inflation

targeting in Section 2 where we describe price-targeting (and indeed any inertial Taylor

rule) as possible makeup strategy as follows. It anchors expectations as follows: faced

with of an unexpected temporary rise in inflation, price-level stabilization commits the

policymaker to bring inflation below the target in subsequent periods. In contrast, with

inflation targeting, the drift in the price level is accepted.

Table 6 shows that to avoid the ZLB optimized rules must have ρ∗
r = 1 and αy ≈ 0

and α∗
dy ≈ 0; i.e., they are close to a price-level rule. Indeed for the empirical probability

p̄ = 0.096 the optimized rule is up to two decimal points exactly a price-level rule.

Table 7 shows the welfare cost of using a rule optimized for a specific model in another

model. This is a counterfactual exercise that shows the cost of incorrectly identifying the

data generating process. For example, the first row shows that if we use the robust simple

rule optimized for the RE model in the BR and EL models, then the welfare actually

increases to 0.23 and 1.42 percent of consumption respectively relative to that from the

robust simple rules optimized for the latter two models themselves. However this comes

at the expense of a frequent occurrence of the ZLB. The results show that incorrectly

identifying the EL model as the data generating process implies the largest welfare costs.

Using the rule optimized any one model imply rather large welfare losses. The final row

shows the welfare cost of using the robust rule optimized for the prediction pool in Table 6

relative to the model specific robust optimal rules reported in Table 7. These now avoid

these large costs of the single model optimized rules and the costs are generally small

relative to the gains from using optimal rules.
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RE BR EL (GAE)
Opt_RE 0.00 (pzlb = 0.05) 0.23 (pzlb = 0.158) 1.42 (pzlb = 0.267)
Opt_BR -2.41 (pzlb = 0.0012) 0.00 (pzlb = 0.05) 1.33 (pzlb = 0.14)
Opt_EL (GAE) -1.39 (pzlb = 0.00028) -0.49 (pzlb = 0.015) 0.00 (pzlb = 0.05)
Opt_Pool -0.48 (pzlb = 0.0034) 0.026 (pzlb = 0.047) 1.36 (pzlb = 0.127)

Note: The table shows what happens when an optimal simple rules optimized for model i is used
in model j ≠ i. The first column shows the consumption equivalent welfare loss in the RE model
relative to the welfare attained using the robust simple rule optimized for the RE model if, for
example, we use the robust simple rules optimized for the RE, BR, EL models, respectively. The
last row shows the welfare cost incurred in model i when instead of using the robust simple rule
optimized for model i we use the robust optimal simple rule obtained with the optimal prediction
pool weights.

Table 7: Welfare gains of robust optimal ZLB mandate i (first column) in model j (first
row), j ̸= i

6.5.3 Impulse Responses with Optimized Rules

Our next comparison of rules, Figures 12–14, are the impulse responses to a monetary shock

which compare the optimal policy for each of the three models and the robust counterpart,

all taking into account the soft ZLB constraint. As before these emphasize the effect and

importance of robustness especially for the model EL-GAE where the very aggressive

monetary rule chosen for that assumed model is totally inappropriate for the other two.
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Figure 12: Impulse responses to the monetary policy shock comparison between the ZLB
mandate produced by the individual RE model and robust ZLB mandate. p̄ = 0.05
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Figure 13: Impulse responses to the monetary policy shock comparison between the ZLB
mandate produced by the individual BR model and robust ZLB mandate. p̄ = 0.05
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Figure 14: Impulse responses to the monetary policy shock comparison between the ZLB
mandate produced by the individual EL model and robust ZLB mandate. p̄ = 0.05

Finally in Appendix E Figures 19–21 in the show how the responses to the cost-push,

government spending and technology differs in the three states of the world under the

robust rule with the ZLB mandates. These emphasize the fact that a very simple price-level

rule responds in a flexible way to all three of these shocks.
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7 Conclusions

This paper studies the problem of designing robust mandate framework when the policy-

maker has at her disposal a finite set of models, none of which are believed to be the true

data generating process. We assign weights to models on the basis of the accuracy of their

4-period ahead forecasts rather than their in-sample fit, consistent with the forward-looking

viewpoint of the policymaker. We study the robust optimal policy problem in the form of

an optimal mandate with optimized Taylor-type inertial nominal interest rate rule and

the ZLB on the nominal interest rate under this weighting scheme using three estimated

models exemplifying the policymakers’ uncertainty about the expectation formations of

the economic agents.

Our main results are: first, three models completely dominate model EL-SAE with

weights wRE = 0.4, wEL−GAE = 0.32 and wEL−BR = 0.28. Second, whereas Bayesian

model averaging would design a welfare-optimized rule that hits the ZLB with a probability

solely based on the Gabaix model, we find that our prediction pool using these weights

choice has a significant impact on the robust optimized rule. Third, there are significant

differences between the optimized rules for each model separately highlighting the need

for seeking a robust rule. Fourth, we find that robust optimized rule found using optimal

pooling weights is very close to the price level rule. This confirms good robustness properties

of such a rule found in other studies. Finally to achieve a probability of hitting the ZLB

constraint on the nominal interest rate of 5% per quarter, the robust optimal rule requires

a target (steady-state) net inflation annual rate of between 3% and 4%.

Our approach provides a very general framework for the combination of models in a

policy design problem. It only requires models to share the same policy instrument, to

provide a k-period ahead predictive density given macro-economic data, and to have a

welfare criterion to rank alternative policies. The models in the pool do not need to share

the estimated parameter vector, nor even the observables; they can be nested as well as

non-nested. Thus, the methodology can be applied to a wide range of macroeconomic

models from mainstream DSGE, behavioural to agent-based, and indeed to other non-

macroeconomic settings as long as these three requirements are met.

