Fluid dynamics of Urban Tall-building clUsters for Resilient built Environments

Wake Scaling Behind Cluster of Tall Buildings

April 3, 2023

Abhishek Mishra, Marco Placidi, Matteo Carpentieri, Alan Robins

Environmental Flow Research Centre, University of Surrey

FUTURE Programme

Objectives

- To understand the magnitude and spatial scale of the effects of a cluster of tall buildings.
- To identify the main parameters that govern the extent and character of the near and far fields within the wake.
- To assess what can be said generically and what remains site specific.
- To develop fast analytical models that describe the behaviour of wakes downstream of groups of tall buildings.
- To collate this information within a set of guidelines and tools publicly available to professionals, regulators, and policymakers.

Work Packages

- ✓ Idealised clusters in neutral atmospheric conditions
- ✓ Idealised clusters in non-neutral atmospheric conditions
- $\checkmark\,$ Realistic clusters in all atmospheric conditions.

Sept 2022

Торіс	No of cases	WT
No buildings	1	One source location
Standard arrays (h/b = 4, d/b = 1)	4 (1x1, 2x2, 4x4, 8x8)	4 source locations – upwind, within, downwind, further downwind.
Number of orientations	3 (0, 22.5, 45°)	4x4 array; 22.5° gives side force and breaks wake symmetry; 4 source locations
Spacing, d/b	4 (d/b = 0.5, 1, 2, 3)	4x4 array, one wind direction, 0°, one source location (array centre)
Height ratio, h/H	3 (h/H = 0.125, 0.25, 0.5)	4x4 array, one wind direction, one source location (array centre)
Building height non- uniformity	3 (Dh/h = 0, 1/3, 1/2)	4x4 array, h = 240 mm, one wind direction, one source location (array centre), normal distribution of heights.
Array shape	2 (8x1, 1x8)	Spacings, d/b =1, 2
Reynolds number	2 (U _{ref} = 2, 1 m/s)	4 x 4 array, 0° wind direction. Needed as precursor to stable/unstable cases.
Extended measurements	3	4 x 4 array, 0° wind direction, velocity field only, see above.
Approach flow	2 Roughness elements, DIPLOS blocks	4 x 4 array, one wind direction, one source location (array centre) - standard roughness, as above; DIPLOS blocks hxhx2h, d/h = 1, h = 70 mm

Case no	Array Size (N x N)	Building Width, W_B (mm)	W _S /W _B	Building height <i>, H_B</i> (mm)	Array Width, W_A (mm)
1	1 x 1 (SB)	10	-	60	10
2	5 x 5	10	1	60	90
3	4 x 4	10	1	60	70
4	3 x 3	10	1	60	50
5	5 x 5	10	0.5	60	70
6	5 x 5	10	2	60	130
7	5 x 5	10	4	60	210
8	5 x 5	10	1	80	90
9	5 x 5	10	1	40	90

x: streamwise distancey: spanwise distancez: vertical distance

 $\delta = 223 \text{ mm}$

 $Re_{\delta} = 1.39 \times 10^5$

Case no	Array Size (N x N)	Building Width, W_B (mm)	W _S /W _B	Building height <i>, H_B</i> (mm)	Array Width, W_A (mm)
1	1 x 1 (SB)	10	-	60	10
2	5 x 5	10	1	60	90
3	4 x 4	10	1	60	70
4	3 x 3	10	1	60	50
5	5 x 5	10	0.5	60	70
6	5 x 5	10	2	60	130
7	5 x 5	10	4	60	210
8	5 x 5	10	1	80	90
9	5 x 5	10	1	40	90

x: streamwise distancey: spanwise distancez: vertical distance

 $\delta = 223 \text{ mm}$

 $Re_{\delta} = 1.39 \times 10^5$

Array size

Case no	Array Size (N x N)	Building Width, W_B (mm)	W _S /W _B	Building height <i>, H_B</i> (mm)	Array Width, W_A (mm)
1	1 x 1 (SB)	10	-	60	10
2	5 x 5	10	1	60	90
3	4 x 4	10	1	60	70
4	3 x 3	10	1	60	50
5	5 x 5	10	0.5	60	70
6	5 x 5	10	2	60	130
7	5 x 5	10	4	60	210
8	5 x 5	10	1	80	90
9	5 x 5	10	1	40	90

x: streamwise distancey: spanwise distancez: vertical distance

 $\delta = 223 \text{ mm}$ $Re_{\delta} = 1.39 \times 10^5$

Building Spacing

Case no	Array Size (N x N)	Building Width, W_B (mm)	W _S /W _B	Building height <i>, H_B</i> (mm)	Array Width, W_A (mm)
1	1 x 1 (SB)	10	-	60	10
2	5 x 5	10	1	60	90
3	4 x 4	10	1	60	70
4	3 x 3	10	1	60	50
5	5 x 5	10	0.5	60	70
6	5 x 5	10	2	60	130
7	5 x 5	10	4	60	210
8	5 x 5	10	1	80	90
9	5 x 5	10	1	40	90