Regarding the wilderness we have alluded to the large number of competing behavioural

models of which we have focused on only those with Euler learning and myopia. Future work
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could add a model with the Anticipated Utility(AU) approach aka Infinite Horizon

Learning. AU assumes that agents follow an optimal decision rule conditional on their

beliefs over aggregate states and prices. This takes into account all information available

to the agent, and involves forecasts of variables external to them. See Eusepi and Preston

(2011), Deak et al. (2015), Eusepi and Preston (2018) and Calvert Jump et al. (2019).

Beliefs affect the data-generating process which in turn feeds back on beliefs. The fixed

point of this process has been called self-confirming (unlike the beliefs in the form of

heuristic rules in our EL approach). Self-confirming learning equilibria in the form of

parsimonious first-order VAR to fit mean and persistence of each state variable to data are

also studied by Hommes and Zhu (2014), Hommes and Zhu (2015), Hommes et al. (2022):

Anticipated Utility learning is similar to, but distinct from, the Internal Rationality

approach in which agents, “maximize utility under uncertainty, given their constraints

and given a consistent set of probability beliefs about payoff-relevant variables that are

beyond their control or external” (Adam and Marcet, 2011). The approach of Adam and

Marcet (2011) requires a fully Bayesian plan for beliefs, as opposed to the anticipated

utility approach, in which households do not consider the possibility that their beliefs

might change in the future. The latter is obviously more straightforward than the former,

although Cogley and Sargent (2008) demonstrate that the anticipated utility approach can

be seen as a good approximation to the fully Bayesian approach. Finally an alternative

approach is the k-level learning of Woodford (2013), Garcia-Schmidt and Woodford (2019),

Farhi and Werning (2019) where beliefs are updated iteratively with observed temporary

equilibrium over n stages. All these models of non-rational beliefs are candidates for a

pooling and robust policy exercise of the type offered in our paper.
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Appendices

A The Rational Expectations Model

A.1 Equilibrium

A symmetric equilibrium is determined by the following equations:

Ut = log(Ct) − κ
H1+ϕ

t

1 + ϕ
(A.1)

Vt = Et

[ ∞∑
s=0

βsUt+s

]
= Ut + βEtVt+1 (A.2)

UC,t = 1
Ct

(A.3)

UH,t = −κHϕ
t (A.4)
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Λt,t+1 = β
UC,t+1
UC,t

(A.5)

Rt = Rn,t−1
Πt

(A.6)

1 = Et [Λt,t+1Rt+1] (A.7)

Wt = −UH,t

UC,t
(A.8)

Y W
t = AtH

α
t (A.9)

Wt = α
PW

t

Pt

Y W
t

Ht
(A.10)

MCt = PW
t

Pt
(A.11)

Jt = 1
1 − 1

ζ

YtMCtMSt + ξEtΛt,t+1Πζ
t,t+1Jt+1 (A.12)

JJt = Yt + ξEtΛt,t+1Πζ−1
t,t+1JJt+1 (A.13)

1 = ξΠζ−1
t + (1 − ξ)

(
Jt

JJt

)1−ζ

(A.14)

Yt = Y W
t

∆t
(A.15)

∆t = ξΠζ
t ∆t−1 + (1 − ξ)

(
Jt

JJt

)−ζ

(A.16)

Yt = Ct +Gt (A.17)

log
(
Rn,t

Rn

)
= ρr log

(
Rn,t−1
Rn

)
+ (1 − ρr)

(
θθ log

(Πt

Π

)
+ θy log

(
Yt

Y

))
+ logMPSt (A.18)

logAt − logA = ρA(logAt−1 − logA) + ϵA,t (A.19)

logMSt − logMS = ρMS(logMSt−1 − logMS) + ϵMS,t (A.20)

logMPSt − logMPS = ρMP S(logMPSt−1 − logMPS) + ϵMP S,t (A.21)

logGt − logG = ρG(logGt−1 − logG) + ϵG,t (A.22)

where we have introduced a mark-up shock MSt.
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A.2 Stationary equilibrium

Labour-augmenting technical progress parameter is decomposed into a cyclical component,

Ac
t , and a deterministic trend Āt:

At = ĀtA
c
t

Āt = (1 + g)Āt−1

Rewrite the equilibrium conditions as

Ut − log(Āt) = log(Ct/Āt) − κ
H1+ϕ

t

1 + ϕ
(A.23)

Vt = Ut + βEtVt+1 (A.24)

ĀtUC,t = 1
Ct/Āt

(A.25)

UH,t = −κHϕ
t (A.26)

Λt,t+1 = β

Āt+1/Āt

Āt+1UC,t+1

ĀtUC,t

(A.27)

Rt = Rn,t−1
Πt

(A.28)

1 = Et [Λt,t+1Rt+1] (A.29)
Wt

Āt
= − UH,t

ĀtUC,t

(A.30)

Y W
t

Āt
= At

Āt
Hα

t (A.31)

Wt

Āt
= α

PW
t

Pt

Y W
t /Āt

Ht
(A.32)

MCt = PW
t

Pt
(A.33)

Jt

Āt
= 1

1 − 1
ζ

Yt

Āt
MCtMSt + ξEt

Āt+1

Āt
Λt,t+1Πζ

t,t+1
Jt+1

Āt+1
(A.34)

JJt

Āt
= Yt

Āt
+ ξEt

Āt+1

Āt
Λt,t+1Πζ−1

t,t+1
JJt+1

Āt+1
(A.35)

1 = ξΠζ−1
t + (1 − ξ)

(
Jt/Āt

JJt/Āt

)1−ζ

(A.36)

Yt

Āt
= Y W

t /Āt

∆t
(A.37)
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∆t = ξΠζ
t ∆t−1 + (1 − ξ)

(
Jt/Āt

JJt/Āt

)−ζ

(A.38)

Yt

Āt
= Ct

Āt
+ Gt

Āt
(A.39)

log
(
Rn,t

Rn

)
= ρr log

(
Rn,t−1
Rn

)
+ (1 − ρr)

(
θθ log

(Πt

Π

)
+ θy log

(
Yt

Y

))
+ logMPSt (A.40)

logAt − logA = ρA(logAt−1 − logA) + ϵA,t (A.41)

logMSt − logMS = ρMS(logMSt−1 − logMS) + ϵMS,t (A.42)

logMPSt − logMPS = ρMP S(logMPSt−1 − logMPS) + ϵMP S,t (A.43)

logGt − logG = ρG(logGt−1 − logG) + ϵG,t (A.44)

Use change of variables to arrive to the following equilibrium conditions:16

U c
t = log(Cc

t ) − κ
H1+ϕ

t

1 + ϕ
(A.45)

V c
t = U c

t + βEtV
c

t+1 (A.46)

U c
C,t = 1

Cc
t

(A.47)

UH,t = −κHϕ
t (A.48)

Λt,t+1 = β

1 + g

U c
C,t+1
U c

C,t

(A.49)

Rt = Rn,t−1
Πt

(A.50)

1 = Et [Λt,t+1Rt+1] (A.51)

W c
t = −UH,t

U c
C,t

(A.52)

Y W,c
t = Ac

tH
α
t (A.53)

W c
t = α

PW
t

Pt

Y W,c
t

Ht
(A.54)

MCt = PW
t

Pt
(A.55)

Jc
t = 1

1 − 1
ζ

Y c
t MCtMSt + ξ(1 + g)EtΛt,t+1Πζ

t,t+1J
c
t+1 (A.56)

16The first equation is based on a hunch. Since the normalization of utility is additive, we cannot have a
different discount factor. However, we cannot derive the first equation above from (A.2). We can derive it
starting from the definition V c

t = Et

[∑∞
s=0 βsUc

t+s

]
.
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JJc
t = Y c

t + ξ(1 + g)EtΛt,t+1Πζ−1
t,t+1JJ

c
t+1 (A.57)

1 = ξΠζ−1
t + (1 − ξ)

(
Jc

t

JJc
t

)1−ζ

(A.58)

Y c
t = Y W,c

t

∆t
(A.59)

∆t = ξΠζ
t ∆t−1 + (1 − ξ)

(
Jc

t

JJc
t

)−ζ

(A.60)

Y c
t = Cc

t +Gc
t (A.61)

log
(
Rn,t

Rn

)
= ρr log

(
Rn,t−1
Rn

)
+ (1 − ρr)

(
θθ log

(Πt

Π

)
+ θy log

(
Y c

t

Y c

))
+ logMPSt (A.62)

logAc
t − logAc = ρA(logAc

t−1 − logAc) + ϵA,t (A.63)

logMSt − logMS = ρMS(logMSt−1 − logMS) + ϵMS,t (A.64)

logMPSt − logMPS = ρMP S(logMPSt−1 − logMPS) + ϵMP S,t (A.65)

logGc
t − logGc = ρG(logGc

t−1 − logGc) + ϵG,t (A.66)

This is a system of 22 equation in the following 22 “variables” (in order of appearance):

V c, U c, Cc, H, Λ, R, W c, U c
H , U c

C , Y W,c, Ac, P W

P , Jc, Y c, MC, MS, Π, JJc, ∆, Gc, Rn,

MPS.

A.3 Steady State

The exogenous variables have steady states Ac = MS = MPS = 1. Given the steady state

inflation rate Π and the steady state nominal interest rate Rn, the steady state values of

the other variables can be computed as

(A.49) ⇒ Λ = β

1 + g

(A.51) ⇒ R = 1
Λ

(A.58) ⇒ Jc

JJc
=
(

1 − ξΠζ−1

1 − ξ

) 1
1−ζ

(A.56), (A.57) ⇒ MC =
(

1 − 1
ζ

)
Jc

JJc

1 − ξβΠζ

1 − ξβΠζ−1

(A.60) ⇒ ∆ =
(1 − ξ)

(
Jc

JJc

)−ζ

1 − ξΠζ
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(A.54),using (A.47), (A.48) , (A.52), (A.55), (A.59), (A.61) ⇒ H =
(
α∆MC

κ(1 − gy)

) 1
1+ϕ

(A.53) ⇒ Y W,c = (AcH)α

(A.59) ⇒ Y c = Y W,c

∆
Gc = gy ∗ Y c

(A.61) ⇒ Cc = Y c −Gc

(A.56) ⇒ Jc = Y cMCMS

(1 − 1
ζ )(1 − ξβΠζ)

(A.57) ⇒ JJc = Y c

(1 − ξβΠζ−1)

(A.45) ⇒ U c = log(Cc) − κ
H1+ϕ

1 + ϕ

(A.47) ⇒ U c
Cc = 1

Cc

(A.48) ⇒ UH = −κHϕ

(A.55) ⇒ PW

P
= MC

(A.54) ⇒ W c = α
PW

P

Y W,c

H

(A.46) ⇒ V c = U c

1 − β

Finally we can define

CEquivt = Et

[ ∞∑
t=s

βsU(1.01Ct+s, Ht+s)
]