x: streamwise distancey: spanwise distancez: vertical distance

 $\delta = 223 \text{ mm}$ $Re_{\delta} = 1.39 \times 10^5$

Aspect Ratio

Case no	Array Size (N x N)	Building Width, W_B (mm)	W _S /W _B	Building height <i>, H_B</i> (mm)	Array Width, W_A (mm)
1	1 x 1 (SB)	10	-	60	10
2	5 x 5	10	1	60	90
3	4 x 4	10	1	60	70
4	3 x 3	10	1	60	50
5	5 x 5	10	0.5	60	70
6	5 x 5	10	2	60	130
7	5 x 5	10	4	60	210
8	5 x 5	10	1	80	90
9	5 x 5	10	1	40	90

x: streamwise distancey: spanwise distancez: vertical distance

 $\delta = 223 \text{ mm}$ $Re_{\delta} = 1.39 \times 10^5$

Packing Density

Cluster vs isolated building - regimes

- Near wake regime: Distinct wake behind individual buildings; $x/W_A = 0.1, 0.22$
- Transition wake regime: Individual wakes merge $x/W_A = 0.44, 0.9, 1.3$
- Global wake regime: Single wake similar to behind a single building; $x/W_A = 2.2, 5.56$

Effect of N, W_S, and AR in near wake regime

 $N = 5, W_S = W_B$

3

3

Effect of N, W_S , and AR in global wake regime

-2

0

y/W_A

 $x \leq 0.5 W_A$

1

2

Flow in global wake regime

UNIVERSITY OF

- Global wake regime behaves same as that of the wake behind a single building.
- In the global wake regime, the wake is characterised by wake half width and maximum velocity deficit.
- Effect of individual buildings are subdued.

Flow in near wake regime

0.5

 $\frac{y}{W_A}$

-0.5

1.5

1

 $\begin{cases} \frac{U - U_{cl}}{U_{loc} - U_{cl}} |y| \le 0.5 W_A \\\\ \frac{U - U_{cl}}{U_o - U_{cl}} |y| > 0.5 W_A \end{cases}$

-0.4

 $\frac{y}{W_A}$

 U_{cl} = average velocity at individual building center at a given x location

 U_{loc} = average velocity at the center of the channels at a given x location

- Effect of individual wakes behind each building is prominent in the near wake regime.
- Wake is characterised by local velocity in the channels between the buildings. •

Wake recovery behind building cluster

UNIVERSITY OF SURREY

The velocity decay depends on:

• Array Size: **Δ**U decay faster with decrease in the size of the array

• Aspect ratio: ΔU decay faster with decrease in aspect ratio

• Spacing between buildings

Wake recovery behind building cluster

- The decay of velocity deficit is governed by :
 - N, W_S , and W_B in the near wake regime
 - λ_f , AR, and W_A in the global wake regime

- AR = H_B / W_B
- $\lambda_f = \frac{N * H_B * W_B}{H_B * W_A}$ (frontal blockage)

Effect of Wind Angle

April-May, 2023

• WP 2 includes idealized building cluster in **thermally stratified boundary layer** conditions.

Торіс	No of cases	WT
No buildings	1	One source location
Standard arrays (h/b = 4, d/b = 1)	4 (1x1, 4x4, 8x8)	2 Source location: centre and upstream
Number of orientations	3 (0, 22.5, 45°)	4x4 array; 22.5° gives side force and breaks wake symmetry;
Spacing, d/b	4 (d/b = 0.5, 1, 3)	4x4 array, one wind direction, 0°, one source location (array centre)
Approach flow	2 Roughness elements, DIPLOS blocks	4 x 4 array, one wind direction, one source location (array centre) - standard roughness, as above; DIPLOS blocks hxhx2h, d/h = 1, h = 70 mm
Reynolds number	2 (U _{ref} = 2, 1 m/s)	4 x 4 array, 0° wind direction.
Height ratio, h/H	3 (h/H = 0.125, 0.25, 0.5)	4x4 array, one wind direction, one source location (array centre)

Sept-Oct, 2023

UNIVERSITY OF SURREY

Sept-Oct, 2023

Key Observations in WP1

- ✓ Different wake regimes behind cluster of buildings
- $\checkmark~$ Extent of wake regimes depend on cluster width.
- ✓ The wake structure in global wake regime is similar to that of single building with same width.
- ✓ Geometry and orientation of individual buildings is governing parameter in near wake region.

Thank You