− Et

[ ∞∑
t=s

βsU(Ct+s, Ht+s)
]

= Et

[ ∞∑
t=s

βs

{
log(1.01Cc

t+s) − κ
H1+ϕ

t+s

1 + ϕ
− log(Cc

t+s) − κ
H1+ϕ

t+s

1 + ϕ

}]

= log(1.01)
∞∑

t=s

βs = log(1.01)
1 − β

A.4 Limits on Π and ξ in the Steady state

Non-negativity constraints imply the following conditions

ξΠζ−1 < 1 (A.67)

ξβΠζ−1 < 1 (A.68)

ξβΠζ < 1 (A.69)
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If we confine ourselves to a non-negative net inflation steady state (Π ≥ 1) then a sufficient

condition for (A.67)–(A.69) to hold is ξΠζ < 1. This places an upper-bound on steady-state

inflation given by

Π <

(1
ξ

) 1
ζ

(A.70)

With ζ = 7, for quarterly settings ξ = 0.5, 0.75, 0.8, 0.8 these gives upper bounds Π =

1.104, 1.042, 1.032, 1.015. So the constraint is only important for very high degrees of price

stickiness.

A.5 The Measurement Equations

Our 4 observables are: output growth (dyobs) defined in various ways, hours worked per

capita (labobs), monetary policy rate (robs), inflation rate (pinfobs). The corresponding

measurement equations are:

dyobs = log
(

(1 + g) Y
c

t

Y c
t−1

)
(A.71)

labobs = Ht −H

H
(A.72)

robs = Rn,t − 1 (A.73)

pinfobs = Πt − 1 (A.74)

The steady state values of the observables are dyobs = dcobs = dyobs = log(1 + g),

labobs = H, robs = Rn − 1, and pinfobs = Π − 1.

The estimated parameters Π̄, R̄n and ḡ are related to the steady state variables of our

model by

Π = Π̄
100 + 1

Rn = R̄n

100 + 1

g = ḡ

100

From our non-zero-inflation-growth steady state this implies that we should impose the
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restrictions

Rn = Π
β(1 + g)−1 = R̄n

100 + 1 (A.75)

on β rather than calibrating it at the usual β = 0.99. This implies that β is calibrated as

β =
Π̄

100 + 1(
R̄n
100 + 1

) (
1 + ḡ

100

)−1 = 0.9995 (A.76)

For the given empirical steady state inflation Π̄ = 1.00799.

B Gabaix Model

B.1 Model’s equilibrium conditions

Cc
t

1 − β
= Zt

[κCc
t ]

1
ϕ

+ ZZt (B.1)

Zt = (W c
t )1+ 1

ϕ +

(1 + g)1+ 1
ϕ

β
1
ϕ


 Et

(
Z + m̄hẐt+1

)
Et

(
Rn,t

Π+m̄hΠ̂t+1

)1+ 1
ϕ

 (B.2)

ZZt = (Γc
t − T c

t ) + (1 + g)

Et

(
ZZ + m̄hẐZt+1

)
Et

(
Rn,t

Π+m̄hΠ̂t+1

)
 (B.3)

W c
t = κHσ

t C
c
t (B.4)

W c
t = α

PW
t

Pt

Y W,c
t

Ht
(B.5)

MCt = PW
t

Pt
(B.6)

Y W,c
t = Ac

tH
α
t (B.7)

Y c
t = Y W,c

t

∆t
(B.8)

Y c
t = Cc

t +Gc
t (B.9)

Gc
t = T c

t (B.10)

Γc
t = Y c

t − α
PW

t

Pt
Y W,c

t (B.11)

∆t = ξΠζ
t ∆t−1 + (1 − ξ)

(
Jc

t

JJc
t

)−ζ

(B.12)
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Jc
t = 1

1 − 1
ζ

Y c
t MCt

+ ξEt
(Π + m̄f Π̂t+1)ζ

Et

(
Rn,t

Π+m̄f Π̂t+1

)(Jc + m̄f Ĵ
c
t+1) (B.13)

JJc
t = Y c

t + ξEt
(Π + m̄f Π̂t+1)ζ−1

Et

(
Rn,t

Π+m̄f Π̂t+1

) (JJc + m̄f ĴJ
c
t+1) (B.14)

1 = ξΠζ−1
t + (1 − ξ)

(
Jc

t

JJc
t

)1−ζ

(B.15)

log

(
Rnt

Rn

)
= ρrlog

(
Rnt−1
Rn

)
+ (1 − ρr)

[
απlog

(Πt

Π

)
+ αylog

(
Yt

Y

)
+ αdylog

(
Yt

Yt−1

)]
+ log(Mt) (B.16)

log

(
Mt

M

)
= ρmlog

(
Mt−1
M

)
+ ϵmt (B.17)

log

(
Gc

t

Gc

)
= ρglog

(
Gc

t−1
Gc

)
+ ϵgt (B.18)

log

(
MSt

MS

)
= ρmslog

(
MSt−1
MS

)
+ ϵms

t (B.19)

log

(
Ac

t

Ac

)
= ρmalog

(
Ac

t−1
Ac

)
+ ϵat (B.20)

(B.21)

B.2 Steady State

The exogenous variables have steady states Ac = MS = M = 1. Given the steady state

inflation rate Π and the steady state nominal interest rate Rn, the steady state values of

the other variables can be computed as

Λ = β

1 + g
(B.22)

R = 1
Λ (B.23)

Jc

JJc
=
(

1 − ξΠζ−1

1 − ξ

) 1
1−ζ

(B.24)

MC =
(

1 − 1
ζ

)
Jc

JJc

1 − ξβΠζ

1 − ξβΠζ−1 (B.25)

∆ =
(1 − ξ)

(
Jc

JJc

)−ζ

1 − ξΠζ
(B.26)
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PW

P
= MC (B.27)

H =
(
α∆MC

κ(1 − gy)

) 1
1+ϕ

(B.28)

Y W,c = (AcH)α (B.29)

Y c = Y W,c

∆ (B.30)

Γc = Y c − α
PW

P
Y W,c (B.31)

W c = α
PW

P

Y W,c

H
(B.32)

Gc = gy ∗ Y c (B.33)

T c = Gc (B.34)

Cc = Y c −Gc (B.35)

Jc = Y cMCMS

(1 − 1
ζ )(1 − ξβΠζ)

(B.36)

JJc = Y c

(1 − ξβΠζ−1) (B.37)

Finally we can define

CEquivt = Et

[ ∞∑
t=s

βsU(1.01Ct+s, Ht+s)
]

− Et

[ ∞∑
t=s

βsU(Ct+s, Ht+s)
]

= Et

[ ∞∑
t=s

βs

{
log(1.01Cc

t+s) − κ
H1+ϕ

t+s

1 + ϕ
− log(Cc

t+s) − κ
H1+ϕ

t+s

1 + ϕ

}]

= log(1.01)
∞∑

t=s

βs = log(1.01)
1 − β

(B.38)

U c = log(Cc) − κ
H1+ϕ

1 + ϕ
(B.39)

U c
Cc = 1

Cc
(B.40)

UH = −κHϕ (B.41)

V c = U c

1 − β
(B.42)

B.3 Linearized model

Our set-up is non-linear (an essential feature for the computation of the optimized rules),

but in order to compare our model with Gabaix (2020) we now perform a standard
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log-linearization of the consumption function and NK Phillips curve.

First log-linearizing (B.2) and (B.3) around the steady state C
Z = 1 − 1

R gives

Z̃t = my(1 − 1
R

)C̃t + m̄

R
Z̃t+1 −mr

1
R2 R̂t+1 (B.43)

Z̃Zt = m̄

R
(βR)

1
γ Z̃Zt+1 +mr(βR)

1
γ ( 1
γ

− 1) 1
R2 R̂t+1 (B.44)

where (βR)
1
γ = 1 and log-linearising equation (B.1) yields C̃t = Z̃t − Z̃Zt. hence, we can

subtract equation (B.43) by equation (B.44) to get:

C̃t = Z̃t − Z̃Zt = my(1 − 1
R

)C̃t + m̄

R
(Z̃t+1 − Z̃Zt+1) − mr

γR2 R̂t+1 (B.45)

which is gives the linearised consumption function as in Gabaix (2020):

C̃t = m̄

[R−my(R− 1)] C̃t+1 − mr

γR[R−my(R− 1)]R̂t+1 (B.46)

Turning to the Phillips curve we log-linearise equations (64), (65), and (63) again

conditional on the zero growth and net inflation steady state inflation to get:

J̃t = (1 − βξΠζ)
(
Ỹt +mfmcM̃Ct

)
+ βξΠζEt

(
(1 + ζ)m̄fmfπΠ̃t+1 −mfrR̃nt + m̄f J̃t+1

)
(B.47)

J̃J t = (1 − βξΠζ−1)Ỹt + βξΠζ−1Et

(
ζm̄fmfπΠ̃t+1 −mfrR̃nt + m̄f J̃J t+1

)
(B.48)

Π̃t = 1 − ξΠζ−1

ξΠζ−1 (J̃t − J̃J t) (B.49)

Notice that the expectation terms here are fully rational, the vector of myopia parameters

included in the set of equations above represents the behavioural element of the boundedly

rational price-setting firms. When the steady state of inflation is zero (or the steady state

gross inflation Π = 1), we can directly subtract equation (B.48) from equation (B.47) and

substitute into equation (B.49) to eliminate Ỹt and R̃nt to get a standard Phillips curve at

the zero steady state level of inflation as follows:

Π̃t = (1 − ξ)(1 − βξ)mfmc

ξ
M̃Ct + β [(1 − ξ)m̄fmfπ + ξm̄f ]EtΠ̃t+1 (B.50)
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Again, we can retreat the Phillips curve of the fully rational price-setting firm if the

vector of myopia parameters, [m̄,mfmc,mfπ,mfr], is equal to the vector of 1. Although

my behavioural Phillips curve (with zero steady state inflation) is isomophic to that of

Gabaix (2020), my behavioural Phillips curve also has the same property as Gabaix’s which

is less forward-looking compared to the fully rational case. In other word, when firms are

more attentive to the macroeconomic outcomes, say, vector m is closer to one, then firms

are more forward-looking because the slope on future inflation is higher.

C Euler Learning Model

The EL model have the same set of equations as the RE model, except we add the learning

rule specified in the main text for the expectation variables in the system :

U c
t = log(Cc

t ) − κ
H1+ϕ

t

1 + ϕ
(C.51)

V c
t = U c

t + βEtV
c

t+1 (C.52)

U c
C,t = 1

Cc
t

(C.53)

UH,t = −κHϕ
t (C.54)

Λt,t+1 = β

1 + g

E∗
tU

c
C,t+1

U c
C,t

(C.55)

Rt+1 = Rn,t

E∗
t Πt

(C.56)

1 = Et [Λt,t+1Rt+1] (C.57)

W c
t = −UH,t

U c
C,t

(C.58)

Y W,c
t = Ac

tH
α
t (C.59)

W c
t = α

PW
t

Pt

Y W,c
t

Ht
(C.60)

MCt = PW
t

Pt
(C.61)

Jc
t = 1

1 − 1
ζ

Y c
t MCtMSt + ξ(1 + g)Λt,t+1Ef∗

t Πζ
t,t+1E

∗
tJ

c
t+1 (C.62)

JJc
t = Y c

t + ξ(1 + g)Λt,t+1Ef∗
t Πζ−1

t,t+1E
∗
tJJ

c
t+1 (C.63)

1 = ξΠζ−1
t + (1 − ξ)

(
Jc

t

JJc
t

)1−ζ

(C.64)
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Y c
t = Y W,c

t

∆t
(C.65)

∆t = ξΠζ
t ∆t−1 + (1 − ξ)

(
Jc

t

JJc
t

)−ζ

(C.66)

Y c
t = Cc

t +Gc
t (C.67)

log
(
Rn,t

Rn

)
= ρr log

(
Rn,t−1
Rn

)
+ (1 − ρr)

(
θθ log

(Πt

Π

)
+ θy log

(
Y c

t

Y c

))
+ logMPSt (C.68)

logAc
t − logAc = ρA(logAc

t−1 − logAc) + ϵA,t (C.69)

logMSt − logMS = ρMS(logMSt−1 − logMS) + ϵMS,t (C.70)

logMPSt − logMPS = ρMP S(logMPSt−1 − logMPS) + ϵMP S,t (C.71)

logGc
t − logGc = ρG(logGc

t−1 − logGc) + ϵG,t (C.72)

E∗
t (UCc

t+1) = [E∗
t−1(UCc

t )]1−λ1
h,uc [UCc

t ]λ
1
h,uc+λ2

h,uc [UCc
t−1]−λ2

h,uc (C.73)

E∗
t (Πt+1) = [E∗

t−1(Πt)]1−λ1
h,π [Πt]λ

1
h,π+λ2

h,π [Πt−1]−λ2
h,π (C.74)

Ef∗
t (Πt+1) = [Ef∗

t−1(Πt)]1−λ1
f,π [Πt]λ

1
f,π+λ2

f,π [Πt−1]−λ2
f,π (C.75)

E∗
t (Jc

t+1) = [E∗
t−1(Jc

t )]1−λ1
J [Jc

t ]λ1
J +λ2

J [Jc
t−1]−λ2

J (C.76)

E∗
t (JJc

t+1) = [E∗
t−1(JJc

t )]1−λ1
JJ [JJc

t ]λ1
JJ +λ2

JJ [JJc
t−1]−λ2

JJ (C.77)

D Estimation Results

D.1 Identification

Assuming that a unique solution exists for each model, it can be cast in the following form

zt = A(θ)zt−1 + B(θ)ut (D.78)

Some of the variables in zt are not observed, so the transition equation (D.78) is comple-

mented by a measurement equation

xt = Czt + Dut + νt (D.79)

The unconditional first and second moments of xt are given by
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Ext := µx = s (D.80)

cov
(
xt+i,x′

t

)
:= Σx(i) =

 CΣz(0)C′ if i = 0

CAiΣz(0)C′ if i > 0
(D.81)

where Σz(0) := Eztz′
t solves the matrix equation

Σz(0) = AΣz(0)A′ + Ω (D.82)

Denote τ collecting the non-constant elements of ẑ∗,A, and Ω, i.e. τ := [τ ′
z, τ

′
A, τ

′
Ω]′.

Denote the observed data with XT := [x′
1, . . . ,x′

T ]′, and let ΣT be its covariance matrix,

i.e.

ΣT := EXT X′
T (D.83)

ΣT =



Σx(0), Σx(1)′, . . . , Σx(T − 1)′

Σx(1), Σx(0), . . . , Σx(T − 2)′

. . . . . . . . . . . .

Σx(T − 1), Σx(T − 2), . . . , Σx(0)


(D.84)

We define mT := [µ′,σ′
T ]′, where

σT :=
[
vech (Σx(0))′ , vec (Σx(1))′ , . . . , vec (Σx(T − 1))′

]′
mT is a function of θ. If either ut is Gaussian (which is true in our case), or there are no

distributional assumptions about the structural shocks, the model-implied restrictions on

mT contain all information that can be used for the estimation of θ. The identifiability of

θ depends on whether that information is sufficient or not.

Global identification: the Gaussian case. Suppose that the data XT is generated

by the model (D.78) and (D.79) with parameter vector θ0. Then θ0 is globally identified if

mT (θ̃) = mT (θ0) ⇔ θ̃ = θ0 (D.85)
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for any θ̃ ∈ Θ. If (D.85) is true only for values θ̃ in an open neighborhood of θ0, the

identification of θ0 is local.

Local identification: The rank condition. Suppose that mT is a continuously

differentiable function of θ. Then θ0 is locally identifiable if the Jacobian matrix J(q) := ∂mq

∂θ′

has a full column rank at θ0 for q ≤ T . This condition is both necessary and sufficient

when q = T if ut is normally distributed.

Given the chain rule

J(T ) = ∂mT

∂τ ′
∂τ

∂θ′ (D.86)

another necessary condition discussed in Iskrev and Ratto (2010). The point θ0 is locally

identifiable only if the rank of J2 = ∂τ
∂θ′ at θ0 is equal to k (the number of estimated

parameters). The condition is necessary because the distribution of XT depends on θ only

through τ , irrespectively of the distribution of ut. It is not sufficient since, unless all state

variables are observed, τ may be unidentifiable.

Results: prior_mean - Identification using info from observables. Identification

strength-plots are provided in the appendices.

Upper Panel: the bar charts depict the identification strength of the parameters based

on the Fischer information matrix normalized by either the parameter at the prior mean

(blue bars) or by the standard deviation at the prior mean (red bars). The weighting with

the prior standard deviation is only available if priors have been specified. Intuitively, the

bars represent the normalized curvature of the log likelihood function at the prior mean in

the direction of the parameter.

Lower Panel: This panel further decomposes the effect shown in the upper panel. A

weak identification can be due to either other parameters linearly compensating/replacing

the effect of a parameter (i.e. parameters having exactly the same effect on the likelihood)

or the fact that the likelihood does not change at all with the respective parameter. This

latter effect is called sensitivity.

The identification results show that the BR model is weakly identified for 2 parameters

α and ϕ. Other three models are identified.

BR Model
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REDUCED-FORM:

All parameters are identified in the Jacobian of steady state and reduced-form solution matrices (rank(Tau) is full with tol = robust).

MINIMAL SYSTEM (KOMUNJER AND NG, 2011):

All parameters are identified in the Jacobian of steady state and minimal system (rank(Deltabar) is full with tol = robust).

SPECTRUM (QU AND TKACHENKO, 2012):

!!!WARNING!!!

The rank of Gbar (Jacobian of mean and spectrum) is deficient!

[phi,xi] are PAIRWISE collinear!

[alp,xi] are PAIRWISE collinear!

[alp,phi] are PAIRWISE collinear!

MOMENTS (ISKREV, 2010):

All parameters are identified in the Jacobian of first two moments (rank(J) is full with tol = robust).

RE Model

REDUCED-FORM:

All parameters are identified in the Jacobian of steady state and reduced-form solution matrices (rank(Tau) is full with tol = robust).

MINIMAL SYSTEM (KOMUNJER AND NG, 2011):

All parameters are identified in the Jacobian of steady state and minimal system (rank(Deltabar) is full with tol = robust).

SPECTRUM (QU AND TKACHENKO, 2012):

!!!WARNING!!!

The rank of Gbar (Jacobian of mean and spectrum) is deficient!
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theta_dy is not identified!

rhoMS is not identified!

rhoG is not identified!

[alp,phi] are PAIRWISE collinear!

MOMENTS (ISKREV, 2010):

All parameters are identified in the Jacobian of first two moments (rank(J) is full with tol = robust).

EL Model

REDUCED-FORM:

All parameters are identified in the Jacobian of steady state and reduced-form solution matrices (rank(Tau) is full with tol = robust).

MINIMAL SYSTEM (KOMUNJER AND NG, 2011):

All parameters are identified in the Jacobian of steady state and minimal system (rank(Deltabar) is full with tol = robust).

SPECTRUM (QU AND TKACHENKO, 2012):

All parameters are identified in the Jacobian of mean and spectrum (rank(Gbar) is full with tol = robust).

MOMENTS (ISKREV, 2010):

All parameters are identified in the Jacobian of first two moments (rank(J) is full with tol = robust).
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Identification strength with asymptotic Information matrix (log-scale)
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Figure 15: Identification of the RE model

Identification strength with asymptotic Information matrix (log-scale)
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Figure 16: Identification of the Euler leaning with simple adaptive expectation
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Identification strength with asymptotic Information matrix (log-scale)
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Figure 17: Identification of the Euler leaning with Generalized adaptive expectation
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Figure 18: Identification of the Gabaix model
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D.2 Estimation results

Estimation of the Rational expectation. Sample from 1958Q1 to 2017Q4 with shadow rate.

Log data density is 3750.748983.

parameters

prior mean post. mean 90% HPD interval prior pstdev

xi 0.500 0.7552 0.7256 0.7849 beta 0.1000

phi 2.000 4.6626 3.8633 5.4614 norm 0.7500

alp 0.700 0.8861 0.8278 0.9469 beta 0.1000

rho_r 0.750 0.3015 0.2164 0.3846 beta 0.1000

theta_pie 1.500 2.4474 2.1938 2.7060 norm 0.2500

theta_y 0.120 0.0597 0.0272 0.0919 norm 0.0500

theta_dy 0.120 0.1092 0.0601 0.1598 norm 0.0500

rhoA 0.500 0.9897 0.9820 0.9980 beta 0.2000

rhoMS 0.500 0.9560 0.9362 0.9763 beta 0.2000

rhoMPS 0.500 0.5994 0.5369 0.6635 beta 0.2000

rhoG 0.500 0.9088 0.8913 0.9268 beta 0.2000

standard deviation of shocks

prior mean post. mean 90% HPD interval prior pstdev

epsA 0.001 0.0065 0.0060 0.0070 invg 0.0200

epsMS 0.001 0.0370 0.0309 0.0428 invg 0.0200

epsMPS 0.001 0.0050 0.0043 0.0057 invg 0.0200

epsG 0.001 0.0518 0.0440 0.0592 invg 0.0200

Estimation of the Euler learning with simple adaptive expectation. Sample from 1958Q1

to 2017Q4 with shadow rate.
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Log data density is 3714.418834.

parameters

prior mean post. mean 90% HPD interval prior pstdev

xi 0.500 0.7955 0.7521 0.8359 beta 0.1000

phi 2.000 1.2257 0.2960 2.0417 norm 0.7500

alp 0.700 0.9734 0.9579 0.9904 beta 0.1000

rho_r 0.750 0.8808 0.8276 0.9373 beta 0.1000

theta_pie 1.500 1.4193 1.1440 1.6953 norm 0.2500

theta_y 0.120 0.1132 0.0595 0.1674 norm 0.0500

theta_dy 0.120 0.1905 0.1067 0.2674 norm 0.0500

rhoA 0.500 0.9854 0.9746 0.9960 beta 0.2000

rhoMS 0.500 0.7667 0.5304 0.9516 beta 0.2000

rhoMPS 0.500 0.3871 0.2591 0.5145 beta 0.2000

rhoG 0.500 0.9843 0.9742 0.9958 beta 0.2000

lam_11h 0.500 0.1195 0.0527 0.1826 beta 0.2000

lam_11f 0.500 0.2608 0.0790 0.4741 beta 0.2000

lam_12h 0.500 0.0678 0.0070 0.1569 beta 0.2000

lam_12f 0.500 0.2285 0.0907 0.3401 beta 0.2000

lam_13f 0.500 0.5448 0.1028 0.8776 beta 0.2000

standard deviation of shocks

prior mean post. mean 90% HPD interval prior pstdev

epsA 0.001 0.0066 0.0061 0.0070 invg 0.0200

epsMS 0.001 0.0889 0.0461 0.1314 invg 0.0200

epsMPS 0.001 0.0023 0.0022 0.0025 invg 0.0200

epsG 0.001 0.0246 0.0227 0.0265 invg 0.0200
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Estimation of the Gabaix Model. Sample from 1958Q1 to 2017Q4 with shadow rate.

Log data density is 3750.800048.

parameters

prior mean post. mean 90% HPD interval prior pstdev

xi 0.500 0.6962 0.6565 0.7351 beta 0.1000

phi 2.000 3.7243 2.8656 4.5382 norm 0.7500

alp 0.700 0.9092 0.8594 0.9606 beta 0.1000

rho_r 0.750 0.3343 0.2471 0.4192 beta 0.1000

theta_pie 1.500 2.6075 2.3458 2.8594 norm 0.2500

theta_y 0.120 0.0417 0.0039 0.0811 norm 0.0500

theta_dy 0.120 0.1739 0.1169 0.2312 norm 0.0500

rhoA 0.500 0.9919 0.9855 0.9986 beta 0.2000

rhoMS 0.500 0.9633 0.9446 0.9824 beta 0.2000

rhoMPS 0.500 0.6175 0.5562 0.6782 beta 0.2000

rhoG 0.500 0.9475 0.9260 0.9689 beta 0.2000

mh_bar 0.500 0.9379 0.9130 0.9623 beta 0.2000

mf_bar 0.500 0.5405 0.2211 0.8785 beta 0.2000

standard deviation of shocks

prior mean post. mean 90% HPD interval prior pstdev

epsA 0.001 0.0065 0.0060 0.0070 invg 0.0200

epsMS 0.001 0.0297 0.0236 0.0355 invg 0.0200

epsMPS 0.001 0.0050 0.0043 0.0057 invg 0.0200

epsG 0.001 0.0434 0.0374 0.0495 invg 0.0200

Estimation of the Euler learning Model with Generalized Adaptive Expectation. Sample
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from 1958Q1 to 2017Q4 with shadow rate.

Log data density is 3772.209739.

parameters

prior mean post. mean 90% HPD interval prior pstdev

xi 0.500 0.5449 0.4379 0.6542 beta 0.1000

phi 2.000 3.7491 2.8618 4.6466 norm 0.7500

alp 0.700 0.8851 0.8195 0.9518 beta 0.1000

rho_r 0.750 0.4400 0.3400 0.5395 beta 0.1000

theta_pie 1.500 2.0188 1.7185 2.3248 norm 0.2500

theta_y 0.120 0.0480 0.0003 0.0965 norm 0.0500

theta_dy 0.120 0.0601 -0.0004 0.1217 norm 0.0500

rhoA 0.500 0.9840 0.9729 0.9958 beta 0.2000

rhoMS 0.500 0.9729 0.9561 0.9903 beta 0.2000

rhoMPS 0.500 0.7959 0.7245 0.8667 beta 0.2000

rhoG 0.500 0.9764 0.9602 0.9921 beta 0.2000

lam_11h 0.500 0.0344 0.0104 0.0569 beta 0.2000

lam_11f 0.500 0.2386 0.0208 0.5157 beta 0.2000

lam_21h 0.000 0.8036 0.7618 0.8486 beta 0.2500

lam_21f 0.000 0.1345 -0.0505 0.3118 beta 0.2500

lam_12h 0.500 0.0556 0.0143 0.0930 beta 0.2000

lam_12f 0.500 0.8861 0.7913 0.9846 beta 0.2000

lam_22h 0.000 -0.7315 -0.8682 -0.5983 beta 0.2500

lam_22f 0.000 0.6223 0.4359 0.8167 beta 0.2500

lam_13f 0.500 0.6522 0.4069 0.9099 beta 0.2000

lam_23f 0.000 0.1073 -0.2696 0.4868 beta 0.2500

standard deviation of shocks

prior mean post. mean 90% HPD interval prior pstdev
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epsA 0.001 0.0065 0.0060 0.0070 invg 0.0200

epsMS 0.001 0.0286 0.0230 0.0341 invg 0.0200

epsMPS 0.001 0.0035 0.0030 0.0040 invg 0.0200

epsG 0.001 0.0458 0.0387 0.0531 invg 0.0200
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Figure 19: Impulse responses to the cost-push shock comparison between the models at the
robust ZLB mandate. p̄ = 0.05
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Figure 20: Impulse responses to the government spending shock comparison between the
models at the robust ZLB mandate. p̄ = 0.05
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Figure 21: Impulse responses to the technology shock comparison between the models at the
robust ZLB mandate. p̄ = 0.05


